Tracking Quantum Circuits By Polynomials Oxford University OASIS Seminar

Kenneth W. Regan¹ University at Buffalo (SUNY)

12 June, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

• $r \geq 1$ outputs z_1, \ldots, z_r

- *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- *n* inputs $x_1, \ldots, x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

ション ふゆ マ キャット マックシン

• m gates g_1, \ldots, g_m (wlog. all NAND)

- *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

ション ふゆ マ キャット マックシン

- m gates g_1, \ldots, g_m (wlog. all NAND)
- Up to 2m + r wires (if fan-in ≤ 2)

- *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

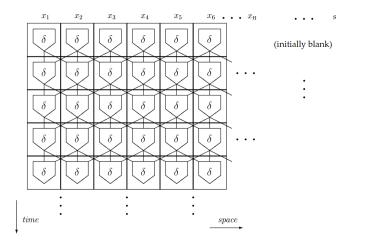
ション ふゆ マ キャット マックシン

- m gates g_1, \ldots, g_m (wlog. all NAND)
- Up to 2m + r wires (if fan-in ≤ 2)
- Each wire has a definite 0-1 value.

- *n* inputs $x_1, \ldots, x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?
- m gates g_1, \ldots, g_m (wlog. all NAND)
- Up to 2m + r wires (if fan-in ≤ 2)
- Each wire has a definite 0-1 value.
- Bits have no common identity across wires, but they can...

(日) (日) (日) (日) (日) (日) (日) (日)

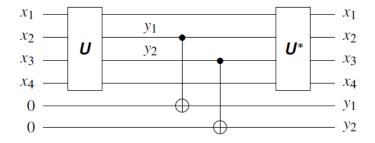
Turing "Cue Bits"



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Space s, so n - s "ancillary" cells.

Quantum Circuits: similar picture



ション ふゆ く は く は く む く む く し く

Example also shows the **copy-uncompute trick**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$

- *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)

- *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• *s* – *n* **ancilla** qubits

- *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)

うして ふゆう ふほう ふほう ふしつ

- *s n* **ancilla** qubits
- *m*-many quantum gates (arities can be 1,2,3)

- *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- *s n* **ancilla** qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.

- *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- s n ancilla qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.

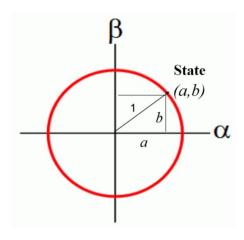
• Qubits retain identity as wires transit gates.

- *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- s n ancilla qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.
- Qubits retain identity as wires transit gates.
- Each wire need **not** have a definite 0-1 value, owing to **entanglement**.

- *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- s n ancilla qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.
- Qubits retain identity as wires transit gates.
- Each wire need **not** have a definite 0-1 value, owing to **entanglement**.
- Under the hood are(??) $S = 2^s$ complex entries of a unit state vector.

A Qubit

Quantum Bits, e.g. spins.



Probability of observing Alpha is *a*-squared, Beta is *b*-squared. By Pythagoras, these add to 1. Tracking Quantum Circuits By Polynomials

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

ション ふゆ く は く は く む く む く し く

• Common gates for k = 1, K = 2:

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Common gates for k = 1, K = 2:
- $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

うして ふゆう ふほう ふほう ふしつ

• Common gates for k = 1, K = 2: • $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

うして ふゆう ふほう ふほう ふしつ

• Common gates for k = 1, K = 2: • $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT • $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -11 \end{bmatrix}$ Hadamard gate.

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

うして ふゆう ふほう ふほう ふしつ

- Common gates for k = 1, K = 2:
- $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT • $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -11 \end{bmatrix}$ Hadamard gate.
- Only non-permutation gate needed for universality.

- A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.
- Common gates for k = 1, K = 2:
- $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT • $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -11 \end{bmatrix}$ Hadamard gate.
- Only non-permutation gate needed for universality.
- But also common: $\mathbf{Y} = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $\mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\mathbf{S} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.

うして ふゆう ふほう ふほう ふしつ

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00		10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
	11	0	0	0 0 0 1	0

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

					11
	00	1	0	0	0
CNOT =	01	0	1	0 0 0 1	0
	10	0	0	0	1
	11	0	0	1	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Permutation $(1 \ 2 \ 4 \ 3),$

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$.

