Combinatorial Invariants and Quantum Circuits (With speculation on the status of "quantum supremacy")

Kenneth W. Regan¹ University at Buffalo (SUNY)

28 Sept., 2024

¹Joint work with Amlan Chakrabarti, University of Calcutta, and Chaowen Guan, University of Cincinnati-
◆ ロ ▶ → 레 ▶ → 草 ▶ → 草 ▶ │ 草 │ ◆) ۹ (^

Status of Universal Quantum Computing

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of P: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the NP-complete **SAT** problem requires exponential size circuits, then $BPP = P$ anyway.
- Neither Factoring nor **BQP** seem to reach **NP**-complete level.
- $BQP \subseteq \#P$, which is the analogue of NP for *counting problems*.
- E.g., #SAT asks "how many solutions?", not "is there a solution?"
- There has still not been a *clear* instance of factoring an integer larger than $21 = 3 \times 7$ via **Shor's Algorithm** on a universal QC.
- Adiabatic quantum computing is theoretically universal but its computations are ephemeral. Also has stability issues in practice.

The Complexity Class Neighborhood...

Structural Forebodings

- Between **P** and **NP**-complete is mostly deserted.
- \bullet Similar between **P** and $\#P$, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.
- Grover's Algorithm is only quadratic savings, and for **SAT** and $\#\text{SAT}$, saves only $\sqrt{\exp(n)} = \exp(n/2)$.
- "Quantum supremacy" [knocked down?](https://arxiv.org/abs/2005.06787) Shor's algorithm [dinged,](https://rjlipton.com/2023/06/14/a-little-noise-makes-quantum-factoring-fail/) or is it [improved?](https://www.schneier.com/blog/archives/2024/01/improving-shors-algorithm.html) A major app [de-quantized?](https://ewintang.com/assets/tang_thesis.pdf)
- Many NP-complete problems have adept heuristics.
- Also for $\#SAT$: software [sharpSAT,](https://github.com/marcthurley/sharpSAT) [Cachet.](https://henrykautz.com/Cachet/index.htm)
- However, SAT-encoded [cases](https://cs.stackexchange.com/questions/115682/practical-hard-3-sat-instances) of Factoring remain hard for them.

Can we capture quantum circuits by combinatorial invariants that lead to new heuristics for classically simulating them?

Dichotomy Example Over \mathbb{Z}_4

Consider *quadratic* polynomials $f(x_1, x_2, \ldots, x_n)$ modulo 4.

- Counting the number of zeroes is in P. (Follows by [Cai-Chen-Lipton-Luo, 2010].)
- Counting the number of zeroes in $\{0,1\}^n$ is #P-complete.
- But if all cross-terms are $2x_ix_j$ it is in P again.

We will see how polynomials over \mathbb{Z}_4 characterize a neglected(?) library of universal quantum circuits.

Three kinds of combinatorial invariants for these circuits:

- ¹ Phase-and-location ("Feynman Path") polynomials.
- ² Graphs, and their generalization to graphical 2-polymatroids.
- ³ Versions of the [Tutte Polynomial](https://en.wikipedia.org/wiki/Tutte_polynomial) associated to such graphs and matroids.

KORK EXTERNED ARA

Quantum Circuits

Quantum circuits look more constrained than Boolean circuits:

But Boolean circuits look similar if we do Savage's TM-to-circuit simulation and call each *column* for each tape cell a "cue-bit."

KOD START ARE A BUILDING

Quantum Gates—three slides by M. Rötteler

Quantum gates

September 24, 2009

 OQ

Quantum circuit example

$$
H \otimes 1_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes 1_2
$$

\n
$$
|0\rangle
$$

\n
$$
|1\rangle
$$

\n
$$
|0\rangle
$$

\n
$$
\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle
$$

\n
$$
|0\rangle
$$

\n
$$
\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)
$$

\n
$$
|00\rangle \rightarrow |00\rangle
$$

\n
$$
|01\rangle \rightarrow |01\rangle
$$

\n
$$
|11\rangle \rightarrow |10\rangle
$$

\n
$$
|11\rangle \rightarrow |10\rangle
$$

September 24, 2009

M. Roetteler

8

Toffoli Gate

Theorem (Toffoli, 1981)

Any reversible computation can be realized by using TOF gates and ancilla (auxiliary) bits which are initialized to 0.

Slides by Martin Rötteler

 $\mathbf{1} \qquad \mathbf{1} \qquad \mathbf{$ 2990

Some More Gates

$$
X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},
$$

$$
S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad R_8 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/8} \end{bmatrix},
$$

$$
CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad CS = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}
$$

.

