

Computer and Human Preference Divergences at Chess

Southern Economic Association Annual Conference 2014,
Atlanta, GA

Kenneth W. Regan¹
University at Buffalo (SUNY)

Nov. 24, 2014

¹Joint work with Tamal Biswas and Jason Zhou. Websites:
<http://www.cse.buffalo.edu/~regan/>
<http://www.cse.buffalo.edu/~regan/chess/fidelity/>

Outline

- ① Computer chess *engines* running on mass-market hardware can slay even the best human players.

Outline

- ➊ Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ➋ Hence **cheating** with computers during human games has emerged...

Outline

- ① Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ② Hence **cheating** with computers during human games has emerged... and **cheating detection** has become a need.

Outline

- ➊ Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ➋ Hence **cheating** with computers during human games has emerged... and **cheating detection** has become a need.
- ➌ Desirable to measure more than raw performance.

Outline

- ➊ Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ➋ Hence **cheating** with computers during human games has emerged... and **cheating detection** has become a need.
- ➌ Desirable to measure more than raw performance.
- ➍ Other axis is **Cognitive Style**—how do computers' differ from humans'?

Outline

- ➊ Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ➋ Hence **cheating** with computers during human games has emerged... and **cheating detection** has become a need.
- ➌ Desirable to measure more than raw performance.
- ➍ Other axis is **Cognitive Style**—how do computers' differ from humans'?
- ➎ Can we discriminate it? How much does it add to significance of cheating tests?

Outline

- ① Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ② Hence **cheating** with computers during human games has emerged... and **cheating detection** has become a need.
- ③ Desirable to measure more than raw performance.
- ④ Other axis is **Cognitive Style**—how do computers' differ from humans'?
- ⑤ Can we discriminate it? How much does it add to significance of cheating tests?
- ⑥ Implications for **Computerized Agents**, including PDAs.

Outline

- ① Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ② Hence **cheating** with computers during human games has emerged... and **cheating detection** has become a need.
- ③ Desirable to measure more than raw performance.
- ④ Other axis is **Cognitive Style**—how do computers' differ from humans'?
- ⑤ Can we discriminate it? How much does it add to significance of cheating tests?
- ⑥ Implications for **Computerized Agents**, including PDAs.
- ⑦ “Isomorphism” to Multiple-Choice Testing and other econo/psycho-metrics relevance.

Outline

- ❶ Computer chess *engines* running on mass-market hardware can slay even the best human players.
- ❷ Hence **cheating** with computers during human games has emerged... and **cheating detection** has become a need.
- ❸ Desirable to measure more than raw performance.
- ❹ Other axis is **Cognitive Style**—how do computers' differ from humans'?
- ❺ Can we discriminate it? How much does it add to significance of cheating tests?
- ❻ Implications for **Computerized Agents**, including PDAs.
- ❼ “Isomorphism” to Multiple-Choice Testing and other econo/psycho-metrics relevance.
- ❽ Discussion and applicability of model to the other papers.

A Predictive Analytic Model

- ① Domain: A set of decision-making situations t .
Chess game turns

A Predictive Analytic Model

- ① Domain: A set of decision-making situations t .
Chess game turns
- ② Inputs: Values v_i for every option at turn t .
Computer values of moves m_i

A Predictive Analytic Model

- ➊ Domain: A set of decision-making situations t .
Chess game turns
- ➋ Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ➌ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E

A Predictive Analytic Model

- ➊ Domain: A set of decision-making situations t .
Chess game turns
- ➋ Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ➌ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E
- ➍ Defines *fallible agent* $P(s, c, \dots)$.

A Predictive Analytic Model

- ➊ Domain: A set of decision-making situations t .
Chess game turns
- ➋ Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ➌ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E
- ➍ Defines *fallible agent* $P(s, c, \dots)$.
- ➎ Main Output: Probabilities $p_{t,i}$ for $P(s, c, \dots)$ to select option i at time t .

A Predictive Analytic Model

- ➊ Domain: A set of decision-making situations t .
Chess game turns
- ➋ Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ➌ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E
- ➍ Defines *fallible agent* $P(s, c, \dots)$.
- ➎ Main Output: Probabilities $p_{t,i}$ for $P(s, c, \dots)$ to select option i at time t .
- ➏ Derived Outputs:
 - Aggregate statistics: *move-match* MM, *average error* AE, ...
 - Projected confidence intervals for those statistics.
 - “Intrinsic Performance Ratings” (IPR’s).

Elo Rating System

- Points are (ideally) zero-sum: what P gains O loses.

Elo Rating System

- Points are (ideally) zero-sum: what P gains O loses.
- Only rating differences matter—absolute numbers have no intrinsic meaning.

Elo Rating System

- Points are (ideally) zero-sum: what P gains O loses.
- Only rating differences matter—absolute numbers have no intrinsic meaning. Yet my work argues no significant “inflation.”

2800 World champ: Carlsen peak 2881, now 2863

2700 “Super-GM”

2600 “Strong GM”

2500 Grandmaster (GM)

2400 International Master (IM) (KWR, D. Levy, H. Berliner)

2200 National Master, 30,000 worldwide

2000 Expert

⋮ ⋮

1000 Class E, “bright beginner”

⋮ ⋮

600? True beginner with “sight of the board”?

The Data

- Over 2 million moves of 50-PV data: approaching 200GB

The Data

- Over 2 million moves of 50-PV data: approaching 200GB
- Over 30 million moves of Single-PV data: about 35 GB

The Data

- Over 2 million moves of 50-PV data: approaching 200GB
- Over 30 million moves of Single-PV data: about 35 GB
- = over 100 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's. Is this "Big Data"?

The Data

- Over 2 million moves of 50-PV data: approaching 200GB
- Over 30 million moves of Single-PV data: about 35 GB
- = over 100 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's. Is this "Big Data"?

Two Modes of Operation

1. To test games by player P for cheating:

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.
- So far independent of moves played.

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.
- So far independent of moves played.
- Compare actual results from moves played.

