Digital Mindprints

Kenneth W. Regan University at Buffalo (SUNY)

Workshop on "Digital Assistance," Puné, 6 August 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

Speaking from the computer's point of view is also valid:

Does the use of human assistants alter our thinking in ways demonstrably different from computer agents acting alone?

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

Speaking from the computer's point of view is also valid:

Does the use of human assistants alter our thinking in ways demonstrably different from computer agents acting alone?

• Should "we" cut humans out of the loop in driverless cars?

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

Speaking from the computer's point of view is also valid:

Does the use of human assistants alter our thinking in ways demonstrably different from computer agents acting alone?

• Should "we" cut humans out of the loop in driverless cars? the military?

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

Speaking from the computer's point of view is also valid:

Does the use of human assistants alter our thinking in ways demonstrably different from computer agents acting alone?

• Should "we" cut humans out of the loop in driverless cars? the military? financial trading?

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

Speaking from the computer's point of view is also valid:

Does the use of human assistants alter our thinking in ways demonstrably different from computer agents acting alone?

• Should "we" cut humans out of the loop in driverless cars? the military? financial trading? other daily applications?

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

Speaking from the computer's point of view is also valid:

Does the use of human assistants alter our thinking in ways demonstrably different from computer agents acting alone?

- Should "we" cut humans out of the loop in driverless cars? the military? financial trading? other daily applications?
- What are important differences in cognitive tendencies?

My original talk thesis from the human point of view:

Does the use of digital assistants alter our thinking in ways demonstrably different from human agents acting alone?

Speaking from the computer's point of view is also valid:

Does the use of human assistants alter our thinking in ways demonstrably different from computer agents acting alone?

- Should "we" cut humans out of the loop in driverless cars? the military? financial trading? other daily applications?
- What are important differences in cognitive tendencies?
- Dores each side need to do *xenospection*—building a model of the other's characteristic behavior?

• Chess is not a normal daily human activty.

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.

ション ふゆ マ キャット しょう くしゃ

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).

うして ふゆう ふほう ふほう ふしつ

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.

うして ふゆう ふほう ふほう ふしつ

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.

うして ふゆう ふほう ふほう ふしつ

• Copious data from real competitions not simulations.

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.

- Copious data from real competitions not simulations.
- Computers chess programs (called *engines*) now *outclass* all human players, even when running on commodity hardware.

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.
- Copious data from real competitions not simulations.
- Computers chess programs (called *engines*) now *outclass* all human players, even when running on commodity hardware.
- Positive benefit: it enables authoritative judgment of human decisions

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.
- Copious data from real competitions not simulations.
- Computers chess programs (called *engines*) now *outclass* all human players, even when running on commodity hardware.
- Positive benefit: it enables authoritative judgment of human decisions *intrinsically*, rather than "extrinsically" from results of games.

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.
- Copious data from real competitions not simulations.
- Computers chess programs (called *engines*) now *outclass* all human players, even when running on commodity hardware.
- Positive benefit: it enables authoritative judgment of human decisions *intrinsically*, rather than "extrinsically" from results of games. V. Anand plays fewer than 100 rated games per year—

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.
- Copious data from real competitions not simulations.
- Computers chess programs (called *engines*) now *outclass* all human players, even when running on commodity hardware.
- Positive benefit: it enables authoritative judgment of human decisions *intrinsically*, rather than "extrinsically" from results of games. V. Anand plays fewer than 100 rated games per year—but they furnish over 3,000 relevant decisions by him to analyze.

- Chess is not a normal daily human activty.
- Players in events *rated* by the World Chess Federation (FIDE) : under 500,000 worldwide.
- "The Stress of Chess" (autobio by late US grandmaster Walter Browne).
- Idea is that from specialized situations with extreme human input we can isolate distinct patterns in cognition.
- Copious data from real competitions not simulations.
- Computers chess programs (called *engines*) now *outclass* all human players, even when running on commodity hardware.
- Positive benefit: it enables authoritative judgment of human decisions *intrinsically*, rather than "extrinsically" from results of games. V. Anand plays fewer than 100 rated games per year—but they furnish over 3,000 relevant decisions by him to analyze.
- Negative side: "E-Doping" by human players...

• My project began with the near-breakup of the 2006 World Championship Match between V. Topalov and V. Kramnik over allegations that Kramnik was getting help from the engine Fritz 9 via Internet cable to his *toilet*, the only part of the stage area off-camera.

ション ふゆ マ キャット しょう くしゃ

- My project began with the near-breakup of the 2006 World Championship Match between V. Topalov and V. Kramnik over allegations that Kramnik was getting help from the engine Fritz 9 via Internet cable to his *toilet*, the only part of the stage area off-camera.
- Only evidence given was a letter stating abnormally high agreement between Kramnik's moves and Fritz 9's recommendations. (Fritz 10 beat Kramnik in a 6-game match two months later.)

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- My project began with the near-breakup of the 2006 World Championship Match between V. Topalov and V. Kramnik over allegations that Kramnik was getting help from the engine Fritz 9 via Internet cable to his *toilet*, the only part of the stage area off-camera.
- Only evidence given was a letter stating abnormally high agreement between Kramnik's moves and Fritz 9's recommendations. (Fritz 10 beat Kramnik in a 6-game match two months later.)

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

• How can one evaluate such claims statistically?

- My project began with the near-breakup of the 2006 World Championship Match between V. Topalov and V. Kramnik over allegations that Kramnik was getting help from the engine Fritz 9 via Internet cable to his *toilet*, the only part of the stage area off-camera.
- Only evidence given was a letter stating abnormally high agreement between Kramnik's moves and Fritz 9's recommendations. (Fritz 10 beat Kramnik in a 6-game match two months later.)
- How can one evaluate such claims statistically?
- I developed a *predictive analytic* model that provides statistical hypothesis tests.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- My project began with the near-breakup of the 2006 World Championship Match between V. Topalov and V. Kramnik over allegations that Kramnik was getting help from the engine Fritz 9 via Internet cable to his *toilet*, the only part of the stage area off-camera.
- Only evidence given was a letter stating abnormally high agreement between Kramnik's moves and Fritz 9's recommendations. (Fritz 10 beat Kramnik in a 6-game match two months later.)
- How can one evaluate such claims statistically?
- I developed a *predictive analytic* model that provides statistical hypothesis tests.
- It explained Kramnik's higher concordance by how Topalov had severely limited his options.