- The gates H, X, Y, Z, S, CNOT, CZ generate *Clifford circuits*, which are simulatable in polynomial time. (Time improved by us.)
- Adding any of T, R₈, CS, or Tof gives the full power of BQP.
- Note: $T^2 = S$ $T^2 = S$, $S^2 = Z$ $S^2 = Z$ $S^2 = Z$, $Z^2 = I = H^2$, and $CS^2 = CZ$ $CS^2 = CZ$ [.](#page-10-0)

Three Universal Libraries

- The gate set $H + \text{CNOT} + T$ is efficiently metrically universal, meaning that any feasible quantum circuit of size s can be approximated to within entrywise error ϵ by a circuit of these gates only in size $O(s) \cdot (\log \frac{s}{\epsilon})^{O(1)}$. (See [Solovay-Kitaev theorem.](https://en.wikipedia.org/wiki/Solovay-Kitaev_theorem))
- Programmed [improvement](https://www.mathstat.dal.ca/~selinger/newsynth/) by Peter Selinger and Neil Ross.
- The gate set $H + \text{Tof}$ is not metrically universal—it has no complex scalars—but it is **computationally universal**: It can maintain real and complex parts of quantum states in double-rail manner.
- The gate set $H + CS$ is [efficiently metrically universal.](http://theory.caltech.edu/~preskill/ph219/ph219-prob3-fall-2021.pdf) Note also:

I. Feynman Path Polynomials

Let C have "minphase" $K = 2^k$ and let F embed K-th roots of unity ω .

- H + Tof has $k = 1$, $K = 2$.
- H + CS has $k = 2, K = 4$.
- H + CNOT + T has $k = 3$, $K = 8$.

Theorem (RC 2007-09, extending Dawson et al. (2004) over \mathbb{Z}_2)

Any QC C of n qubits quickly transforms into a polynomial $P_C = \prod_g P_g$ over gates g and a constant $R > 0$ such that for all $x, z \in \{0, 1\}^n$:

$$
\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j(\# y : P_C(x, y, z) = \iota(\omega^j)) = \frac{1}{R} \sum_y \omega^{P_C(x, y, z)},
$$

KEIN KALA SEN KEN EL POLO

where C has h nondeterministic (Hadamard) gates and $y \in \{0,1\}^h$.

Additive Case (Cf. Bacon-van Dam-Russell [2008])

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree $O(1)$ over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$
\langle z | C | x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\# y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},
$$

where Q_C has the form $\sum_{gates\ g} q_g + \sum_{constraints\ c} q_c$.

- Gives a particularly efficient reduction from BQP to $\#P$.
- \bullet In P_C , illegal paths that violate some constraint incur the value 0.
- In Q_C , any violation creates an additive term $T = w_1 \cdots w_{\log_2 K}$ using fresh variables whose assignments give all values in $0 \dots K-1$, which *cancel*. (This trick is my main orig[ina](#page-11-0)[l c](#page-13-0)[o](#page-11-0)[nt](#page-12-0)[r](#page-13-0)[ibu](#page-0-0)[ti](#page-23-0)[on](#page-0-0)[.\)](#page-23-0)

Constructing the Polynomials

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i-H) , allocate new variable y_i and do:

$$
P_C * = (1 - u_i y_j)
$$

\n
$$
Q_C + = 2^{k-1} u_i y_j.
$$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_i := 2u_iu_j - u_i - u_j$. No change to P_C or Q_C .
- S-gate: Q_C adds u_i^2 .
- CS-gate: Q_C adds $u_i u_j$.
- Thereby CS escapes the easy case over \mathbb{Z}_4 (with $k = 2$).
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k-u_iu_j-u_k$.

KORK EXTERNED ARA

• T-gate also goes cubic.

Logical Simulation

Theorem (C. Guan in RCG 2018)

Given C, n, K, h as above, we can quickly build a Boolean formula ϕ_C in variables y_1, \ldots, y_h , together with substituted-for x_1, \ldots, x_n , z_1, \ldots, z_n , and other "forced" variables such that for all $x, z \in \{0, 1\}^n$.

$$
\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j \cdot \#sat(\phi_C).
$$

- The ϕ is a conjunction of "controlled bitflips" $p' = p \oplus (u \wedge v)$.
- Easy to transform into 3CNF (i.e., "3SAT" form). (show demo)
- For $K = 2, 4$ (i.e., for H + Tof and H + CS), we get the acceptance probability as a simple difference:

$$
|\langle z | C | x \rangle|^2 = \frac{1}{R} \left(\# sat(\phi_C) - \# sat(\phi_C') \right).
$$

KORK EXTERNED ARA

II. Strong Simulation of Graph State Circuits

Computing amplitudes $\langle z | C | x \rangle$ for Clifford circuits C can be efficiently reduced to computing $\langle 0^n | C_G | 0^n \rangle$ for **graph-state** circuits C_G of graphs G, using H and CZ gates, as exemplified by:

 Ω

Improved From $O(n^3)$ to $O(n^{2.37155...})$

Theorem (Guan-Regan, 2019)

For n-qubit stabilizer circuits of size s, $\langle z | C | x \rangle$ can be computed in $O(s + n^{\omega})$ time, where $\omega \leq 2.37155...$ is the exponent of multiplying $n \times n$ matrices.