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.
- So far independent of moves played.
- Compare actual results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P :

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.
- So far independent of moves played.
- Compare actual results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P :

- Regress **on P ’s games**—i.e. **on small data**—to get s_P, c_P, \dots

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.
- So far independent of moves played.
- Compare actual results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P :

- Regress **on P ’s games**—i.e. **on small data**—to get s_P, c_P, \dots
- Apply s, c, \dots to “Virtual Standardized Test” (same 8,316 positions for everyone, results agree with whole training set to 4 places).

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.
- So far independent of moves played.
- Compare actual results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P :

- Regress **on P ’s games**—i.e. **on small data**—to get s_P, c_P, \dots
- Apply s, c, \dots to “Virtual Standardized Test” (same 8,316 positions for everyone, results agree with whole training set to 4 places).
- Score mapped to Elo scale, to get IPR \pm *error*.

Two Modes of Operation

1. To test games by player P for cheating:

- Regress **on large data** to set params s, c, \dots for Elo rating of P .
- Use s, c, \dots to generate projections and confidence intervals for tests (“MM” and “AE” tests) from analysis **of player’s games**.
- So far independent of moves played.
- Compare actual results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P :

- Regress **on P ’s games**—i.e. **on small data**—to get s_P, c_P, \dots
- Apply s, c, \dots to “Virtual Standardized Test” (same 8,316 positions for everyone, results agree with whole training set to 4 places).
- Score mapped to Elo scale, to get IPR \pm *error*.
- **Error of measurement**, not confidence test.

Examples

2014 World Championship Match

- Anand, 2785 \pm 145
- Carlsen, 2920 \pm 135
- Combined, 2850 \pm 100,

Screening test:

72	67.8%	0.055	202	Tal, Mihail	Marseille1989cat11
73	67.8%	0.078	121	Morphy, Paul	MorphyParisOffhand1858
74	67.7%	0.032	297	Shirov, A.	SofiaMTel2009cat21

Full test: Morphy at 2350 projected to match almost 60%, and full test actual is less (“regression to mean”), so not significant.

Separating **Skill Assessment** From **Prediction**

Separating **Skill Assessment** From **Prediction**

- Engines work by **iteratively deepened search**.

Separating **Skill Assessment** From **Prediction**

- Engines work by **iteratively deepened search**.
- Some moves' values “*swing*” markedly down (a “trap”) or up (a “hidden resource”).

Separating **Skill Assessment** From **Prediction**

- Engines work by **iteratively deepened search**.
- Some moves' values “*swing*” markedly down (a “trap”) or up (a “hidden resource”).
- New “Depth” paper shows strong effect of *swing* on human probabilities.

Separating **Skill Assessment** From **Prediction**

- Engines work by **iteratively deepened search**.
- Some moves' values “*swing*” markedly down (a “trap”) or up (a “hidden resource”).
- New “Depth” paper shows strong effect of *swing* on human probabilities.
- Computers largely immune to effect, especially in fixed-depth play.

Separating Skill Assessment From Prediction

- Engines work by **iteratively deepened search**.
- Some moves' values “*swing*” markedly down (a “trap”) or up (a “hidden resource”).
- New “Depth” paper shows strong effect of *swing* on human probabilities.
- Computers largely immune to effect, especially in fixed-depth play.
- Explains ‘strange’ 58%–42% law for human preference of first-listed of two moves given equal value at highest depth, conditioned on one of them having been played.

Separating **Skill Assessment** From **Prediction**

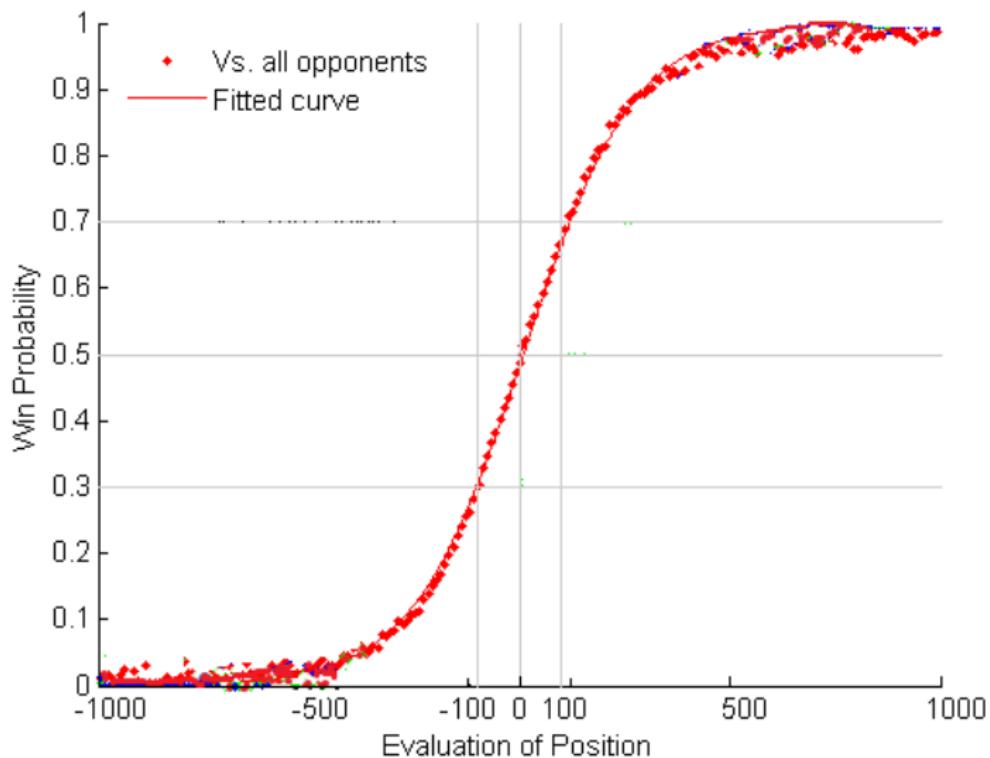
- Engines work by **iteratively deepened search**.
- Some moves' values “*swing*” markedly down (a “trap”) or up (a “hidden resource”).
- New “Depth” paper shows strong effect of *swing* on human probabilities.
- Computers largely immune to effect, especially in fixed-depth play.
- Explains ‘strange’ **58%–42% law** for human preference of first-listed of two moves given equal value at highest depth, conditioned on one of them having been played.
- First-listed move higher-valued at lower depths; moves sort is *stable*.

