
Tracking Quantum Circuits By Polynomials

Tracking Quantum Circuits By Polynomials
Oxford University OASIS Seminar

Kenneth W. Regan1

University at Buffalo (SUNY)

12 June, 2015

1Includes joint work with Amlan Chakrabarti, U. Calcutta

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but they can. . .

Tracking Quantum Circuits By Polynomials

Turing “Cue Bits”

Space s, so n− s “ancillary” cells.

Tracking Quantum Circuits By Polynomials

Quantum Circuits: similar picture

Example also shows the copy-uncompute trick.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

Quantum Circuits Have. . .

n input qubits x1, . . . , xn ∈ {0, 1}n

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are(??) S = 2s complex entries of a unit state
vector.

Tracking Quantum Circuits By Polynomials

A Qubit

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −11

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.

Tracking Quantum Circuits By Polynomials

Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11). EPR Entanglement.

Tracking Quantum Circuits By Polynomials

Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3),

swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11). EPR Entanglement.

Tracking Quantum Circuits By Polynomials

Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4).

Also called CX.

CNOT ◦ (H⊗ I) =
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11). EPR Entanglement.

Tracking Quantum Circuits By Polynomials

Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11). EPR Entanglement.

Tracking Quantum Circuits By Polynomials

Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

Applied to e00 = (1, 0, 0, 0)T gives 1√
2
(e00 + e11). EPR Entanglement.

Tracking Quantum Circuits By Polynomials

Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11).

EPR Entanglement.

Tracking Quantum Circuits By Polynomials

Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11). EPR Entanglement.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.

Tracking Quantum Circuits By Polynomials

Example Quantum Circuit

1 H⊗ I⊗ H⊗ I⊗(s−3).

2 CNOT⊗ I⊗(s−2). First three lines have “CXI.”

3 “CIX”—semantically but not syntactically ⊗ of I and CNOT.

4 After the S in stage 4, a TOF with controls on 1,3 and target on 2.
The whole C computes a unitary UC .

Tracking Quantum Circuits By Polynomials

Example Quantum Circuit

1 H⊗ I⊗ H⊗ I⊗(s−3).

2 CNOT⊗ I⊗(s−2). First three lines have “CXI.”

3 “CIX”—semantically but not syntactically ⊗ of I and CNOT.

4 After the S in stage 4, a TOF with controls on 1,3 and target on 2.
The whole C computes a unitary UC .

Tracking Quantum Circuits By Polynomials

Example Quantum Circuit

1 H⊗ I⊗ H⊗ I⊗(s−3).

2 CNOT⊗ I⊗(s−2). First three lines have “CXI.”

3 “CIX”—semantically but not syntactically ⊗ of I and CNOT.

4 After the S in stage 4, a TOF with controls on 1,3 and target on 2.
The whole C computes a unitary UC .

Tracking Quantum Circuits By Polynomials

Example Quantum Circuit

1 H⊗ I⊗ H⊗ I⊗(s−3).

2 CNOT⊗ I⊗(s−2). First three lines have “CXI.”

3 “CIX”—semantically but not syntactically ⊗ of I and CNOT.

4 After the S in stage 4, a TOF with controls on 1,3 and target on 2.
The whole C computes a unitary UC .

Tracking Quantum Circuits By Polynomials

Example Quantum Circuit

1 H⊗ I⊗ H⊗ I⊗(s−3).

2 CNOT⊗ I⊗(s−2). First three lines have “CXI.”

3 “CIX”—semantically but not syntactically ⊗ of I and CNOT.

4 After the S in stage 4, a TOF with controls on 1,3 and target on 2.
The whole C computes a unitary UC .

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s

= ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.

(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.

Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

Input-Output and Measurement

Input: Ex = ex0n−s = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(n−s)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].

Tracking Quantum Circuits By Polynomials

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

FACT: FACT ∈ BQP. (Say FACT = {(x,w) : w v UPF(x)}.)
P ⊆ BPP ⊆ BQP ⊆ PP ≡pT #P.

No evidence for NP ⊆ BQP, nor BQP ⊆ PH.

Tracking Quantum Circuits By Polynomials

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

FACT: FACT ∈ BQP.

(Say FACT = {(x,w) : w v UPF(x)}.)
P ⊆ BPP ⊆ BQP ⊆ PP ≡pT #P.

No evidence for NP ⊆ BQP, nor BQP ⊆ PH.

Tracking Quantum Circuits By Polynomials

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

FACT: FACT ∈ BQP. (Say FACT = {(x,w) : w v UPF(x)}.)

P ⊆ BPP ⊆ BQP ⊆ PP ≡pT #P.

No evidence for NP ⊆ BQP, nor BQP ⊆ PH.

Tracking Quantum Circuits By Polynomials

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

FACT: FACT ∈ BQP. (Say FACT = {(x,w) : w v UPF(x)}.)
P ⊆ BPP ⊆ BQP ⊆ PP ≡pT #P.

No evidence for NP ⊆ BQP, nor BQP ⊆ PH.

Tracking Quantum Circuits By Polynomials

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

FACT: FACT ∈ BQP. (Say FACT = {(x,w) : w v UPF(x)}.)
P ⊆ BPP ⊆ BQP ⊆ PP ≡pT #P.

