CSE191

1 Exercise 1.5.28 (21)

Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.

f) $\exists x \forall y (y \neq 0 \rightarrow xy = 1)$ False g) $\forall x \exists y (x + y = 1)$ True h) $\exists x \exists y (x + 2y = 2 \land 2x + 4y = 5)$ False

i) $\forall x \exists y (x + y = 2 \land 2x - y = 1)$ is False because when x=0, y=2 and y=-1. Since y cannot have two different values, x = 0 is a counter example.

2 Exercise 1.5.30 (3+3+6=12)

Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).

a) $\neg \exists y \exists x P(x, y) \equiv \forall y \forall x \neg P(x, y)$ b) $\neg \forall x \exists y P(x, y) \equiv \exists x \forall y \neg P(x, y)$ c) $\neg \exists y (Q(y) \land \forall x \neg R(x, y)) \equiv \forall y \neg (Q(y) \land \forall x \neg R(x, y)) \equiv \forall y (\neg Q(y) \lor \neg \forall x \neg R(x, y))$ $\equiv \forall y (\neg Q(y) \lor \exists x R(x, y))$

3 Exercise 1.6.4 (4*3=12)

What rule of inference is used in each of these arguments?

a) Kangaroos live in Australia and are marsupials. Therefore, kangaroos are marsupials.

Simplification

b) It is either hotter than 100 degrees today or the pollution is dangerous. It is less than 100 degrees outside today. Therefore, the pollution is dangerous.

Disjunctive syllogism

c) Linda is an excellent swimmer. If Linda is an excellent swimmer, then she can work as a lifeguard. Therefore, Linda can work as a lifeguard.

Modus ponens

d) Steve will work at a computer company this summer. Therefore, this summer Steve will work at a computer company or he will be a beach bum. Addition

4 Exercise 1.6.10 (4*6=24)

a) One version of the answer could be:

H(x) = I play hockey

S(x) = I am sore the next day

W(x) = I use the whirlpool

Step	Reason
1. $H(x) \to S(x)$	Premise
2. $S(x) \to W(x)$	Premise
3. $H(x) \to W(x)$	Hypothetical syllogism from (1) and (2)
4. $\neg W(x)$	Premise
5. $\neg H(x)$	Modus tollens from (3) and (4)

I do not play hockey

b) One version of the answer could be:

W(x) = I work S(x) = It is sunny P(x) = It is partly sunny

[MTF][WSP] = [Monday, Tuesday, Friday] [Work, Sunny, Partly Cloudy]

Step	Reason
1. $W(x) \to S(x) \lor P(x)$	Premise
2. $MW(x) \lor FW(x)$	Premise
3. $\neg TS$	Premise
4. $\neg FP$	Premise
5. $FW \to FS \lor FP$	Universal instantiation of (1)
6. $FW \to FS$	Disjunctive syllogism of (4) and (5)
7. $MW \lor FS$	Modus ponens of (2) and (6)

Work on Monday or Friday is Sunny

\mathbf{Step}

1. If I work, it is either sunny or partly sunny.

2.I worked last Monday or I worked last Friday.

3.Last Monday or last Friday is either sunny or partly sunny.

4. It was not partly sunny on Friday.

5. If I worked on Friday, then it was sunny or partially sunny on that day.

6. If I worked on Friday, then it was sunny on that day.

7. It was not sunny on Tuesday.

8. If I worked on Tuesday, then it was partially sunny on that day.

e) One version of the answer could be:

x = food, t = tofu, c = cheese burger

H(x) = x is healthy to eat

G(x) = x tastes good

Y(x) = You eat x

Step	Reason
1. $\forall x H(x) \rightarrow \neg G(x)$	Premise
2. H(t)	Premise
3. $\forall x Y(x) \to G(x)$	Premise
4. $\neg Y(t)$	Premise
5. $\neg H(c)$	Premise
6. $H(t) \rightarrow \neg G(t)$	Universal instantiation of (1)
7. $\neg G(t)$	Modus ponens of (2) and (6)
8. $Y(t) \to G(t)$	Universal instantiation of (3)
9. $\neg Y(t)$	Modus tollens of (7) and (8)

You do not eat Tofu

f) One version of the answer could be:

D(x) = I am dreaming

H(x) = I am hallucinating

E(x) = I see elephants running down the road

Step	Reason	
1. $D \lor H$	Premise	
$2. \neg D$	Premise	
3. $H \to E$	Premise	
4. <i>H</i>	Disjunctive syllogism of (1) and (2)	
5. E	Modus ponens of (3) and (4)	
Less slophents munning down the read		

I see elephants running down the road

Reason Premise Premise Modus ponens using (1) and (2) Premise Instantiation from (1) Disjunctive syllogism using (4), (5) Premise Disjuntive syllogism using (1), (7)

5 Exercise 1.6.12 (15)

Using Exercise 11, the argument form with premises $(p \wedge t) \rightarrow (r \vee s), q \rightarrow (u \wedge t), u \rightarrow p$, and $\neg s$ and conclusion $q \rightarrow r$ is valid if the argument form with premises $(p \wedge t) \rightarrow (r \vee s), q \rightarrow (u \wedge t), u \rightarrow p, \neg s$ and q and conclusion r is valid.