Separating Skill Assessment From Prediction

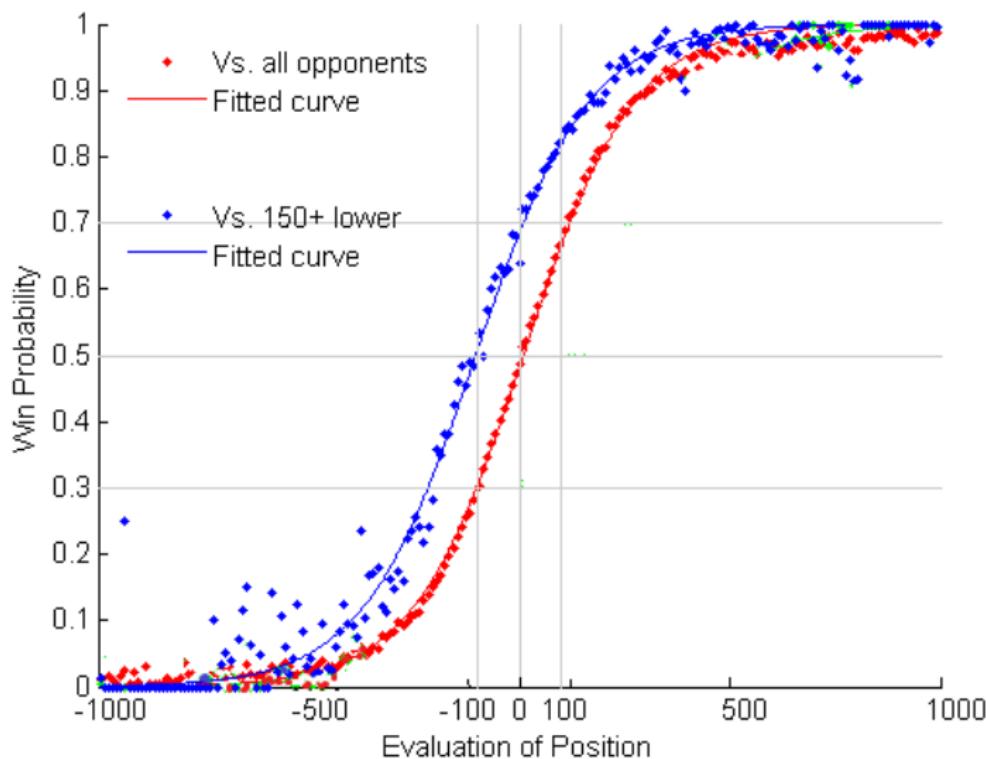
- Engines work by **iteratively deepened search**.
- Some moves' values “*swing*” markedly down (a “trap”) or up (a “hidden resource”).
- New “Depth” paper shows strong effect of *swing* on human probabilities.
- Computers largely immune to effect, especially in fixed-depth play.
- Explains ‘strange’ 58%–42% law for human preference of first-listed of two moves given equal value at highest depth, conditioned on one of them having been played.
- First-listed move higher-valued at lower depths; moves sort is *stable*.

Use values at all depths to predict; use highest-depth values to assess.