No evidence for NP ⊆ BQP,

nor BQP ⊆ PH.

Tracking Quantum Circuits By Polynomials

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

FACT: FACT ∈ BQP. (Say FACT = {(x,w) : w v UPF(x)}.)
P ⊆ BPP ⊆ BQP ⊆ PP ≡pT #P.

No evidence for NP ⊆ BQP, nor BQP ⊆ PH.

Tracking Quantum Circuits By Polynomials

What to Represent By Polynomials?

1. The acceptance probability px = Pr[C(x) 7→ 1]?

So we convert C into
a polynomial pC such that for all x,

px = pC(x1, . . . , xn).

Used in quantum query complexity lower bounds, but building pC is
hard.

2. The acceptance amplitude, but implicitly by counting zeroes. Given a
polynomial P (x1, . . . , xn, y1, . . . , yh), define for all x ∈ {0, 1}n and value
a:

NP,x[a] = |{y ∈ {0, 1}h : P (x, y) = a}|.

This is a #P function.

Tracking Quantum Circuits By Polynomials

What to Represent By Polynomials?

1. The acceptance probability px = Pr[C(x) 7→ 1]? So we convert C into
a polynomial pC such that for all x,

px = pC(x1, . . . , xn).

Used in quantum query complexity lower bounds, but building pC is
hard.

2. The acceptance amplitude, but implicitly by counting zeroes. Given a
polynomial P (x1, . . . , xn, y1, . . . , yh), define for all x ∈ {0, 1}n and value
a:

NP,x[a] = |{y ∈ {0, 1}h : P (x, y) = a}|.

This is a #P function.

Tracking Quantum Circuits By Polynomials

What to Represent By Polynomials?

1. The acceptance probability px = Pr[C(x) 7→ 1]? So we convert C into
a polynomial pC such that for all x,

px = pC(x1, . . . , xn).

Used in quantum query complexity lower bounds, but building pC is
hard.

2. The acceptance amplitude, but implicitly by counting zeroes. Given a
polynomial P (x1, . . . , xn, y1, . . . , yh), define for all x ∈ {0, 1}n and value
a:

NP,x[a] = |{y ∈ {0, 1}h : P (x, y) = a}|.

This is a #P function.

Tracking Quantum Circuits By Polynomials

What to Represent By Polynomials?

1. The acceptance probability px = Pr[C(x) 7→ 1]? So we convert C into
a polynomial pC such that for all x,

px = pC(x1, . . . , xn).

Used in quantum query complexity lower bounds, but building pC is
hard.

2. The acceptance amplitude, but implicitly by counting zeroes. Given a
polynomial P (x1, . . . , xn, y1, . . . , yh), define for all x ∈ {0, 1}n and value
a:

NP,x[a] = |{y ∈ {0, 1}h : P (x, y) = a}|.

This is a #P function.

Tracking Quantum Circuits By Polynomials

The Basic Theorem

Theorem (Dawson et al.. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently
compute a polynomial PC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr) and a
constant R (here, R =

√
2h) such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R
[NP,x,z[1]−NP,x,z[0].

Thus BQP reduces to the difference between to #P functions.

Note heavy promise: 0 ≤ N [1]−N [0] ≤ R =
√

2h.

Means all but a trace of pairs y, y′ ∈ {0, 1}h cancel.

Hence cannot simply use Stockmeyer’s approximation of counting
to get BQP ⊆ Σp

3 ∩Πp
3.

Tracking Quantum Circuits By Polynomials

The Basic Theorem

Theorem (Dawson et al.. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently
compute a polynomial PC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr) and a
constant R (here, R =

√
2h) such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R
[NP,x,z[1]−NP,x,z[0].

Thus BQP reduces to the difference between to #P functions.

Note heavy promise: 0 ≤ N [1]−N [0] ≤ R =
√

2h.

Means all but a trace of pairs y, y′ ∈ {0, 1}h cancel.

Hence cannot simply use Stockmeyer’s approximation of counting
to get BQP ⊆ Σp

3 ∩Πp
3.

Tracking Quantum Circuits By Polynomials

The Basic Theorem

Theorem (Dawson et al.. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently
compute a polynomial PC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr) and a
constant R (here, R =

√
2h) such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R
[NP,x,z[1]−NP,x,z[0].

Thus BQP reduces to the difference between to #P functions.

Note heavy promise: 0 ≤ N [1]−N [0] ≤ R =
√

2h.

Means all but a trace of pairs y, y′ ∈ {0, 1}h cancel.

Hence cannot simply use Stockmeyer’s approximation of counting
to get BQP ⊆ Σp

3 ∩Πp
3.

Tracking Quantum Circuits By Polynomials

The Basic Theorem

Theorem (Dawson et al.. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently
compute a polynomial PC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr) and a
constant R (here, R =

√
2h) such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R
[NP,x,z[1]−NP,x,z[0].

Thus BQP reduces to the difference between to #P functions.

Note heavy promise: 0 ≤ N [1]−N [0] ≤ R =
√

2h.