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
	11	0	0	1	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

$$\mathsf{CNOT} \circ (\mathsf{H} \otimes \mathsf{I}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 0 & 1 & 0 & -1\\ 1 & 0 & -1 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

$$\mathsf{CNOT} \circ (\mathsf{H} \otimes \mathsf{I}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

Applied to $e_{00} = (1, 0, 0, 0)^T$ gives $\frac{1}{\sqrt{2}}(e_{00} + e_{11}).$

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

$$\mathsf{CNOT} \circ (\mathsf{H} \otimes \mathsf{I}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 0 & 1 & 0 & -1\\ 1 & 0 & -1 & 0 \end{bmatrix}$$

Applied to $e_{00} = (1, 0, 0, 0)^T$ gives $\frac{1}{\sqrt{2}}(e_{00} + e_{11})$. **EPR Entanglement**.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.
- Control-Control-NOT, hence also called CCX.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

• Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.

- Control-Control-NOT, hence also called CCX.
- $\mathsf{TOF}(a, b, 1) = (-, -, a \text{ NAND } b)$, Thus TOF is classically universal.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.
- Control-Control-NOT, hence also called CCX.
- $\mathsf{TOF}(a, b, 1) = (-, -, a \text{ NAND } b)$, Thus TOF is classically universal.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

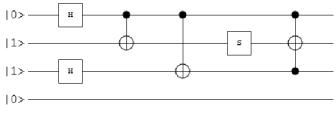
• H + TOF is quantum universal.

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

• Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.

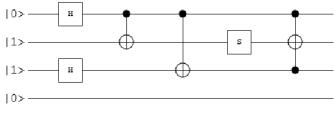
- Control-Control-NOT, hence also called CCX.
- $\mathsf{TOF}(a, b, 1) = (-, -, a \text{ NAND } b)$, Thus TOF is classically universal.
- H + TOF is quantum universal.
- H + CNOT is not quantum universal; it recognizes a proper subclass of P.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆



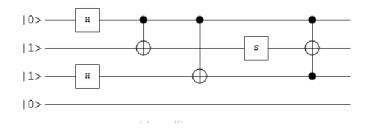
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Z 1 115



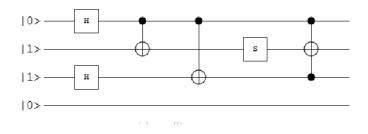
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Z 1 115

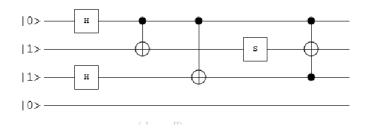


ション ふゆ く は く は く む く む く し く

● H ⊗ I ⊗ H ⊗ I^{⊗(s-3)}. **●** CNOT ⊗ I^{⊗(s-2)}. First three lines have "CXI."



- **2** CNOT $\otimes I^{\otimes (s-2)}$. First three lines have "CXI."
- **③** "CIX"—semantically but not syntactically \otimes of I and CNOT.



- **2** CNOT $\otimes I^{\otimes (s-2)}$. First three lines have "CXI."
- **③** "CIX"—semantically but not syntactically \otimes of I and CNOT.
- After the S in stage 4, a TOF with controls on 1,3 and target on 2. The whole C computes a unitary U_C .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Input: $E_x = e_{x0^{n-s}}$

• Input:
$$E_x = e_{x0^{n-s}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (n-s)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Input: $E_x = e_{x0^{n-s}} = e_{x1} \otimes e_{x2} \otimes \cdots \otimes e_{xn} \otimes e_0^{\otimes (n-s)}$.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.

• Input: $E_x = e_{x0^{n-s}} = e_{x1} \otimes e_{x2} \otimes \cdots \otimes e_{xn} \otimes e_0^{\otimes (n-s)}$.

- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.

• Input: $E_x = e_{x0^{n-s}} = e_{x1} \otimes e_{x2} \otimes \cdots \otimes e_{xn} \otimes e_0^{\otimes (n-s)}$.

- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)

- Input: $E_x = e_{x0^{n-s}} = e_{x1} \otimes e_{x2} \otimes \cdots \otimes e_{xn} \otimes e_0^{\otimes (n-s)}$.
- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)
- For outcome $d \in \{0,1\}^r$ on r-many designated qubit lines, $\Pr[C(x) \to d] = \sum_{b \supseteq d} |z_b|^2.$

- Input: $E_x = e_{x0^{n-s}} = e_{x1} \otimes e_{x2} \otimes \cdots \otimes e_{xn} \otimes e_0^{\otimes (n-s)}$.
- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)
- For outcome $d \in \{0,1\}^r$ on r-many designated qubit lines, $\Pr[C(x) \to d] = \sum_{b \supseteq d} |z_b|^2.$
- Can project as amplitudes: $C(x) \mapsto (z'_0, \ldots, z'_{2^r-1})$ where $|z_d|^2$ is the probability of outcome $d \in \{0, 1\}^r$.

- Input: $E_x = e_{x0^{n-s}} = e_{x1} \otimes e_{x2} \otimes \cdots \otimes e_{xn} \otimes e_0^{\otimes (n-s)}$.
- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)
- For outcome $d \in \{0,1\}^r$ on r-many designated qubit lines, $\Pr[C(x) \to d] = \sum_{b \supseteq d} |z_b|^2.$
- Can project as amplitudes: $C(x) \mapsto (z'_0, \ldots, z'_{2^r-1})$ where $|z_d|^2$ is the probability of outcome $d \in \{0, 1\}^r$.
- Call this amplitude z_d as $A[C(x) \mapsto d]$.

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0, 1\}^n$, designating qubit 1 for yes/no output:

$$x \in L \implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4},$$

$$x \notin L \implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4},$$

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0, 1\}^n$, designating qubit 1 for yes/no output:

$$x \in L \implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4},$$

$$x \notin L \implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

• FACT: FACT \in BQP.

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0, 1\}^n$, designating qubit 1 for yes/no output:

$$\begin{aligned} x \in L &\implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4}, \\ x \notin L &\implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4}, \end{aligned}$$

• FACT: FACT \in BQP. (Say FACT = { $(x, w) : w \sqsubseteq UPF(x)$ }.)

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0, 1\}^n$, designating qubit 1 for yes/no output:

$$\begin{aligned} x \in L &\implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4}, \\ x \notin L &\implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4}, \end{aligned}$$

• FACT: FACT \in BQP. (Say FACT = { $(x, w) : w \sqsubseteq UPF(x)$ }.) • P \subseteq BPP \subseteq BQP \subseteq PP $\equiv_T^p \#$ P.

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0, 1\}^n$, designating qubit 1 for yes/no output:

$$\begin{aligned} x \in L &\implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4}, \\ x \notin L &\implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4}, \end{aligned}$$

• FACT: FACT \in BQP. (Say FACT = { $(x, w) : w \sqsubseteq UPF(x)$ }.)

- $\mathsf{P} \subseteq \mathsf{BPP} \subseteq \mathsf{BQP} \subseteq \mathsf{PP} \equiv^p_T \#\mathsf{P}.$
- No evidence for $\mathsf{NP} \subseteq \mathsf{BQP}$,

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0, 1\}^n$, designating qubit 1 for yes/no output:

$$\begin{aligned} x \in L &\implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4}, \\ x \notin L &\implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4}, \end{aligned}$$

- FACT: FACT \in BQP. (Say FACT = { $(x, w) : w \sqsubseteq UPF(x)$ }.)
- $\mathsf{P} \subseteq \mathsf{BPP} \subseteq \mathsf{BQP} \subseteq \mathsf{PP} \equiv^p_T \#\mathsf{P}.$
- No evidence for $\mathsf{NP} \subseteq \mathsf{BQP}$, nor $\mathsf{BQP} \subseteq \mathsf{PH}$.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

1. The acceptance probability $p_x = \Pr[C(x) \mapsto 1]$?

1. The acceptance probability $p_x = \Pr[C(x) \mapsto 1]$? So we convert C into a polynomial p_C such that for all x,

$$p_x = p_C(x_1, \dots, x_n).$$

うして ふゆう ふほう ふほう ふしつ

Used in quantum query complexity lower bounds, but *building* p_C is hard.

