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Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.
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Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.
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Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,
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Using the Shape of Space for Shortcuts

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the
grid, several ideas:

1 Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

2 Write x =
∑

k bkuk, use y =
∑

k bkf(uk). Seems better. But the
dimension ` is not small.

3 Use any neighbor u and do Taylor expansion.
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Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant = “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?
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Using the Shape of Space for Shortcuts

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t.
Chess game turns

2 Inputs: Values vi for every option at turn t.
Computer values of moves mi

3 Parameters: s, c, . . . denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P (s, c, . . . ).

5 Main Output: Probabilities pt,i for P (s, c, . . . ) to select option i at
time t.

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).
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Using the Shape of Space for Shortcuts

How the Model Operates

Let v1, vi stand for the values of the best move m1 and ith-best
move mi, and p1, pi the probabilities that P (s, c, . . . ) will play them.

Given s, c, . . . , the model computes xi = gs,c(v1, vi) = the
perceived inferiority of mi by P (s, c, . . . ).

Besides g, the model picks a function h(pi) on probabilities.

Could be h(p) = p (bad), log (good enough?), H(pi), logit. . .

The Main Equation:

h(pi)

h(p1)
= 1− xi.

Ratio not difference on LHS so xi on RHS has 0-to-1 scale.

Given (x1, . . . , xi, . . . , x`), fit subject to
∑

i pi = 1 to find p1. Other
pi follow by pi = h−1(h(p1)(1− xi)).
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Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.
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Using the Shape of Space for Shortcuts

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

2 Grid needs less precision also for higher coordinates i.
3 Can the influence tell us about ∂f and help us pick a good grid

neighbor u of x?
4 Given x = (x1, . . . , x`), how to define “nearest” gridpoint(s)
u = (u1, . . . , u`)?

5 How to define a good bounding set u, v, . . . ?
6 How to make the computation of nearby gridpoints efficient?
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Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?
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Using the Shape of Space for Shortcuts

Axioms and Properties

1 Suppose x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, . . . , 1.0).
2 This means four equal-optimal moves, all others lose instantly.

3 The model will give p1 = p2 = p3 = p4 = 0.25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi −→ 1.0,
∂f

∂xi
−→ 0.

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j,
∂f

∂xj
<
∂f

∂xi
.

(Not quite what was meant. . . )
6 “Universal Guess”: In the first Taylor term, use

∂f

∂xi
≈ 1

i
ai =

1

i
(1− xi).
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Using the Shape of Space for Shortcuts

Tailoring the Grid

1 Define grid values ui on each coordinate i by “tapering” (data
structures by T. Biswas).

2 Given x = (x1, . . . , x`), how to define a “neighborhood” from U?

3 Define x+ by rounding each entry xi to next-higher ui.

4 And x− by rounding each entry xi to next-lower ui.

5 Neighborhood drawn from entries of x+ and x−.
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Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.
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Results So Far. . .

1 Basic story: looks good on random data, not sure yet on real-world
data...

2 We ran experiments under a randomized distribution Dε in which
r ∈ [xi−1, 1] is sampled uniformly and

xi = xi−1 + ε(r − xi−1) (capped at xi = 1.0).

3 That is, we make each move randomly slightly inferior to the
previous one. We choose ε according to N , to make expectation
xi ≈ 1.0 as i nears N .

4 Results under Dε are good: 3-place precision on µ(. . . ) given 2-place
to 1-place precision on grid.

5 Results on real chess data. . . still a work in progress.
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Results for NN+UG
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Results for Just NN