Step	${f Reason}$	
$1.q \rightarrow (u \wedge t)$	$\mathbf{Premise}$	
$2.u \rightarrow p$	$\mathbf{Premise}$	
$3.q \rightarrow u$	Simplification of (1)	
$4.q \rightarrow p$	Hypothetical syllogism using (2) and (3)	
$5.q \rightarrow t$	Simplification of (1)	
$6.q \rightarrow (p \wedge t)$	Conjunction	
$7.(p \wedge t) \to (r \lor s)$	Premise	
$8.q \to (r \lor s)$	Hypothetical syllogism using (6) and (7)	
9.q	$\mathbf{Premise}$	
$10.r \lor s$	Modus ponens using (8) and (9)	
$11.\neg s$	Premise	
12.r	Disjunctive syllogism using (10) and (11)	

So, the argument form with premises $(p \wedge t) \to (r \vee s), q \to (u \wedge t), u \to p$, and $\neg s$ and conclusion $q \to r$ is valid.

6 Exercise 1.6.14 (9)

a) One version of the answer could be:

Step	Reason
1. Linda, a student in this class, owns a red convertible.	Premise
2. Everyone who owns a red convertible has gotten at least one speeding	Premise
ticket.	
3.Linda, who owns a red convertible has gotten at least one speeding	Universal instantiation
ticket.	from (2)
4.Linda is a student in this class.	Simplification of (1)
5. Someone in this class has gotten a speeding ticket.	Existential generalization
	from (3) and (4)

b)

Step	Reason
1. Each of the five roomates, Melissa, Aaron, Ralph, Veneesha, and Kee-	Premise
shawn, has taken a course in discrete mathematics.	
2. Every student who has taken a course in discrete mathematics can take	Premise
a course in algorithms.	
3. Each of the five roomates, Melissa, Aaron, Ralph, Veneesha, and Kee-	Universal instantiatiaon
shawn, who has taken a course in discrete mathematics can take a course	from (2)
in algorithms	
4. All five roomates can take a course in algorithms next year.	(Conjunction?) Modus
	ponens using (3)

c)

Step	Reason
1. All movies produced by John Sayles are wonderful.	Premise
2. John Sayles produced a movie about coal miners.	Premise
3.A movie about coal miners produced by John Sayles is wonderful.	Universal instantiation
	from $(1), (2)$
4. There is a wonderful movie about coal miners	Existential generalization
	from (3)

d) One version of the answer could be:

Step	Reason
1. There is someone in this class who has been to France.	Premise
2. Every one who goes to France visits the Louvre.	Premise
3. There is someone in this class who has visited Louvre.	Hypotheticalsyllogismfrom (1) and (3)

Exercise 1.6.28 (15) $\mathbf{7}$

Step

\mathbf{Step}	${f Reason}$
1. $\forall x(P(x) \lor Q(x))$	Given
2. $P(x) \lor Q(x)$	Universal Instantiation from (1)
3. $\forall x((\neg P(x) \land Q(x)) \to R(x))$	Given
4. $(\neg P(x) \land Q(x)) \to R(x)$	Universal Instantiation from (3)
5. $\neg R(x) \rightarrow \neg (\neg P(x) \land Q(x))$	Contrapositive of (4)
6. $\neg R(x)$	Push Premise
7. $\neg(\neg P(x) \land Q(x))$	Modus ponens using (6) and (5)
8. $\neg \neg P(x) \lor \neg Q(x)$	DeMorgan's Law (7)
9. $P(x) \lor \neg Q(x)$	Double Negation (8)
10. $P(x)$	Resolution (2) and (9)
11. $\neg R(x) \rightarrow P(x)$	Pop Premise from (6) to (10)
12. $\forall x(\neg R(x) \rightarrow P(x))$	Universal Generalization (11)

another solution using contrapositive:

Step	Reason
1. $P(x) \lor Q(x)$	Premise
2. $\neg P(x) \land Q(x) \to R(x)$	Premise
$3. \neg P(x)$	Push Premise
$4. \ Q(x)$	Modus tollens of (1) and (3)
5. $\neg P(x) \land Q(x)$	Conjunction of (3) and (4)
6. R(x)	Modus ponens of (2) and (5)
$7. \ \neg P(x) \to R(x)$	Pop Premise
8. $\neg R(x) \rightarrow P(x)$	Contrapositive

Exercise 1.7.18 (12) 8

Claim: If $n \in \mathbb{Z}$ and 3n + 2 is even, then n is even.

For now, we will take some basic facts and properties of integers as if they are given.

a) Proof by Contrapositive.

Step

1. *n* is odd 2. n + 1 is even 3. $\exists k \in \mathbb{Z}(n + 1 = 2k)$ 4. n + 1 = 2k5. 3n + 3 = 3(n + 1) = 3(2k) = 2(3k)6. $\exists m \in \mathbb{Z}(3n + 3 = 2m)$ 7. 3n + 3 is even 8. 3n + 2 is odd 9. *n* is odd $\rightarrow 3n + 2$ is odd

Reason Push Premise from (1) from (2) Existential Instantiation (3) Multiply equation in (4) by 3 Existential Generalization (5) Modus ponens using (6) and (5) from (7) Pop Premise from (1) to (8)

b) Proof by Contradiction.

Step

1. n is odd $\wedge 3n + 2$ is evenPremi2. 3n + 2 is evenSimu3. 3n is evenSimu4. n is oddSimu5. 3 is oddConju6. 3 is odd $\wedge n$ is oddConju7. $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x \text{ is odd } \wedge y \text{ is odd } \rightarrow xy \text{ is odd})$ Propert8. 3 is odd $\wedge n$ is odd $\rightarrow 3n$ is oddUnive9. 3n is even $\wedge 3n$ is oddConju10. 3n is even $\wedge 3n$ is oddConju11. $\neg(n \text{ is odd } \wedge 3n + 2 \text{ is even})$ (1) lead

Reason

Premise for Contradiction Simplification from (1) from (2) Simplification from (1) Basic Fact Conjunction of (5) and (4) Property of Z, use as a Given Universal Instatiation (7) Modus Ponens (6) and (8) Conjunction of (3) and (9) (1) leads to contradiction (10)