- My project began with the near-breakup of the 2006 World Championship Match between V. Topalov and V. Kramnik over allegations that Kramnik was getting help from the engine Fritz 9 via Internet cable to his *toilet*, the only part of the stage area off-camera.
- Only evidence given was a letter stating abnormally high agreement between Kramnik's moves and Fritz 9's recommendations. (Fritz 10 beat Kramnik in a 6-game match two months later.)
- How can one evaluate such claims statistically?
- I developed a *predictive analytic* model that provides statistical hypothesis tests.
- It explained Kramnik's higher concordance by how Topalov had severely limited his options.
- Since 2013 I've been an official advisor to FIDE's Anti-Cheating Committee (ACC).

- My project began with the near-breakup of the 2006 World Championship Match between V. Topalov and V. Kramnik over allegations that Kramnik was getting help from the engine Fritz 9 via Internet cable to his *toilet*, the only part of the stage area off-camera.
- Only evidence given was a letter stating abnormally high agreement between Kramnik's moves and Fritz 9's recommendations. (Fritz 10 beat Kramnik in a 6-game match two months later.)
- How can one evaluate such claims statistically?
- I developed a *predictive analytic* model that provides statistical hypothesis tests.
- It explained Kramnik's higher concordance by how Topalov had severely limited his options.
- Since 2013 I've been an official advisor to FIDE's Anti-Cheating Committee (ACC). More cases than I wish would happen...

・ロト ・ 日 ・ モー・ モー・ うへぐ

• Skill Assessment: how well people did.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Skill Assessment: how well people did.
- Prediction: how well people will do.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?

うして ふゆう ふほう ふほう ふしつ

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?
- Meta: Is this performance really by this person?

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?
- Meta: Is this performance really by this person?
- Chess cheating detection needs separating the two in order that it is not merely flagging people for "playing too well."

(日) (日) (日) (日) (日) (日) (日) (日)

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?
- Meta: Is this performance really by this person?
- Chess cheating detection needs separating the two in order that it is not merely flagging people for "playing too well."
- First key: Chess programs revise their move values by increasing *depth* of search.

(日) (日) (日) (日) (日) (日) (日) (日)

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?
- Meta: Is this performance really by this person?
- Chess cheating detection needs separating the two in order that it is not merely flagging people for "playing too well."
- First key: Chess programs revise their move values by increasing *depth* of search.
- My student Tamal Biswas especially demonstrated *strong* impact of lower-depth appearances on human choices.

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?
- Meta: Is this performance really by this person?
- Chess cheating detection needs separating the two in order that it is not merely flagging people for "playing too well."
- First key: Chess programs revise their move values by increasing *depth* of search.
- My student Tamal Biswas especially demonstrated *strong* impact of lower-depth appearances on human choices.
- So: predict using lower depths;

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?
- Meta: Is this performance really by this person?
- Chess cheating detection needs separating the two in order that it is not merely flagging people for "playing too well."
- First key: Chess programs revise their move values by increasing *depth* of search.
- My student Tamal Biswas especially demonstrated *strong* impact of lower-depth appearances on human choices.
- So: predict using lower depths; assess on the highest-depth values.

Larger Issue: Skill Assessment "Versus" Prediction

- Skill Assessment: how well people did.
- Prediction: how well people will do.
- Both: how unusual is how well some person did?
- Meta: Is this performance really by this person?
- Chess cheating detection needs separating the two in order that it is not merely flagging people for "playing too well."
- First key: Chess programs revise their move values by increasing *depth* of search.
- My student Tamal Biswas especially demonstrated *strong* impact of lower-depth appearances on human choices.
- So: *predict* using lower depths; *assess* on the highest-depth values.
- Second key: human-computer cognitive differences.

• E-Doping means cheating with computer assistance.

- E-Doping means cheating with computer assistance.
- Jan. 2013: Lance Armstrong (cycling) and Borislav Ivanov (chess) in news at same time.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- E-Doping means cheating with computer assistance.
- Jan. 2013: Lance Armstrong (cycling) and Borislav Ivanov (chess) in news at same time.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Applies to online games in much greater volume than chess.

- E-Doping means cheating with computer assistance.
- Jan. 2013: Lance Armstrong (cycling) and Borislav Ivanov (chess) in news at same time.

ション ふゆ マ キャット マックシン

- Applies to online games in much greater volume than chess.
- "Person X cannot cycle up that hill that fast."

- E-Doping means cheating with computer assistance.
- Jan. 2013: Lance Armstrong (cycling) and Borislav Ivanov (chess) in news at same time.
- Applies to online games in much greater volume than chess.
- "Person X cannot cycle up that hill that fast."
- Person X cannot make a champion spin and jump and shoot so fast and accurately.

(日) (日) (日) (日) (日) (日) (日) (日)

- E-Doping means cheating with computer assistance.
- Jan. 2013: Lance Armstrong (cycling) and Borislav Ivanov (chess) in news at same time.
- Applies to online games in much greater volume than chess.
- Person X cannot cycle up that hill that fast."
- Person X cannot make a champion spin and jump and shoot so fast and accurately. *versus:*

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- E-Doping means cheating with computer assistance.
- Jan. 2013: Lance Armstrong (cycling) and Borislav Ivanov (chess) in news at same time.
- Applies to online games in much greater volume than chess.
- Person X cannot cycle up that hill that fast."
- Person X cannot make a champion spin and jump and shoot so fast and accurately. *versus:*
- "Person X has hematocrit > 50%."

