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Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .
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Turing “Cue Bits”

Space s, so n− s “ancillary” cells.
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Quantum Circuits: similar picture

Example also shows the copy-uncompute trick.
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Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.
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A Qubit
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Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.
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Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11). EPR Entanglement.
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Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.
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Example Quantum Circuit

1 H⊗ I⊗ H⊗ I⊗(s−3).

2 CNOT⊗ I⊗(s−2). First three lines have “CXI.”

3 “CIX”—semantically but not syntactically ⊗ of I and CNOT.

4 After the S in stage 4, a TOF with controls on 1,3 and target on 2.
The whole C computes a unitary UC .
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Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].
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(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].
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Tracking Quantum Circuits By Polynomials

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

FACT: FACT ∈ BQP. (Say FACT = {(x,w) : w v UPF(x)}.)
P ⊆ BPP ⊆ BQP ⊆ PP ≡pT #P.

No evidence for NP ⊆ BQP, nor BQP ⊆ PH.
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Tracking Quantum Circuits By Polynomials

What to Represent By Polynomials?

1. The acceptance probability px = Pr[C(x) 7→ 1]?

So we convert C into
a polynomial pC such that for all x,

px = pC(x1, . . . , xn).

Used in quantum query complexity lower bounds, but building pC is
hard.

2. The acceptance amplitude, but implicitly by counting zeroes. Given a
polynomial P (x1, . . . , xn, y1, . . . , yh), define for all x ∈ {0, 1}n and value
a:

NP,x[a] = |{y ∈ {0, 1}h : P (x, y) = a}|.

This is a #P function.
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Tracking Quantum Circuits By Polynomials

The Basic Theorem

Theorem (Dawson et al.. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently
compute a polynomial PC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr) and a
constant R (here, R =

√
2h) such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R
[NP,x,z[1]−NP,x,z[0].

Thus BQP reduces to the difference between to #P functions.

Note heavy promise: 0 ≤ N [1]−N [0] ≤ R =
√

2h.

Means all but a trace of pairs y, y′ ∈ {0, 1}h cancel.

Hence cannot simply use Stockmeyer’s approximation of counting
to get BQP ⊆ Σp

3 ∩Πp
3.
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Tracking Quantum Circuits By Polynomials

My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.
A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)] =

1

R

∑
y

ωPC(x,y,z).
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Tracking Quantum Circuits By Polynomials

Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial
QC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr, w1, . . . , wt) over ZK and a constant
R such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNQC ,x,z[j]

=
1

R

∑
y,w

ωQC(x,y,z,w),

where QC =
∑

gates g qg +
∑

constraints c qc has bounded degree.

My trick: Given a constraint c with values 0 = fail, 1 = OK, add

qc = w0(1− c) + 2w1(1− c) + 4w2(1− c) + · · ·+ 2k−1wk−1(1− c).
Then c = 0 =⇒ binary assignments to w0, . . . , wk−1 run through all K
values =⇒ the entire sum over y, w cancels. Whereas c = 1 zeroes all
such terms, so he only effect is to inflate R.
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Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.
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Linearity not preserved.
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Equality Constraints

To enforce a desired output value zi on qubit i with final term ui:

PC ∗ = (1 + 2uizi − ui − zi)
QC += wj(ui + zi − 2uizi).

In characteristic 2, QC remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski; various)

For quadratic p(x1, . . . , xn) over ZK , and all a < K, Np[a] is computable
in mathsfpoly(nK) time.

Open: replace K by logK in the time? Affirmative for A[C(x) 7→ z].
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Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.
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Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?
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