Means all but a trace of pairs y, y′ ∈ {0, 1}h cancel.

Hence cannot simply use Stockmeyer’s approximation of counting
to get BQP ⊆ Σp

3 ∩Πp
3.

Tracking Quantum Circuits By Polynomials

The Basic Theorem

Theorem (Dawson et al.. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently
compute a polynomial PC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr) and a
constant R (here, R =

√
2h) such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R
[NP,x,z[1]−NP,x,z[0].

Thus BQP reduces to the difference between to #P functions.

Note heavy promise: 0 ≤ N [1]−N [0] ≤ R =
√

2h.

Means all but a trace of pairs y, y′ ∈ {0, 1}h cancel.

Hence cannot simply use Stockmeyer’s approximation of counting
to get BQP ⊆ Σp

3 ∩Πp
3.

Tracking Quantum Circuits By Polynomials

My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.
A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)] =

1

R

∑
y

ωPC(x,y,z).

Tracking Quantum Circuits By Polynomials

My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.

A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)] =

1

R

∑
y

ωPC(x,y,z).

Tracking Quantum Circuits By Polynomials

My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.
A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)] =

1

R

∑
y

ωPC(x,y,z).

Tracking Quantum Circuits By Polynomials

My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.
A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)] =

1

R

∑
y

ωPC(x,y,z).

Tracking Quantum Circuits By Polynomials

My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.
A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)]

=
1

R

∑
y

ωPC(x,y,z).

Tracking Quantum Circuits By Polynomials

My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.
A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)] =

1

R

∑
y

ωPC(x,y,z).

Tracking Quantum Circuits By Polynomials

Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial
QC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr, w1, . . . , wt) over ZK and a constant
R such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNQC ,x,z[j]

=
1

R

∑
y,w

ωQC(x,y,z,w),

where QC =
∑

gates g qg +
∑

constraints c qc has bounded degree.

My trick: Given a constraint c with values 0 = fail, 1 = OK, add

qc = w0(1− c) + 2w1(1− c) + 4w2(1− c) + · · ·+ 2k−1wk−1(1− c).
Then c = 0 =⇒ binary assignments to w0, . . . , wk−1 run through all K
values =⇒ the entire sum over y, w cancels. Whereas c = 1 zeroes all
such terms, so he only effect is to inflate R.

Tracking Quantum Circuits By Polynomials

Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial
QC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr, w1, . . . , wt) over ZK and a constant
R such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNQC ,x,z[j] =
1

R

∑
y,w

ωQC(x,y,z,w),

where QC =
∑

gates g qg +
∑

constraints c qc has bounded degree.

My trick: Given a constraint c with values 0 = fail, 1 = OK, add

qc = w0(1− c) + 2w1(1− c) + 4w2(1− c) + · · ·+ 2k−1wk−1(1− c).
Then c = 0 =⇒ binary assignments to w0, . . . , wk−1 run through all K
values =⇒ the entire sum over y, w cancels. Whereas c = 1 zeroes all
such terms, so he only effect is to inflate R.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .

No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.

Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved.

Tracking Quantum Circuits By Polynomials

Equality Constraints

To enforce a desired output value zi on qubit i with final term ui:

PC ∗ = (1 + 2uizi − ui − zi)
QC += wj(ui + zi − 2uizi).

In characteristic 2, QC remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski; various)

For quadratic p(x1, . . . , xn) over ZK , and all a < K, Np[a] is computable
in mathsfpoly(nK) time.

Open: replace K by logK in the time? Affirmative for A[C(x) 7→ z].

Tracking Quantum Circuits By Polynomials

Equality Constraints

To enforce a desired output value zi on qubit i with final term ui:

PC ∗ = (1 + 2uizi − ui − zi)
QC += wj(ui + zi − 2uizi).

In characteristic 2, QC remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski; various)

For quadratic p(x1, . . . , xn) over ZK , and all a < K, Np[a] is computable
in mathsfpoly(nK) time.

Open: replace K by logK in the time? Affirmative for A[C(x) 7→ z].

Tracking Quantum Circuits By Polynomials

Equality Constraints

To enforce a desired output value zi on qubit i with final term ui:

PC ∗ = (1 + 2uizi − ui − zi)
QC += wj(ui + zi − 2uizi).

In characteristic 2, QC remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski; various)

For quadratic p(x1, . . . , xn) over ZK , and all a < K, Np[a] is computable
in mathsfpoly(nK) time.

Open: replace K by logK in the time? Affirmative for A[C(x) 7→ z].

Tracking Quantum Circuits By Polynomials

Equality Constraints

To enforce a desired output value zi on qubit i with final term ui:

PC ∗ = (1 + 2uizi − ui − zi)
QC += wj(ui + zi − 2uizi).

In characteristic 2, QC remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski; various)

For quadratic p(x1, . . . , xn) over ZK , and all a < K, Np[a] is computable
in mathsfpoly(nK) time.

Open: replace K by logK in the time? Affirmative for A[C(x) 7→ z].

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

Tracking Quantum Circuits By Polynomials

Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum C?

Possibly quantify the “entangling capacity” of C?