- E-Doping means cheating with computer assistance.
- Jan. 2013: Lance Armstrong (cycling) and Borislav Ivanov (chess) in news at same time.
- Applies to online games in much greater volume than chess.
- Person X cannot cycle up that hill that fast."
- Person X cannot make a champion spin and jump and shoot so fast and accurately. *versus:*
- Person X has hematocrit > 50%."
- Person X made moves highly similar to Code Patch Y."

• Named for the Hungarian-American statistician Arpad Elo, the system gives every player P a number R_P representing skill.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Named for the Hungarian-American statistician Arpad Elo, the system gives every player P a number R_P representing skill.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• Pivotal Idea: a 200-point difference $\approx 75\%$ expectation.

- Named for the Hungarian-American statistician Arpad Elo, the system gives every player P a number R_P representing skill.
- Pivotal Idea: a 200-point difference $\approx 75\%$ expectation.
- Class Units: 2000-2200 = Expert, 2200-2400 = Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen 2857, 3 others over 2800, Anand 2770.

(日) (日) (日) (日) (日) (日) (日) (日)

- Named for the Hungarian-American statistician Arpad Elo, the system gives every player P a number R_P representing skill.
- Pivotal Idea: a 200-point difference $\approx 75\%$ expectation.
- Class Units: 2000-2200 = Expert, 2200-2400 = Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen 2857, 3 others over 2800, Anand 2770. Adult beginner ≈ 600, kids → 100.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Named for the Hungarian-American statistician Arpad Elo, the system gives every player P a number R_P representing skill.
- Pivotal Idea: a 200-point difference $\approx 75\%$ expectation.
- Class Units: 2000-2200 = Expert, 2200-2400 = Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen 2857, 3 others over 2800, Anand 2770. Adult beginner ≈ 600, kids → 100.
- Komodo 10.1 **3230**, Stockfish 7+ **3225**, Houdini 4+ **3175**, Gull 3 **3125**...

- Named for the Hungarian-American statistician Arpad Elo, the system gives every player P a number R_P representing skill.
- Pivotal Idea: a 200-point difference $\approx 75\%$ expectation.
- Class Units: 2000-2200 = Expert, 2200-2400 = Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen 2857, 3 others over 2800, Anand 2770. Adult beginner ≈ 600, kids → 100.
- Komodo 10.1 3230, Stockfish 7+ 3225, Houdini 4+ 3175, Gull 3 3125... So computers are at "Class 13"—a kind of "Moore's Law."

- Named for the Hungarian-American statistician Arpad Elo, the system gives every player P a number R_P representing skill.
- Pivotal Idea: a 200-point difference $\approx 75\%$ expectation.
- Class Units: 2000-2200 = Expert, 2200-2400 = Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen 2857, 3 others over 2800, Anand 2770. Adult beginner ≈ 600, kids → 100.
- Komodo 10.1 3230, Stockfish 7+ 3225, Houdini 4+ 3175, Gull 3 3125... So computers are at "Class 13"—a kind of "Moore's Law."
- US: "Class A" = 1800-2000, "B" = 1600-1800, "C" = 1400-1600,...; adult beginner said to be 600; scholastics down to minumum 100 rating.

• The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.

• Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.

- The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.
- Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.
- Won last 3 games over a 2356, 2412, and GM Vl. Epishin, 2563.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.
- Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.
- Won last 3 games over a 2356, 2412, and GM Vl. Epishin, 2563.

(日) (日) (日) (日) (日) (日) (日) (日)

• Loud "whispers" in various circles...

- The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.
- Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.
- Won last 3 games over a 2356, 2412, and GM Vl. Epishin, 2563.
- Loud "whispers" in various circles...
- But my full cheating test showed only a "1.3-sigma" deviation,

(日) (日) (日) (日) (日) (日) (日) (日)

- The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.
- Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.
- Won last 3 games over a 2356, 2412, and GM Vl. Epishin, 2563.
- Loud "whispers" in various circles...
- But my full cheating test showed only a "1.3-sigma" deviation, and his IPR was "only" 2455 also within the "2-sigma" range.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.
- Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.
- Won last 3 games over a 2356, 2412, and GM Vl. Epishin, 2563.
- Loud "whispers" in various circles...
- But my full cheating test showed only a "1.3-sigma" deviation, and his IPR was "only" 2455 also within the "2-sigma" range.
- Was dead lost against Epishin, lucked out also in previous round,

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.
- Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.
- Won last 3 games over a 2356, 2412, and GM Vl. Epishin, 2563.
- Loud "whispers" in various circles...
- But my full cheating test showed only a "1.3-sigma" deviation, and his IPR was "only" 2455 also within the "2-sigma" range.
- Was dead lost against Epishin, lucked out also in previous round,
- World #2 Fabiano Caruana had sensational 7-win streak against the top last Sept.

- The "San Sebastian Open"—a 9-round, 8-day prize-giving Swiss—had players up to 2600, 24 above 2200, 170 players total.
- Surprise winner: 2115-rated Badr Al-Hajiri of Kuwait.
- Won last 3 games over a 2356, 2412, and GM Vl. Epishin, 2563.
- Loud "whispers" in various circles...
- But my full cheating test showed only a "1.3-sigma" deviation, and his IPR was "only" 2455 also within the "2-sigma" range.
- Was dead lost against Epishin, lucked out also in previous round,
- World #2 Fabiano Caruana had sensational 7-win streak against the top last Sept.—but his IPR was "only" 2900 while his opponents played under 2600.

• Not a crystal ball to say what move a player will make...

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.

・ロト ・ 日 ・ モー・ モー・ うへぐ

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• How a bookie sets odds—for the *initial betting line*.

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.
- How a bookie sets odds—for the *initial betting line*.
- Accuracy is how well odds "even out" over hundreds of betting events (for us, moves).

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.
- How a bookie sets odds—for the *initial betting line*.
- Accuracy is how well odds "even out" over hundreds of betting events (for us, moves).

ション ふゆ マ キャット マックシン

• Quantify aggregate statistics:

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.
- How a bookie sets odds—for the *initial betting line*.
- Accuracy is how well odds "even out" over hundreds of betting events (for us, moves).
- Quantify aggregate statistics:
 - How often did the favored horses win in a racing week?