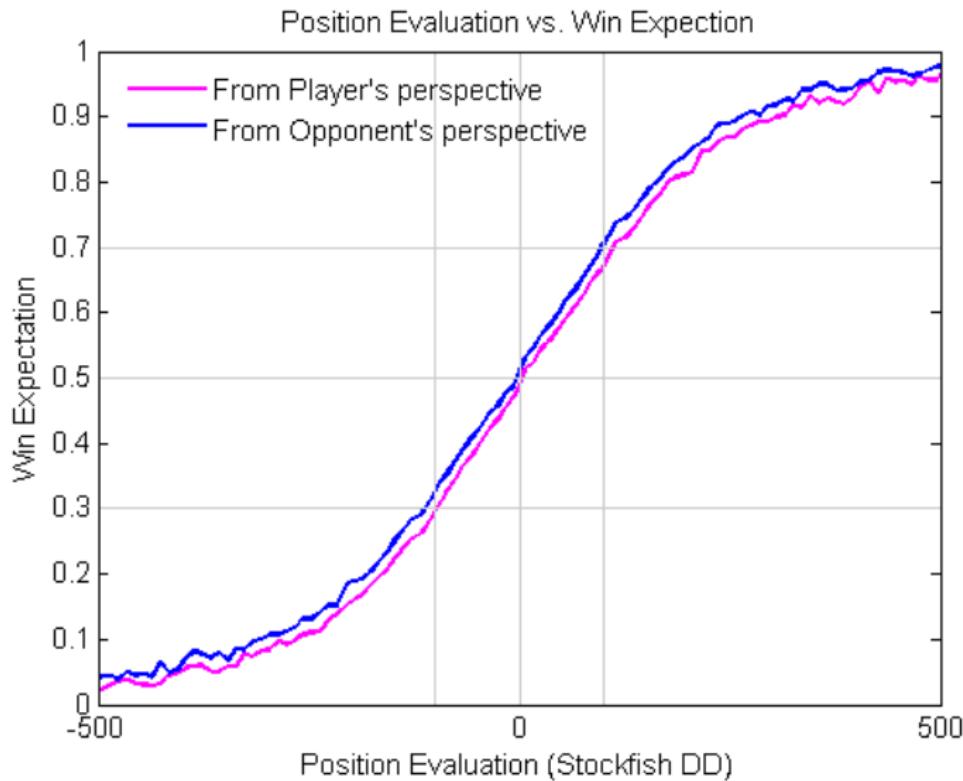
Win % Expectation Curve



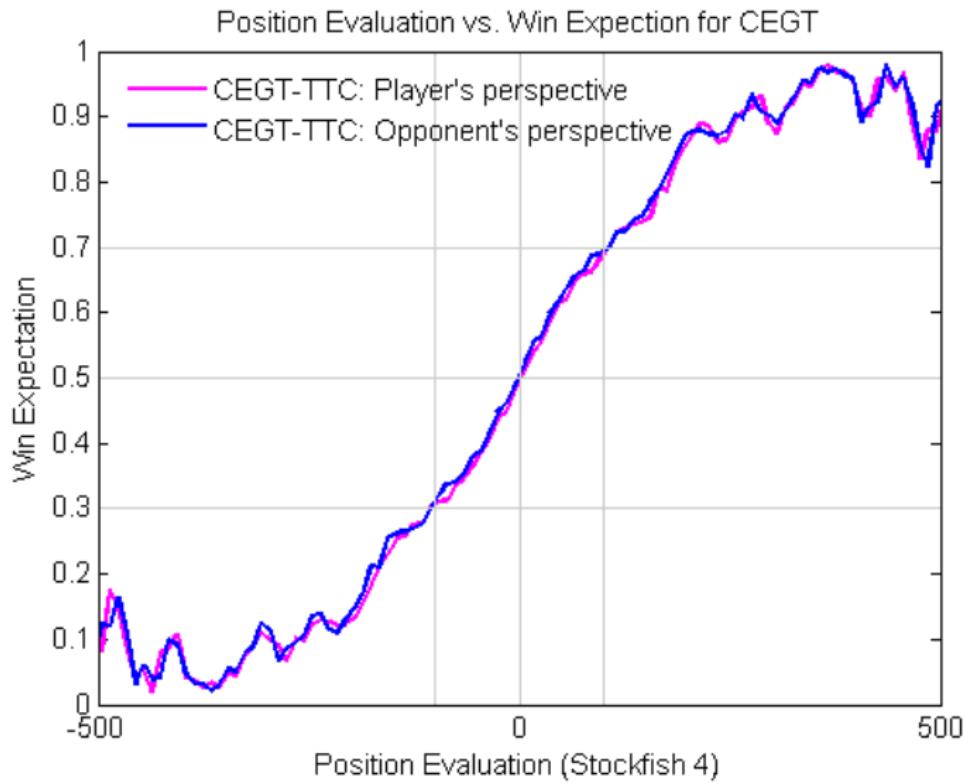
And When You're Higher Rated



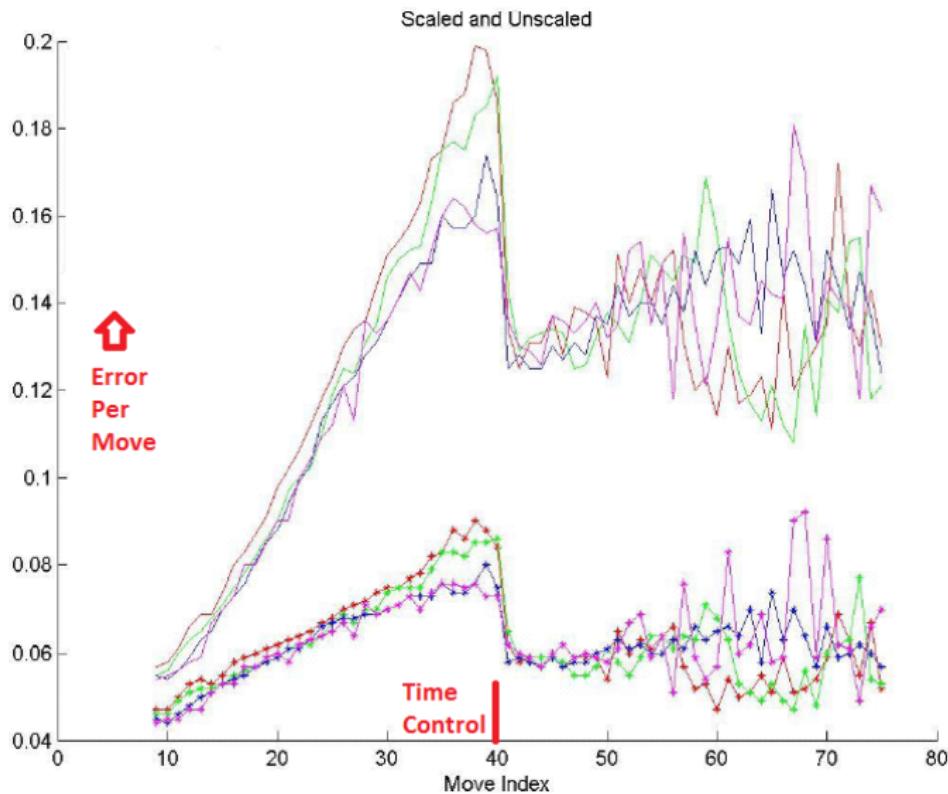
Would You Like it to be Your Move?



