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@ Computer chess engines running on mass-market hardware can slay
even the best human players.

© Hence cheating with computers during human games has
emerged. .. and cheating detection has become a need.

@ Desirable to measure more than raw performance.

@ Other axis is Cognitive Style—how do computers’ differ from
humans’?

@ Can we discriminate it? How much does it add to significance of
cheating tests?

O Implications for Computerized Agents, including PDAs.

@ “Isomorphism” to Multiple-Choice Testing and other
econo/psycho-metrics relevance.

@ Discussion and applicability of model to the other papers.
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A Predictive Analytic Model

@ Domain: A set of decision-making situations .
Chess game turns

@ Inputs: Values v; for every option at turn ¢.
Computer values of moves m;

@ Parameters: s, c,... denoting skills and levels.
Trained correspondence to chess Elo rating £

@ Defines fallible agent P(s,c,...).

@ Main Output: Probabilities p;; for P(s,c,...) to select option 7 at
time t.

@ Derived Outputs:

o Aggregate statistics: move-match MM, average error AE, ...
e Projected confidence intervals for those statistics.
o “Intrinsic Performance Ratings” (IPR’s).
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Elo Rating System

e Points are (ideally) zero-sum: what P gains O loses.
@ Only rating differences matter—absolute numbers have no intrinsic
meaning. Yet my work argues no significant “inflation.”
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True beginner with “sight of the board”?
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Over 30 million moves of data: about 35 GB

= over 100 million pages of text data at 2k/page.
All taken on two quad-core home-style PC’s. Is this “Big Data”?




Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:

o Regress on large data to set params s, ¢, ... for Elo rating of P.



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.

@ So far independent of moves played.



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.

@ So far independent of moves played.

e Compare acutal results from moves played.



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.

@ So far independent of moves played.

e Compare acutal results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P:



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.

@ So far independent of moves played.

e Compare acutal results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P:

o Regress on P’s games—i.e. on small data—to get sp,cp, ...



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.

@ So far independent of moves played.

e Compare acutal results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P:
o Regress on P’s games—i.e. on small data—to get sp,cp, ...

e Apply s,¢,... to “Virtual Standardized Test” (same 8,316 positions
for everyone, results agree with whole training set to 4 places).



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.

@ So far independent of moves played.

e Compare acutal results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P:
o Regress on P’s games—i.e. on small data—to get sp,cp, ...

e Apply s,¢,... to “Virtual Standardized Test” (same 8,316 positions
for everyone, results agree with whole training set to 4 places).

@ Score mapped to Elo scale, to get IPR =+ error.



Computer and Human Preference Divergences at Chess

Two Modes of Operation

1. To test games by player P for cheating:
o Regress on large data to set params s, ¢, ... for Elo rating of P.

e Use s,¢,... to generate projections and confidence intervals for
tests (“MM” and “AE” tests) from analysis of player’s games.

@ So far independent of moves played.

e Compare acutal results from moves played.

2. To compute “Intrinsic Performance Rating” (IPR) for P:
o Regress on P’s games—i.e. on small data—to get sp,cp, ...

e Apply s,¢,... to “Virtual Standardized Test” (same 8,316 positions
for everyone, results agree with whole training set to 4 places).

@ Score mapped to Elo scale, to get IPR =+ error.

o Error of measurement, not confidence test.
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Examples

2014 World Championship Match
e Anand, 2785 + 145
e Carlsen, 2920 + 135
o Combined, 2850 4+ 100,

Screening test:

72 67.8% 0.055 202 Tal, Mihail Marseillel1989cat11l
73 67.8) 0.078 121 Morphy, Paul  MorphyParisOffhand1858
74 67.7% 0.032 297  Shirov, A. SofiaMTel2009cat21

Full test: Morphy at 2350 projected to match almost 60%, and full test
actual is less (“regression to mean”), so not significant.
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Separating From

e Engines work by iteratively deepened search.

e Some moves’ values “swing” markedly down (a “trap”) or up (a
“hidden resource”).

o New “Depth” paper shows strong effect of swing on human
probabilities.

e Computers largely immune to effect, especially in fixed-depth play.

e Explains ‘strange’ 58%-42% law for human preference of first-listed
of two moves given equal value at highest depth, conditioned on one
of them having been played.

o First-listed move higher-valued at lower depths; moves sort is stable.

Use values at all depths to predict; use highest-depth
values to assess.
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ould You Like it to be Your Move?
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Effect Absent in Computer Play

Position BEvaluation vs. Win Expection for CEGT
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Minding Nickels and Dimes
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Some Evidence for
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Forcing Index (2500 perspective)

Computer (avg.)

Human

45 50 55 60 65

m Forcing Index (2500 perspective)

Evidently the humans called the shots. How was the quality?



2007—08 Freestyle Performance
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Adding 210 Elo was significant. Forcing but good teamwork.



2014 Freestyle Tournament Performance

Forcing Index (2500 perspective)
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2014: tandems marginally better W-L, but quality not clear...
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Summary For Us and PDAs

@ PDAs pick up every little difference: “Forest and Trees”
© We should avoid overconfidence. . . and take counsel when “down.”
© Look before we Leap...Don’t rush in...Measure risks.

@ Even at a purely calculational pursuit like chess, our brains still
contribute. (2014: maybe)

@ Main takeaway:

It should be natural to program PDAs so they
enhance our freedom rather than constrain it.

This could be the beginning of a beautiful relationship. ..