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.
- How a bookie sets odds—for the *initial betting line*.
- Accuracy is how well odds "even out" over hundreds of betting events (for us, moves).
- Quantify aggregate statistics:
 - How often did the favored horses win in a racing week?

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

• Do basketball teams average "covering their spread"?

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.
- How a bookie sets odds—for the *initial betting line*.
- Accuracy is how well odds "even out" over hundreds of betting events (for us, moves).
- Quantify aggregate statistics:
 - How often did the favored horses win in a racing week?
 - Do basketball teams average "covering their spread"?
 - How often did Player X make the move favored by an engine?

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.
- How a bookie sets odds—for the *initial betting line*.
- Accuracy is how well odds "even out" over hundreds of betting events (for us, moves).
- Quantify aggregate statistics:
 - How often did the favored horses win in a racing week?
 - Do basketball teams average "covering their spread"?
 - How often did Player X make the move favored by an engine?
 - How does his/her "Average Error" compare?

- Not a crystal ball to say what move a player will make...
- Though a GM sports-analyst friend tells me there is real-time betting on chess moves in Germany.
- How a bookie sets odds—for the *initial betting line*.
- Accuracy is how well odds "even out" over hundreds of betting events (for us, moves).
- Quantify aggregate statistics:
 - How often did the favored horses win in a racing week?
 - Do basketball teams average "covering their spread"?
 - How often did Player X make the move favored by an engine?

= nar

- How does his/her "Average Error" compare?
- Also project standard deviation and confidence intervals.

Context: Decision-Making Model at Chess

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Domain: A set T of decision-making situations t. Chess game turns

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Domain: A set T of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i

ション ふゆ マ キャット マックシン

- Domain: A set T of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E

ション ふゆ マ キャット マックシン

- Domain: A set T of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).

- Domain: A set T of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).
- Main Output: Probabilities $p_{t,i}$ for P(s, c, ...) to select option i at time t.

うして ふゆう ふほう ふほう ふしつ

- Domain: A set T of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).
- Main Output: Probabilities $p_{t,i}$ for P(s, c, ...) to select option i at time t.
- Derived Outputs:
 - Aggregate statistics: move-match MM, equal-top value EV, average scaled difference ASD, ...
 - Projected confidence intervals: Bernoulli Trials + |T|-adjustment.
 - IPRs similarly reflect errors from the regression.

• Chess engines all work by *incremental search* in rounds of increasing *depth* d = 1, 2, 3, ...

- Chess engines all work by *incremental search* in rounds of increasing *depth* d = 1, 2, 3, ...
- For each round d and legal move m_i the program outputs a value v_{i,d} in units of 0.01 called *centipawns*, figuratively 100ths of a pawn value (roughly P = 1, N = 3, B = 3+, R = 5, Q = 9).

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Chess engines all work by *incremental search* in rounds of increasing *depth* d = 1, 2, 3, ...
- For each round d and legal move m_i the program outputs a value $v_{i,d}$ in units of 0.01 called *centipawns*, figuratively 100ths of a pawn value (roughly P = 1, N = 3, B = 3+, R = 5, Q = 9).
- Values by Stockfish 6 in key Kramnik-Anand WC 2008 position:

Move	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nd2	103	093	087	093	027	028	000	000	056	-007	039	028	037	020	014	017	000	006	000
Bxd7	048	034	-033	-033	-013	-042	-039	-050	-025	-010	001	000	-009	-027	-018	000	000	000	000
Qg8	114	114	-037	-037	-014	-014	-022	-068	-008	-056	-042	-004	-032	000	-014	-025	-045	-045	-050
Nxd4	-056	-056	-113	-071	-071	-145	-020	-006	077	052	066	040	050	051	-181	-181	-181	-213	-213

シック・ 川 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

- Chess engines all work by *incremental search* in rounds of increasing *depth* d = 1, 2, 3, ...
- For each round d and legal move m_i the program outputs a value $v_{i,d}$ in units of 0.01 called *centipawns*, figuratively 100ths of a pawn value (roughly P = 1, N = 3, B = 3+, R = 5, Q = 9).
- Values by Stockfish 6 in key Kramnik-Anand WC 2008 position:

Move	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nd2	103	093	087	093	027	028	000	000	056	-007	039	028	037	020	014	017	000	006	000
Bxd7	048	034	-033	-033	-013	-042	-039	-050	-025	-010	001	000	-009	-027	-018	000	000	000	000
Qg8	114	114	-037	-037	-014	-014	-022	-068	-008	-056	-042	-004	-032	000	-014	-025	-045	-045	-050
Nxd4	-056	-056	-113	-071	-071	-145	-020	-006	077	052	066	040	050	051	-181	-181	-181	-213	-213

• Note that two moves have "equal-top value" (EV).

- Chess engines all work by *incremental search* in rounds of increasing *depth* d = 1, 2, 3, ...
- For each round d and legal move m_i the program outputs a value $v_{i,d}$ in units of 0.01 called *centipawns*, figuratively 100ths of a pawn value (roughly P = 1, N = 3, B = 3+, R = 5, Q = 9).
- Values by Stockfish 6 in key Kramnik-Anand WC 2008 position:

Move	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nd2	103	093	087	093	027	028	000	000	056	-007	039	028	037	020	014	017	000	006	000
Bxd7	048	034	-033	-033	-013	-042	-039	-050	-025	-010	001	000	-009	-027	-018	000	000	000	000
Qg8	114	114	-037	-037	-014	-014	-022	-068	-008	-056	-042	-004	-032	000	-014	-025	-045	-045	-050
Nxd4	-056	-056	-113	-071	-071	-145	-020	-006	077	052	066	040	050	051	-181	-181	-181	-213	-213

- Note that two moves have "equal-top value" (EV).
- This happens in 8–10% of positions.