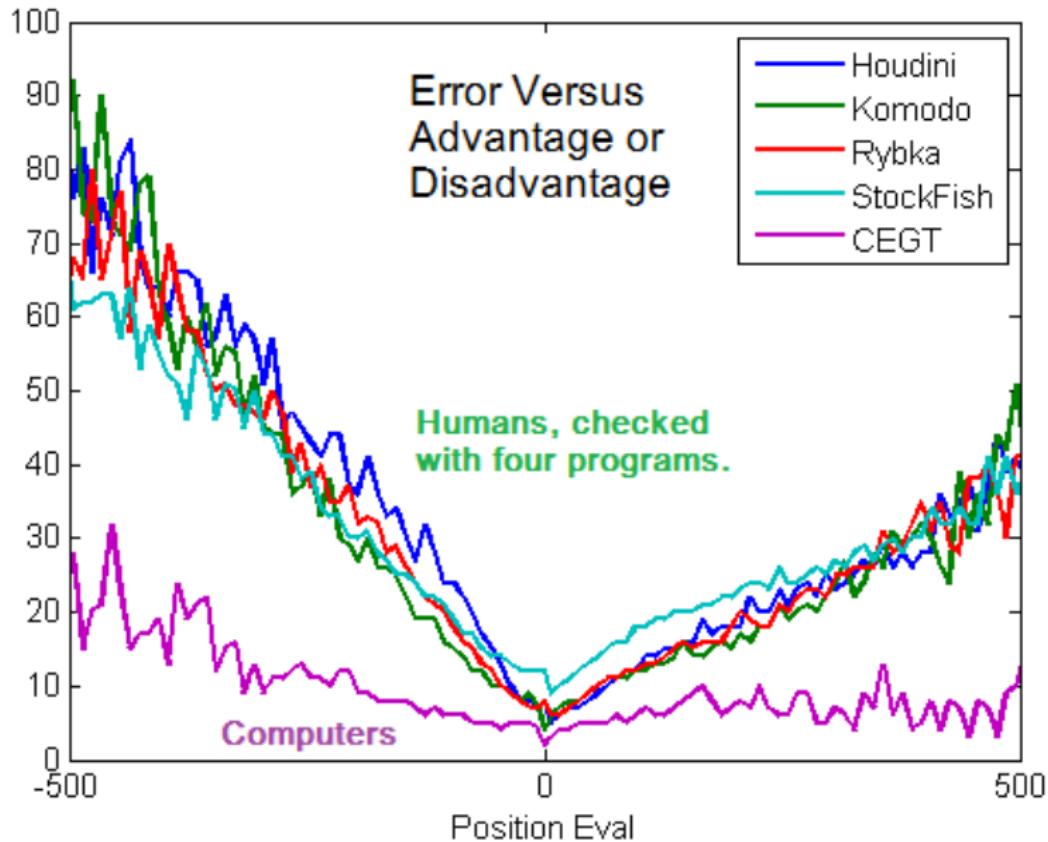
Effect Absent in Computer Play



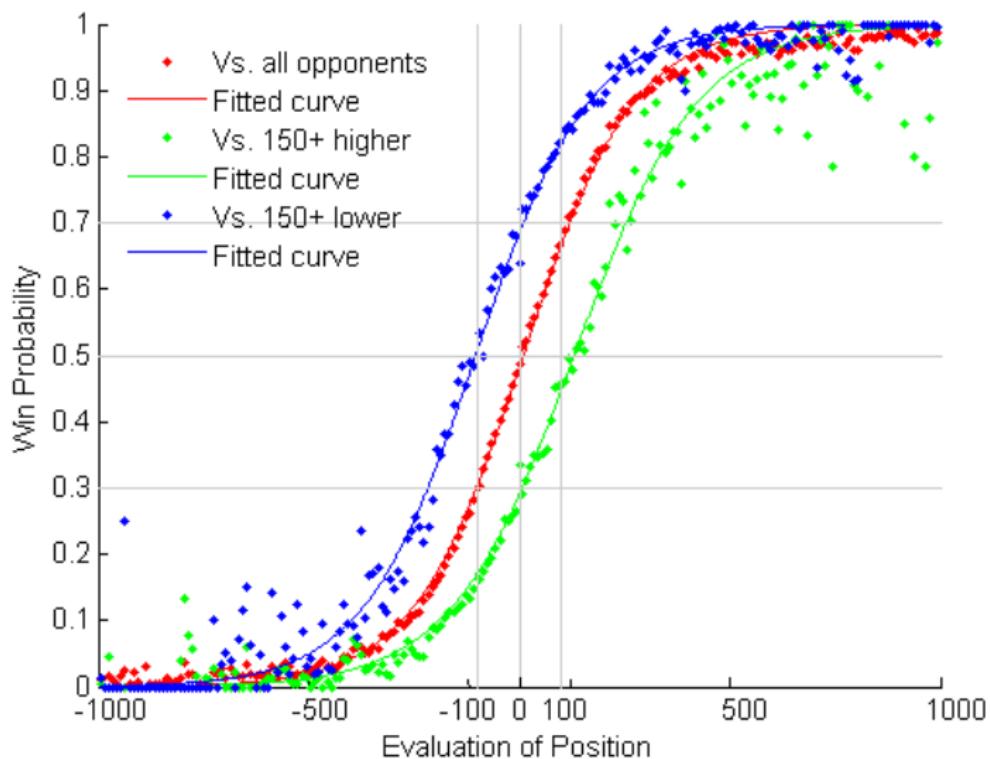
Managing a Time Budget



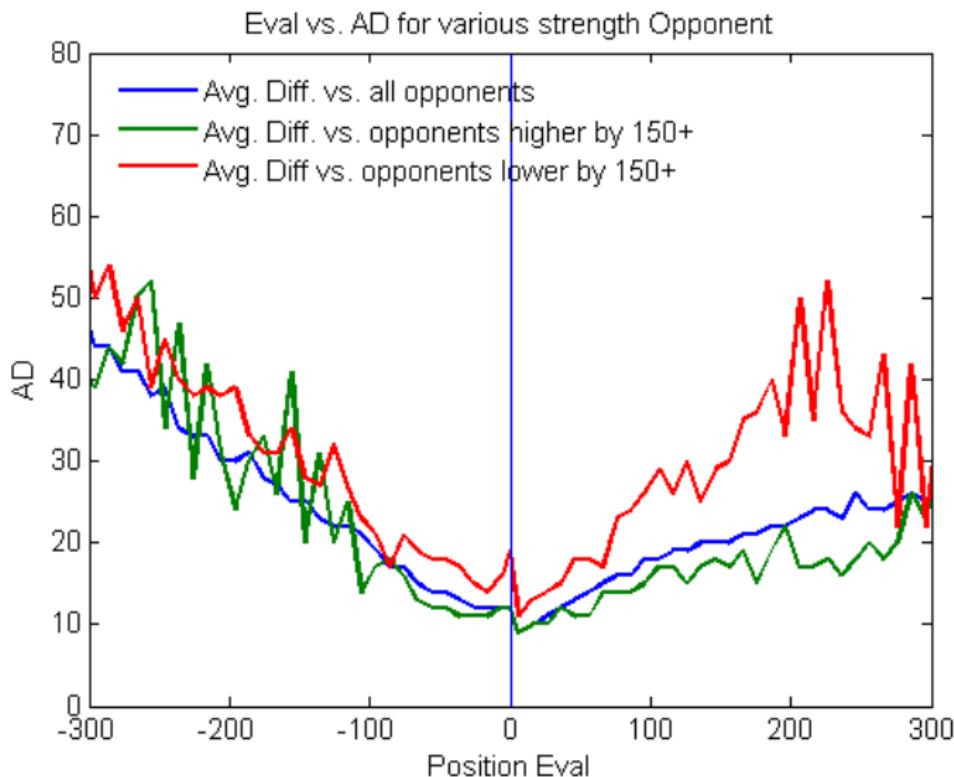
Minding Nickels and Dimes