1. The acceptance probability $p_x = \Pr[C(x) \mapsto 1]$? So we convert C into a polynomial p_C such that for all x,

$$p_x = p_C(x_1, \dots, x_n).$$

Used in quantum query complexity lower bounds, but *building* p_C is hard.

2. The acceptance amplitude, but *implicitly* by counting zeroes. Given a polynomial $P(x_1, \ldots, x_n, y_1, \ldots, y_h)$, define for all $x \in \{0, 1\}^n$ and value a:

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

1. The acceptance probability $p_x = \Pr[C(x) \mapsto 1]$? So we convert C into a polynomial p_C such that for all x,

$$p_x = p_C(x_1, \ldots, x_n).$$

Used in quantum query complexity lower bounds, but *building* p_C is hard.

2. The acceptance amplitude, but *implicitly* by counting zeroes. Given a polynomial $P(x_1, \ldots, x_n, y_1, \ldots, y_h)$, define for all $x \in \{0, 1\}^n$ and value a:

$$N_{P,x}[a] = |\{y \in \{0,1\}^h : P(x,y) = a\}|.$$

This is a #P function.

Theorem (Dawson et al. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} [N_{P,x,z}[1] - N_{P,x,z}[0].$$

Theorem (Dawson et al. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} [N_{P,x,z}[1] - N_{P,x,z}[0].$$

うして ふゆう ふほう ふほう ふしつ

• Thus BQP reduces to the difference between to #P functions.

Theorem (Dawson et al. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} [N_{P,x,z}[1] - N_{P,x,z}[0].$$

- Thus BQP reduces to the difference between to $\#\mathsf{P}$ functions.
- Note heavy promise: $0 \le N[1] N[0] \le R = \sqrt{2^h}$.

Theorem (Dawson et al. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} [N_{P,x,z}[1] - N_{P,x,z}[0].$$

- Thus BQP reduces to the difference between to #P functions.
- Note heavy promise: $0 \le N[1] N[0] \le R = \sqrt{2^h}$.
- Means all but a trace of pairs $y, y' \in \{0, 1\}^h$ cancel.

Theorem (Dawson et al. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} [N_{P,x,z}[1] - N_{P,x,z}[0].$$

- Thus BQP reduces to the difference between to #P functions.
- Note heavy promise: $0 \le N[1] N[0] \le R = \sqrt{2^h}$.
- Means all but a trace of pairs $y, y' \in \{0, 1\}^h$ cancel.
- Hence cannot simply use Stockmeyer's approximation of counting to get $\mathsf{BQP} \subseteq \Sigma_3^p \cap \Pi_3^p$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

My Extensions

• Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• A circuit C is balanced if every gate in C is balanced.

- Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.
- A circuit C is balanced if every gate in C is balanced.
- K(C) = the least K such that all θ in entries of gates in C are multiples of $2\pi/K$. "Min-Phase"

うして ふゆう ふほう ふほう ふしつ

- Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.
- A circuit C is balanced if every gate in C is balanced.
- K(C) = the least K such that all θ in entries of gates in C are multiples of $2\pi/K$. "Min-Phase"
- Let G be a field or ring such that G^* embeds the K-th roots of unity ω^j by a multiplicative homomorphism $e(\omega^j)$.

Theorem

Can arrange
$$P_C = \prod_{gates g} P_g$$
 such that for all x and z,

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{P_C,x,z}[e(\omega^j)]$$

- Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.
- A circuit C is balanced if every gate in C is balanced.
- K(C) = the least K such that all θ in entries of gates in C are multiples of $2\pi/K$. "Min-Phase"
- Let G be a field or ring such that G^* embeds the K-th roots of unity ω^j by a multiplicative homomorphism $e(\omega^j)$.

Theorem

Can arrange
$$P_C = \prod_{gates g} P_g$$
 such that for all x and z,

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{P_C,x,z}[e(\omega^j)] = \frac{1}{R} \sum_y \omega^{P_C(x,y,z)}.$$

Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r, w_1, \ldots, w_t)$ over \mathbb{Z}_K and a constant R such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

うして ふゆう ふほう ふほう ふしつ

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{Q_C, x, z}[j]$$

Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r, w_1, \ldots, w_t)$ over \mathbb{Z}_K and a constant R such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{Q_C,x,z}[j] = \frac{1}{R} \sum_{y,w} \omega^{Q_C(x,y,z,w)},$$

where $Q_C = \sum_{gates g} q_g + \sum_{constraints c} q_c$ has bounded degree.