- Chess engines all work by *incremental search* in rounds of increasing *depth* d = 1, 2, 3, ...
- For each round d and legal move m_i the program outputs a value $v_{i,d}$ in units of 0.01 called *centipawns*, figuratively 100ths of a pawn value (roughly P = 1, N = 3, B = 3+, R = 5, Q = 9).
- Values by Stockfish 6 in key Kramnik-Anand WC 2008 position:

Move	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nd2	103	093	087	093	027	028	000	000	056	-007	039	028	037	020	014	017	000	006	000
Bxd7	048	034	-033	-033	-013	-042	-039	-050	-025	-010	001	000	-009	-027	-018	000	000	000	000
Qg8	114	114	-037	-037	-014	-014	-022	-068	-008	-056	-042	-004	-032	000	-014	-025	-045	-045	-050
Nxd4	-056	-056	-113	-071	-071	-145	-020	-006	077	052	066	040	050	051	-181	-181	-181	-213	-213

- Note that two moves have "equal-top value" (EV).
- This happens in 8–10% of positions.
- These values are (currently) the only chess-specific inputs.

• Let v_1, v_i be values of the best move m_1 and *i*th-best move m_i .

・ロト ・ 日 ・ モー・ モー・ うへぐ

• Let v_1, v_i be values of the best move m_1 and *i*th-best move m_i .

ション ふゆ マ キャット マックシン

Given s, c,..., the model computes x_i = g_{s,c}(v₁, v_i) = the perceived inferiority of m_i by P(s, c,...).

- Let v_1, v_i be values of the best move m_1 and *i*th-best move m_i .
- Given s, c,..., the model computes x_i = g_{s,c}(v₁, v_i) = the perceived inferiority of m_i by P(s, c,...).
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...

(日) (日) (日) (日) (日) (日) (日) (日)

- Let v_1, v_i be values of the best move m_1 and *i*th-best move m_i .
- Given s, c,..., the model computes x_i = g_{s,c}(v₁, v_i) = the perceived inferiority of m_i by P(s, c,...).
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...

(日) (日) (日) (日) (日) (日) (日) (日)

• The Main Equation:

$$\frac{h(p_i)}{h(p_1)} = 1-x_i$$

- Let v_1, v_i be values of the best move m_1 and *i*th-best move m_i .
- Given s, c,..., the model computes x_i = g_{s,c}(v₁, v_i) = the perceived inferiority of m_i by P(s, c,...).
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...
- The Main Equation:

$$rac{h(p_i)}{h(p_1)}=1-x_i=\exp(-\left(rac{\delta(v_1,v_i)}{s}
ight)^c),$$

うして ふゆう ふほう ふほう ふしつ

• Here $\delta(v_1, v_i)$ scales $v_1 - v_i$ in regard to $|v_1|$.

- Let v_1, v_i be values of the best move m_1 and *i*th-best move m_i .
- Given s, c,..., the model computes x_i = g_{s,c}(v₁, v_i) = the perceived inferiority of m_i by P(s, c,...).
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...
- The Main Equation:

$$rac{h(p_i)}{h(p_1)}=1-x_i=\exp(-\left(rac{\delta(v_1,v_i)}{s}
ight)^c),$$

- Here $\delta(v_1, v_i)$ scales $v_1 v_i$ in regard to $|v_1|$.
- Ratio not difference on LHS so x_i on RHS has 0-to-1 scale.

- Let v_1, v_i be values of the best move m_1 and *i*th-best move m_i .
- Given s, c,..., the model computes x_i = g_{s,c}(v₁, v_i) = the perceived inferiority of m_i by P(s, c,...).
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...
- The Main Equation:

$$rac{h(p_i)}{h(p_1)}=1-x_i=\exp(-\left(rac{\delta(v_1,v_i)}{s}
ight)^c),$$

- Here $\delta(v_1, v_i)$ scales $v_1 v_i$ in regard to $|v_1|$.
- Ratio not difference on LHS so x_i on RHS has 0-to-1 scale.
- Given $(x_1, \ldots, x_i, \ldots, x_\ell)$, fit subject to $\sum_i p_i = 1$ to find p_1 . Other p_i follow by $p_i = h^{-1}(h(p_1)(1-x_i))$.

• Old: Over 3 million moves of Multi-PV data: > 250 GB.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

• Old: Over 3 million moves of Multi-PV data: > 250 GB.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Over 40 million moves of Single-PV data: > 50 GB

• Old: Over 3 million moves of Multi-PV data: > 250 GB.

ション ふゆ マ キャット マックシン

- Over 40 million moves of Single-PV data: > 50 GB
- = 150 million pages of text data at 2k/page.

- Old: Over 3 million moves of Multi-PV data: > 250 GB.
- Over 40 million moves of Single-PV data: > 50 GB
- = 150 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's plus a laptop using the GUI. This involved retaining hashed move values between game turns—which is the normal playing mode and only GUI option.

うして ふゆう ふほう ふほう ふしつ

- Old: Over 3 million moves of Multi-PV data: > 250 GB.
- Over 40 million moves of Single-PV data: > 50 GB
- = 150 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's plus a laptop using the GUI. This involved retaining hashed move values between game turns—which is the normal playing mode and only GUI option.
- New—using UB's Center for Computational Research: Every published high-level game since 2014 in Single-PV mode.

- Old: Over 3 million moves of Multi-PV data: > 250 GB.
- Over 40 million moves of Single-PV data: > 50 GB
- = 150 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's plus a laptop using the GUI. This involved retaining hashed move values between game turns—which is the normal playing mode and only GUI option.
- New—using UB's Center for Computational Research: Every published high-level game since 2014 in Single-PV mode.
- Master training sets of 3 million moves by players of Elo ratings 1050, 1100, 1150, ... (stepping by 50) ..., 2700, 2750, 2800, all in Multi-PV mode.