Are We Psychological or Rational?



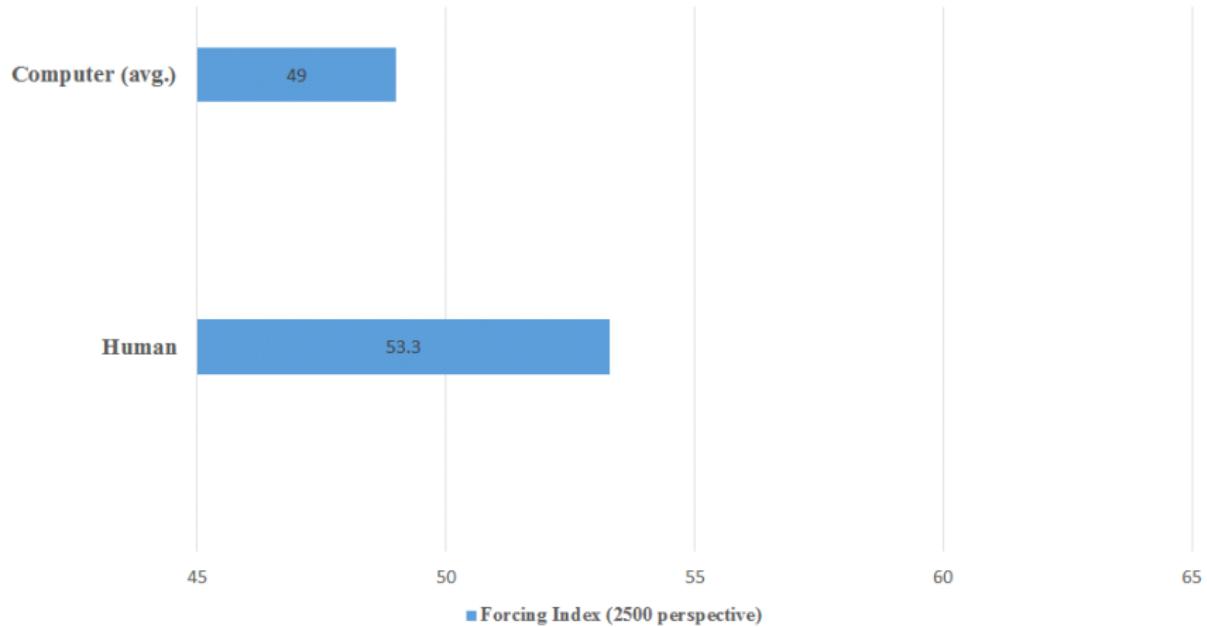
Some Evidence for Psychological



Minima stay at 0.

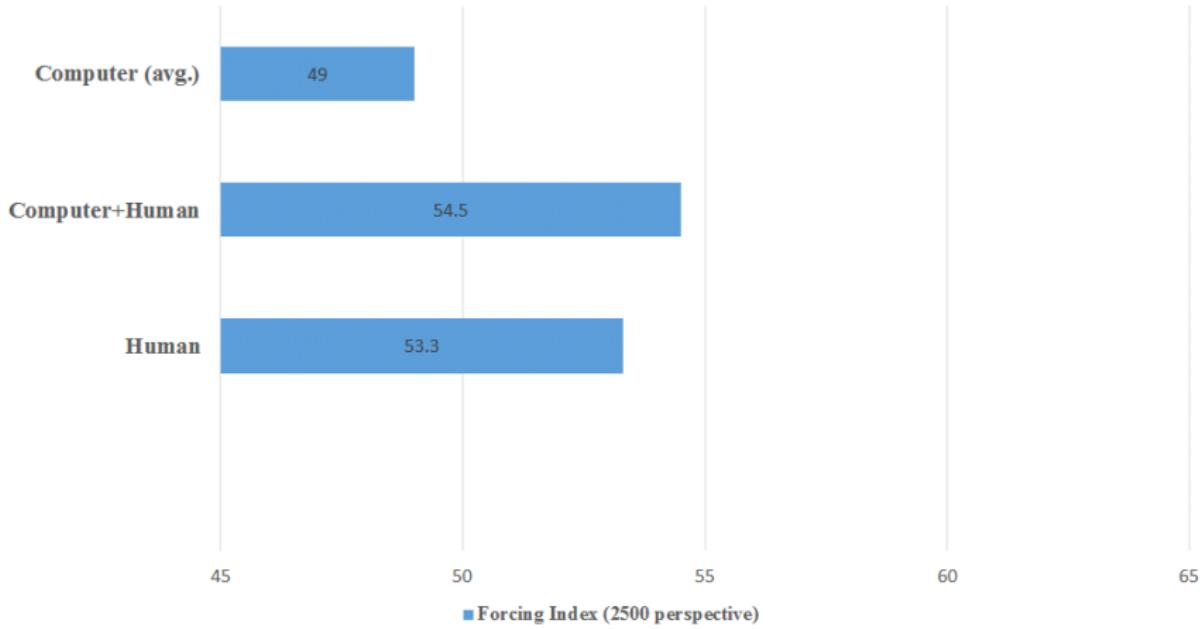
Degrees of Forcing Play

Forcing Index (2500 perspective)