- Although C has $K = 2$, [proof](https://arxiv.org/abs/1904.00101) needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].
- Corollary: Counting solutions to quadratic polynomials $p(x_1,...,x_n)$ over \mathbb{Z}_2 is in $O(n^{2.37155...})$ time.
- Improves $O(n^3)$ time of [Ehrenfeucht-Karpinski \(1990\).](https://theory.cs.uni-bonn.de/ftp/reports/cs-reports/1990/8543-CS.pdf)
- See [Beaudrap and Herbert \[2021\]](https://arxiv.org/pdf/2109.08629) for other time/size/#H tradeoffs.
- Can we recognize G with $\langle 0^n | C_G | 0^n \rangle = 0$ more quickly still?

From Graphs to Polymatroids

- \bullet A self-loop on node *i* becomes a Z-gate on qubit line *i*.
- An S-gate on line i would then be a "half loop."
- A CS gate would then be a "half edge."
- Formalizable as a polymatroid (PM). Into universal QC now.
- John Preskill's [notes](http://theory.caltech.edu/~preskill/ph219/ph219-prob3-fall-2021.pdf) show that the following four widgets, together with their conjugations by $H \otimes H$, suffice:

New Heuristic Forms to Investigate

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la [this?](https://algassert.com/post/1801)
- How about the power of PM state circuits by themselves?
- Are they more amenable to algebraic or logical model-counting heuristics than general quantum circuits?
- Chaowen and I also [considered](https://rjlipton.com/2020/02/11/using-negative-nodes-to-count/) graphs that can have:
	- Loops not attached to a vertex, called *circles*.
	- Numbered copies of the empty graph, called *wisps*.
	- Wisps of negative sign, called *negative isols*.
- They can be formalized via (*graphical*) 2-polymatroids. Call them "(G)2PMs."

• We [took them in a different direction.](https://dblp.uni-trier.de/rec/conf/acss/GuanR20.html)

III. New Generalized Tutte-Grothendieck Invariant

For any G2PM G, we define its **amplitude polynomial** $Q_G(x)$, of just one variable x , inductively like so:

• If G has ℓ isolated nodes, k circles, and any number of wisps or negative isols (i.e., no edges besides circles), then

$$
Q_G(x) = (-1)^k x^{\ell}.
$$

 \bullet Else, if G has a loop e at some node, define

$$
Q_G(x) = Q_{G \setminus e} - Q_{G \setminus \setminus e}.
$$

 \bullet Else, if G has an edge e between two nodes, define

$$
Q_G(x) = Q_{G \setminus e} - \frac{1}{2} Q_{G \setminus \setminus e}.
$$

Here $G \setminus e$ means deleting edge e, but $G \setminus e$ means "exploding" e. Th[e](#page-18-0) recur[s](#page-18-0)i[o](#page-20-0)n is *confluent*—order of choosing e d[oe](#page-20-0)s [n](#page-19-0)o[t](#page-0-0) [ma](#page-23-0)[tt](#page-0-0)[er.](#page-23-0) 000

Exploding an Edge

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Properties of the Amplitude Polynomial

We connect Q_G to the **rank-generating polynomial** S_G of J. Oxley and G. Whittle, and a variant form S'_G , by

Theorem

$$
Q_G(x) = \left(\frac{1}{\alpha}\right)^n S'_G(\alpha x, -\alpha) = \left(\frac{1}{\alpha}\right)^n S_G(\alpha x, -\alpha)(\alpha x)^r,
$$

where $\alpha = -i$ √ 2 and r is the number of isolated nodes of G.

Drawing on their definition of a *generalized Tutte-Grothendieck* invariant (GTGI), we show:

Theorem

 Q_G is a GTGI of graphs G and belongs to the first of only two possible families of GTGIs that can arise from G2PMs

KORK EXTERNED ARA

Even More Speculative

- What are these good for? Many computational problems boil down to evaluating generative polynomials (Tutte, Jones, etc.) at specific points x_0 . Classifying complexity of $Q_G(x_0)$ may channel simulation problems about QCs.
- Invariants based on Strassen's *geometric degree* $\gamma(f)$ concept may help quantify both entanglement and the effort needed to maintain coherence in universal QC.
- Baur-Strassen showed that $\Omega(\log_2 \gamma(f))$ lower-bounds the arithmetical complexity of f , indeed the number of binary multiplication gates.
- Yields $\Omega(n \log n)$ lower bound on circuits for $f = x_1^n + \cdots + x_n^n$.
- Piddling, but it remains the only super-linear lower bound known on any general measure of complexity.
- Does $\gamma(P_C)$ witness a physical nonlinearity associated with operating quantum circuits C?

Other Web Sources

- <https://rjlipton.com/2022/01/05/quantum-graph-theory/>
- <https://rjlipton.com/2019/06/17/contraction-and-explosion/>
- <https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/>
- https://rilipton.com/2021/11/01/quantum-trick-or-treat/ (chaos in quantum walks)
- \bullet <https://rjlipton.com/2019/06/10/net-zero-graphs/>
- <https://rjlipton.com/2012/07/08/grilling-quantum-circuits/>
- Last one has links to expanded geometric degree and Baur-Strassen discussion.

KORKAR KERKER DRAG

• Thanks for listening. Q & A.