- Old: Over 3 million moves of Multi-PV data: > 250 GB.
- Over 40 million moves of Single-PV data: > 50 GB
- = 150 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's plus a laptop using the GUI. This involved retaining hashed move values between game turns—which is the normal playing mode and only GUI option.
- New—using UB's Center for Computational Research: Every published high-level game since 2014 in Single-PV mode.
- Master training sets of 3 million moves by players of Elo ratings 1050, 1100, 1150, ... (stepping by 50) ..., 2700, 2750, 2800, all in Multi-PV mode.
- Taken with Komodo 10 and Stockfish 7, all years since 1971 except 2000,2050,...,2500 years 2006-2015 only.

 Bruce Pandolfini — played by Ben Kingsley in "Searching for Bobby Fischer."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Now does "Solitaire Chess" for Chess Life magazine:

- Bruce Pandolfini played by Ben Kingsley in "Searching for Bobby Fischer."
- Now does "Solitaire Chess" for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.

ション ふゆ マ キャット マックタン

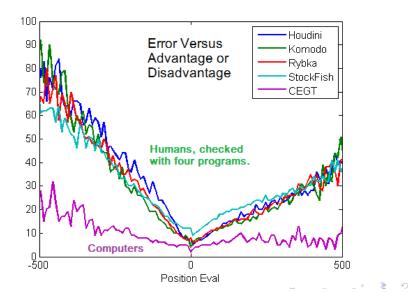
- Bruce Pandolfini played by Ben Kingsley in "Searching for Bobby Fischer."
- Now does "Solitaire Chess" for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.

ション ふゆ マ キャット マックシン

Is it scientific?

- Bruce Pandolfini played by Ben Kingsley in "Searching for Bobby Fischer."
- Now does "Solitaire Chess" for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.

ション ふゆ マ キャット マックシン


- Is it scientific?
- With my formulas, yes—using *your* games in *real* tournaments.

- Bruce Pandolfini played by Ben Kingsley in "Searching for Bobby Fischer."
- Now does "Solitaire Chess" for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.
- Is it scientific?
- With my formulas, yes—using *your* games in *real* tournaments.
- Goal is **natural** scoring and distribution evaluation for multiple-choice tests, especially with partial-credit answers.

- Bruce Pandolfini played by Ben Kingsley in "Searching for Bobby Fischer."
- Now does "Solitaire Chess" for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.
- Is it scientific?
- With my formulas, yes—using your games in real tournaments.
- Goal is **natural** scoring and distribution evaluation for multiple-choice tests, especially with partial-credit answers.
- Connect to parameters in Item-Response Theory (IRT) test-taking models.

- Bruce Pandolfini played by Ben Kingsley in "Searching for Bobby Fischer."
- Now does "Solitaire Chess" for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.
- Is it scientific?
- With my formulas, yes—using your games in real tournaments.
- Goal is **natural** scoring and distribution evaluation for multiple-choice tests, especially with partial-credit answers.
- Connect to parameters in Item-Response Theory (IRT) test-taking models. IRT does both skill and prediction.

Human Versus Computer Phenomena

The Imbalance-Error Phenomenon

• Regard as real, or only as perception (and so correct for it)?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The Imbalance-Error Phenomenon

- Regard as real, or only as perception (and so correct for it)?
- The metric correction

$$\int_{e-\delta}^e d\mu \quad {
m with} \quad d\mu = rac{1}{1+cx} dx$$

うして ふゆう ふほう ふほう ふしつ

balances well, with c in the range 1.2–1.6 or so.

The Imbalance-Error Phenomenon

- Regard as real, or only as perception (and so correct for it)?
- The metric correction

$$\int_{e-\delta}^e d\mu \quad ext{with} \quad d\mu = rac{1}{1+cx} dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

balances well, with c in the range 1.2–1.6 or so.

• A mix of three factors?

The Imbalance-Error Phenomenon

- Regard as real, or only as perception (and so correct for it)?
- The metric correction

$$\int_{e-\delta}^e d\mu \quad {
m with} \quad d\mu = rac{1}{1+cx} dx$$

うして ふゆう ふほう ふほう ふしつ

balances well, with c in the range 1.2–1.6 or so.

- A mix of three factors?
- (A) Human perception of value as proportional to stakes, *per* Ariely-Kahneman-Tversky.

The Imbalance-Error Phenomenon

- Regard as real, or only as perception (and so correct for it)?
- The metric correction

$$\int_{e-\delta}^e d\mu \quad {
m with} \quad d\mu = rac{1}{1+cx} dx$$

balances well, with c in the range 1.2–1.6 or so.

- A mix of three factors?
- (A) Human perception of value as proportional to stakes, per Ariely-Kahneman-Tversky.
- (B) Rationally playing less catenaccio when marginal impact of evaluation on win probability is minimal. (Leo Stedile, working under Mark Braverman)

The Imbalance-Error Phenomenon

- Regard as real, or only as perception (and so correct for it)?
- The metric correction

$$\int_{e-\delta}^e d\mu \quad {
m with} \quad d\mu = rac{1}{1+cx} dx$$

balances well, with c in the range 1.2–1.6 or so.

- A mix of three factors?
- (A) Human perception of value as proportional to stakes, *per* Ariely-Kahneman-Tversky.
- (B) Rationally playing less catenaccio when marginal impact of evaluation on win probability is minimal. (Leo Stedile, working under Mark Braverman)
- (C) Greater volatility intrinsic to chess as game progresses.

A. Perception Proportional to Benefit

How strongly do you perceive a difference of 500 rupees, if:

- You are buying lunch and a drink in a pub.
- You are buying dinner in a restaurant.
- You are buying an I-pad.
- You are buying a car.

For the car, maybe you don't care. In other cases, would you be equally thrifty?

ション ふゆ マ キャット マックシン

If you spend the way you play chess, you care maybe $4 \times$ as much in the pub!

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=rac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=rac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

ション ふゆ マ キャット マックシン

• Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.

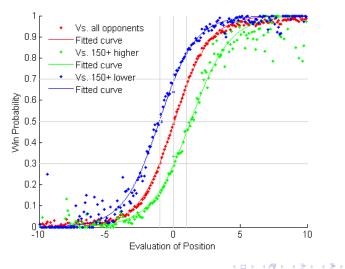
• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=rac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.
- How to test apart from cause A?