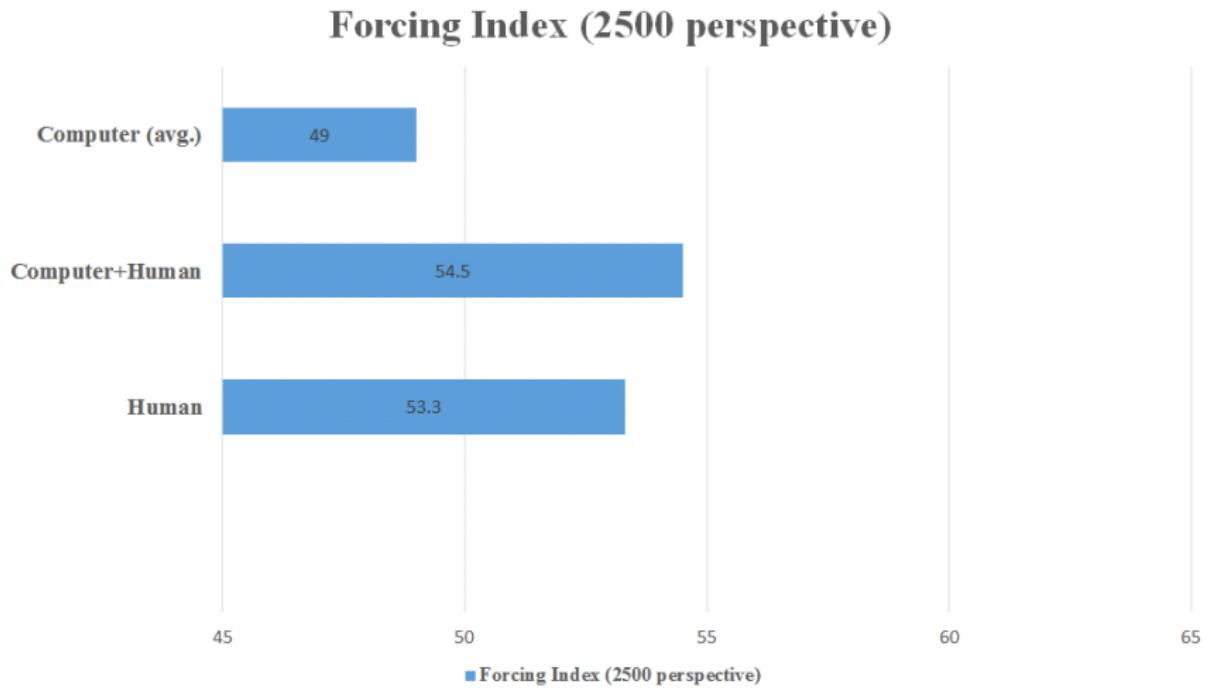


Add Human-Computer Tandems

Forcing Index (2500 perspective)



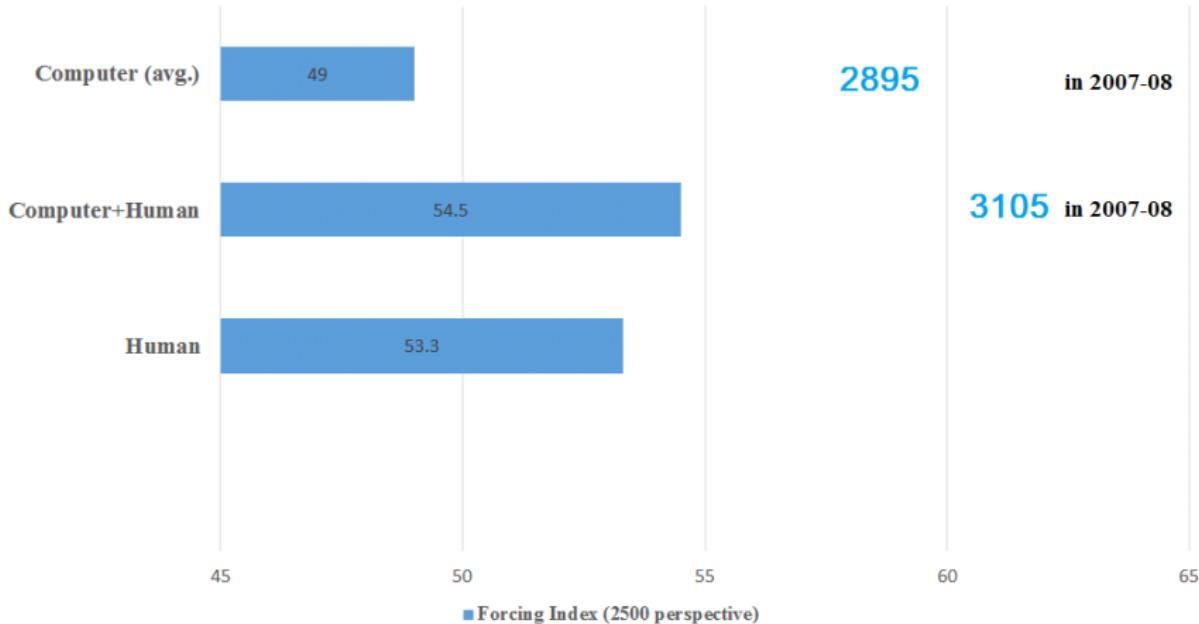
Add Human-Computer Tandems



Evidently the humans called the shots. How was the quality?