My trick: Given a constraint c with values 0 = fail, 1 = OK, add $q_c = w_0(1-c) + 2w_1(1-c) + 4w_2(1-c) + \dots + 2^{k-1}w_{k-1}(1-c).$ Then $c = 0 \implies$ binary assignments to w_0, \dots, w_{k-1} run through all Kvalues \implies the entire sum over y, w cancels. Whereas c = 1 zeroes all such terms, so he only effect is to inflate R.

• "Annotate" every juncture of qubit i with variable y_j or term u_i .

• "Annotate" every juncture of qubit i with variable y_j or term u_i .

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.

- "Annotate" every juncture of qubit i with variable y_j or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- "Annotate" every juncture of qubit i with variable y_j or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

• CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.

- "Annotate" every juncture of qubit i with variable y_j or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.

- "Annotate" every juncture of qubit i with variable y_j or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.
- In characteristic 2, linearity is preserved.

- "Annotate" every juncture of qubit i with variable y_j or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.
- In characteristic 2, linearity is preserved.
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.

- "Annotate" every juncture of qubit i with variable y_j or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.
- In characteristic 2, linearity is preserved.
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.

うっつ 川 へ 山 マ (山 マ)

• Linearity not preserved.

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C *= (1+2u_i z_i - u_i - z_i) Q_C += w_j (u_i + z_i - 2u_i z_i).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C \quad * = \quad (1 + 2u_i z_i - u_i - z_i) Q_C \quad + = \quad w_j (u_i + z_i - 2u_i z_i).$$

In characteristic 2, Q_C remains quadratic.

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C \quad * = \quad (1 + 2u_i z_i - u_i - z_i) Q_C \quad + = \quad w_j (u_i + z_i - 2u_i z_i).$$

In characteristic 2, Q_C remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski; various) For quadratic $p(x_1, \ldots, x_n)$ over \mathbb{Z}_K , and all a < K, $N_p[a]$ is computable in maths fpoly(nK) time.

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C \quad * = \quad (1 + 2u_i z_i - u_i - z_i) Q_C \quad + = \quad w_j (u_i + z_i - 2u_i z_i).$$

In characteristic 2, Q_C remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski; various) For quadratic $p(x_1, \ldots, x_n)$ over \mathbb{Z}_K , and all a < K, $N_p[a]$ is computable in maths fpoly(nK) time.

Open: replace K by log K in the time? Affirmative for $A[C(x) \mapsto z]$.

・ロト ・四ト ・ヨト ・ヨー うらぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• To represent u_i —S— we need K = 4.

・ロト ・ 日 ・ モー・ モー・ うへぐ

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

うして ふゆう ふほう ふほう ふしつ

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

• S: u_i left alone but $Q_C + = u_i^2$.

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

- S: u_i left alone but $Q_C + = u_i^2$.
- Inductively every term in Q_C has form y_j^2 or $2y_iy_j$.

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

- S: u_i left alone but $Q_C + = u_i^2$.
- Inductively every term in Q_C has form y_j^2 or $2y_i y_j$.
- These terms are invariant under $0 \leftrightarrow 2, 1 \leftrightarrow 3$.

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.
- S: u_i left alone but $Q_C + = u_i^2$.
- Inductively every term in Q_C has form y_j^2 or $2y_i y_j$.
- These terms are invariant under $0 \leftrightarrow 2, 1 \leftrightarrow 3$.
- Hence [CCLL] gives poly-time simulation by soution counting in \mathbb{Z}_4 .

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Tracking Quantum Circuits By Polynomials

Open Questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?

うして ふゆう ふほう ふほう ふしつ

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?

うして ふゆう ふほう ふほう ふしつ

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?

うつう 山田 エル・エー・ 山田 うらう

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?
- Baur-Strassen showed that $\log_2 \gamma(f)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?
- Baur-Strassen showed that $\log_2 \gamma(f)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.
- Relevance to complexity of quantum C?

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?
- Baur-Strassen showed that $\log_2 \gamma(f)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.
- Relevance to complexity of quantum C?
- Possibly quantify the "entangling capacity" of C?