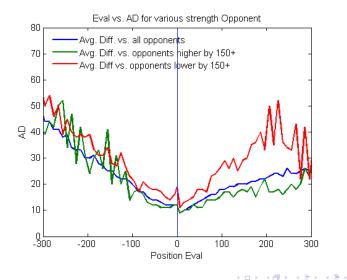
• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=rac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$


- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.
- How to test apart from cause A?
- Expect eval-error curve to shift in games between unequally-rated players.

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=rac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$


- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.
- How to test apart from cause A?
- Expect eval-error curve to shift in games between unequally-rated players.
- Results so far show no shift—

Human Versus Computer Phenomena

≣▶ ≣ ∽९୯

Eval-Error Curve With Unequal Players

SQA

• How to measure the *complexity* of a chess position?

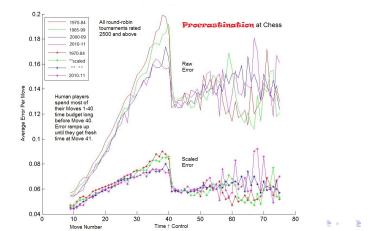
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- How to measure the *complexity* of a chess position?
- Guid and Bratko [2006] suggested the number of times the computer changes its preferred move as the search depeens.

- How to measure the *complexity* of a chess position?
- Guid and Bratko [2006] suggested the number of times the computer changes its preferred move as the search depeens.
- We use the full information about "swings" in move values as shown above.

- How to measure the *complexity* of a chess position?
- Guid and Bratko [2006] suggested the number of times the computer changes its preferred move as the search depeens.
- We use the full information about "swings" in move values as shown above.
- Related, we isolate the depth at which a player's errors are exposed by the computer.

- How to measure the *complexity* of a chess position?
- Guid and Bratko [2006] suggested the number of times the computer changes its preferred move as the search depeens.
- We use the full information about "swings" in move values as shown above.
- Related, we isolate the depth at which a player's errors are exposed by the computer.


うして ふゆう ふほう ふほう ふしつ

• This turns out to correlate regularly with skill.

- How to measure the *complexity* of a chess position?
- Guid and Bratko [2006] suggested the number of times the computer changes its preferred move as the search depeens.
- We use the full information about "swings" in move values as shown above.
- Related, we isolate the depth at which a player's errors are exposed by the computer.
- This turns out to correlate regularly with skill.
- [show animations from https://rjlipton.wordpress.com/2015/10/06/depth-of-satisficing/]

Procrastination...

Chess players tend to use up most of a \approx 2-hour time budget early on, leaving little time for moves 30 to 40 when a fresh budget of time comes. Note ramped-up error until turn 41. (Anand was an exception.)

• One blunder in 200 moves can "ruin" a tournament.

- One blunder in 200 moves can "ruin" a tournament.
- But we were reliable 99.5% of the time.

- One blunder in 200 moves can "ruin" a tournament.
- But we were reliable 99.5% of the time.
- Exponential g(s, c) curve fits better than inverse-poly ones.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- One blunder in 200 moves can "ruin" a tournament.
- But we were reliable 99.5% of the time.
- Exponential g(s, c) curve fits better than inverse-poly ones.
- Contrary to my expectation based on reading Nicholas Nassim Taleb's book *The Black Swan*.

ション ふゆ マ キャット マックシン

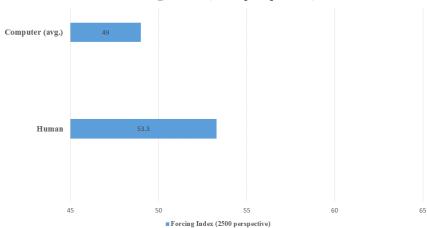
- One blunder in 200 moves can "ruin" a tournament.
- But we were reliable 99.5% of the time.
- Exponential g(s, c) curve fits better than inverse-poly ones.
- Contrary to my expectation based on reading Nicholas Nassim Taleb's book *The Black Swan*.
- But we are even more reliable if we can use a computer...
- This is shown by computing *Intrinsic Performance Ratings* (IPRs) for humans and computers separately,

- One blunder in 200 moves can "ruin" a tournament.
- But we were reliable 99.5% of the time.
- Exponential g(s, c) curve fits better than inverse-poly ones.
- Contrary to my expectation based on reading Nicholas Nassim Taleb's book *The Black Swan*.
- But we are even more reliable if we can use a computer...
- This is shown by computing *Intrinsic Performance Ratings* (IPRs) for humans and computers separately, then for them playing in tandem in so-called "Freestyle" tournaments.

- One blunder in 200 moves can "ruin" a tournament.
- But we were reliable 99.5% of the time.
- Exponential g(s, c) curve fits better than inverse-poly ones.
- Contrary to my expectation based on reading Nicholas Nassim Taleb's book *The Black Swan*.
- But we are even more reliable if we can use a computer...
- This is shown by computing *Intrinsic Performance Ratings* (IPRs) for humans and computers separately, then for them playing in tandem in so-called "Freestyle" tournaments. (Where 'cheating' is OK!)

Computer and Freestyle IPRs

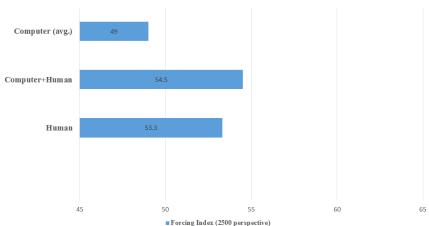
Analyzed Ratings of Computer Engine Grand Tournament (on commodity PCs) and PAL/CSS Freestyle in 2007–08, plus the Thoresen Chess Engines Competition (16-core) Nov–Dec. 2013.