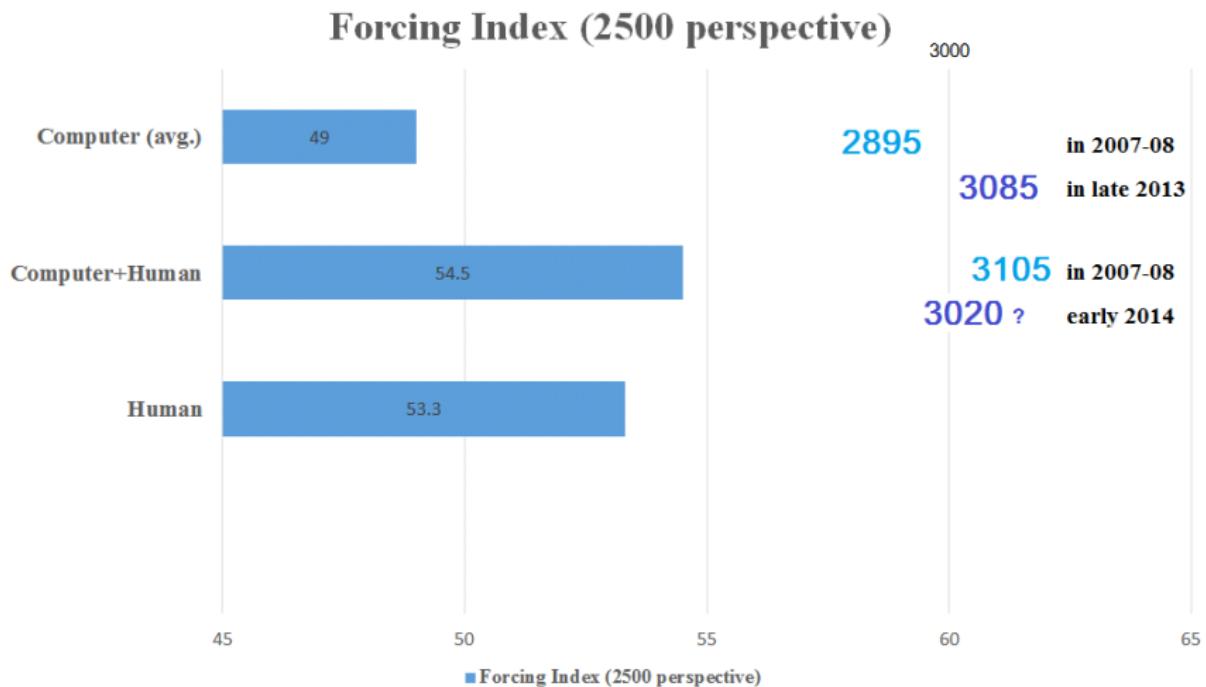
2007–08 Freestyle Performance

Forcing Index (2500 perspective)



Adding 210 Elo was significant. Forcing but good teamwork.

2014 Freestyle Tournament Performance



2014: tandems marginally better W-L, but quality not clear...

Summary For Us and PDAs

Summary For Us and PDAs

- ① PDAs pick up every little difference: “**Forest and Trees**”

Summary For Us and PDAs

- ➊ PDAs pick up every little difference: “**Forest and Trees**”
- ➋ We should avoid overconfidence...

Summary For Us and PDAs

- ➊ PDAs pick up every little difference: “**Forest and Trees**”
- ➋ We should avoid overconfidence... and take counsel when “down.”

Summary For Us and PDAs

- ➊ PDAs pick up every little difference: “**Forest and Trees**”
- ➋ We should avoid overconfidence... and take counsel when “down.”
- ➌ **Look before we Leap...**

Summary For Us and PDAs

- ➊ PDAs pick up every little difference: “**Forest and Trees**”
- ➋ We should avoid overconfidence... and take counsel when “down.”
- ➌ **Look before we Leap... Don’t rush in...**

Summary For Us and PDAs

- ➊ PDAs pick up every little difference: “**Forest and Trees**”
- ➋ We should avoid overconfidence... and take counsel when “down.”
- ➌ **Look before we Leap... Don’t rush in... Measure risks.**

Summary For Us and PDAs

- ➊ PDAs pick up every little difference: “**Forest and Trees**”
- ➋ We should avoid overconfidence... and take counsel when “down.”
- ➌ **Look before we Leap... Don’t rush in... Measure risks.**
- ➍ Even at a purely calculational pursuit like chess, *our brains still contribute.*

Summary For Us and PDAs

- ➊ PDAs pick up every little difference: “**Forest and Trees**”
- ➋ We should avoid overconfidence... and take counsel when “down.”
- ➌ **Look before we Leap... Don’t rush in... Measure risks.**
- ➍ Even at a purely calculational pursuit like chess, *our brains still contribute.* (2014: maybe)

Summary For Us and PDAs

- ① PDAs pick up every little difference: “**Forest and Trees**”
- ② We should avoid overconfidence... and take counsel when “down.”
- ③ **Look before we Leap... Don't rush in... Measure risks.**
- ④ Even at a purely calculational pursuit like chess, *our brains still contribute.* (2014: maybe)
- ⑤ **Main takeaway:**

Summary For Us and PDAs

- ① PDAs pick up every little difference: “**Forest and Trees**”
- ② We should avoid overconfidence... and take counsel when “down.”
- ③ **Look before we Leap... Don't rush in... Measure risks.**
- ④ Even at a purely calculational pursuit like chess, *our brains still contribute.* (2014: maybe)
- ⑤ **Main takeaway:**

It should be **natural** to program PDAs so they enhance our freedom rather than constrain it.

Summary For Us and PDAs

- ① PDAs pick up every little difference: “**Forest and Trees**”
- ② We should avoid overconfidence... and take counsel when “down.”
- ③ **Look before we Leap... Don't rush in... Measure risks.**
- ④ Even at a purely calculational pursuit like chess, *our brains still contribute.* (2014: maybe)
- ⑤ **Main takeaway:**

It should be **natural** to program PDAs so they enhance our freedom rather than constrain it.

This could be the beginning of a beautiful relationship...