Event	Rating	2σ range	#gm	#moves
CEGT g1,50	3009	2962-3056	42	4,212
CEGT g25,26	2963	2921-3006	42	5,277
PAL/CSS 5ch	3102	3051–3153	45	3,352
PAL/CSS 6ch	3086	3038–3134	45	3,065
PAL/CSS 8ch	3128	3083–3174	39	3,057
TCEC 2013	3083	3062–3105	90	11,024

Computer and Freestyle IPRs—To Move 60

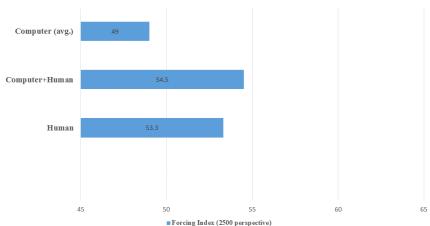
Computer games can go very long in dead drawn positions. TCEC uses a cutoff but CEGT did not. Human-led games tend to climax (well) before Move 60. This comparison halves the difference to CEGT, otherwise similar:

Sample set	Rating	2σ range	#gm	#moves
CEGT all	2985	2954-3016	84	9,489
PAL/CSS all	3106	3078–3133	129	9,474
TCEC 2013	3083	3062-3105	90	11,024
CEGT to60	3056	3023–3088	84	7,010
PAL/CSS to60	3112	3084–3141	129	8,744
TCEC to60	3096	3072-3120	90	8,184


Degrees of Forcing Play

Forcing Index (2500 perspective)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで


Add Human-Computer Tandems

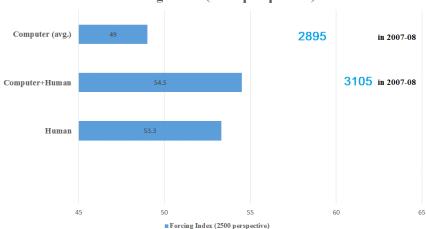
Forcing Index (2500 perspective)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Add Human-Computer Tandems

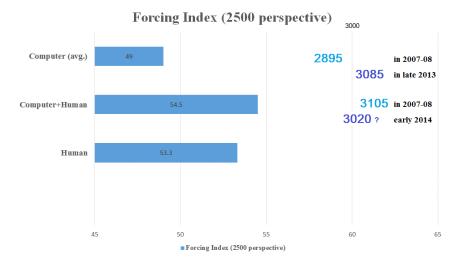
Forcing Index (2500 perspective)

Evidently the humans called the shots.

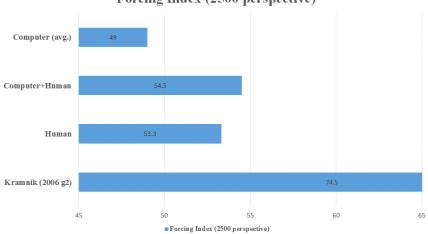

Add Human-Computer Tandems

Forcing Index (2500 perspective)

Evidently the humans called the shots. But how did they play?


2007–08 Freestyle Performance

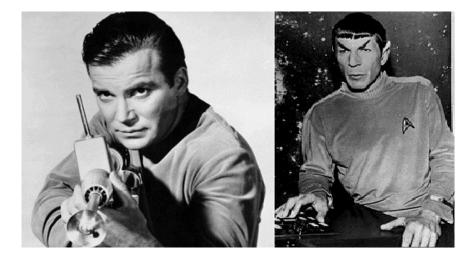
Forcing Index (2500 perspective)


Adding 210 Elo was significant. Forcing but good teamwork.

2014 Freestyle Tournament Performance

Tandems had marginally better W-L, but quality not clear...

Add Topalov Forcing Kramnik



Forcing Index (2500 perspective)

Last bar goes way off the chart

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Like "Spock" to our "Kirk"

Like "Spock" to our "Kirk"

"It is logical to cultivate multiple options."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

O PDAs pick up every little difference: "Forest and Trees"

・ロト ・ 日 ・ モー・ モー・ うへぐ

O PDAs pick up every little difference: "Forest and Trees"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We should avoid overconfidence...

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3 Look before we Leap...

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Solution Look before we Leap...Don't rush in...

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."

ション ふゆ マ キャット マックシン

Solution Look before we Leap...Don't rush in...Measure risks.

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."
- Solution Look before we Leap...Don't rush in...Measure risks.
- Even at a purely calculational pursuit like chess, our brains still contribute.

ション ふゆ マ キャット マックシン

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."
- Solution Look before we Leap...Don't rush in...Measure risks.
- Even at a purely calculational pursuit like chess, our brains still contribute. (2014: maybe)

ション ふゆ マ キャット マックシン

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."
- Solution Look before we Leap...Don't rush in...Measure risks.
- Even at a purely calculational pursuit like chess, our brains still contribute. (2014: maybe)

うして ふゆう ふほう ふほう ふしつ

6 Main takeaway:

- O PDAs pick up every little difference: "Forest and Trees"
- We should avoid overconfidence... and take counsel when "down."
- Solution Look before we Leap...Don't rush in...Measure risks.
- Even at a purely calculational pursuit like chess, our brains still contribute. (2014: maybe)
- **6** Main takeaway:

It should be natural to program digital assistants so they enhance our freedom rather than constrain it.

うして ふゆう ふほう ふほう ふしつ

- Lots more potential for research and connections...
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Lots more potential for research and connections...
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.

ション ふゆ マ キャット マックシン

• Detect and deter cheating too—generally.

- Lots more potential for research and connections...
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.
- Detect and deter cheating too—generally.
- Have just created a major upgrade to the model which allows treating *depth* as a skill attribute and which produces 10x sharper fits (at 100x slower pace, however).

- Lots more potential for research and connections...
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.
- Detect and deter cheating too—generally.
- Have just created a major upgrade to the model which allows treating *depth* as a skill attribute and which produces 10x sharper fits (at 100x slower pace, however).

• Learn more about human decision making.

- Lots more potential for research and connections...
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.
- Detect and deter cheating too—generally.
- Have just created a major upgrade to the model which allows treating *depth* as a skill attribute and which produces 10x sharper fits (at 100x slower pace, however).

うして ふゆう ふほう ふほう ふしつ

- Learn more about human decision making.
- Thank you very much for the invitation.