(Semi-)Deep Learning, Information Complexity, and Hard-to-Refute Competence

Kenneth W. Regan¹ University at Buffalo (SUNY)

UB Theory Group, 19 Sept., 2025

¹With grateful acknowledgment to co-authors—including Tamal Biswas now of RKMVERI—and UB's Center for Computational Research (CCR)

Outline

- I. Brainstorm of ingredients, motivations, and examples on whiteboard.
- II. Define concepts and present relevant facts:
 - Information (Kolmogorov) Complexity.
 - Boolean and Threshold Circuits.
 - The class $TC^0 = \bigcup_d TC_d^0$ and frontiers of lower bounds.
 - Approximation and Refutation Problems
- III. Discussion, maybe some demos, as time allows.

Kolmogorov Complexity

- Let us fix a universal "interpreter" I.
- (Technically any fixed universal Turing machine will do.)
- $K(x) = \min\{|s| : I(s) = x\}.$
- For the MNIST dataset, can distinguish K(g) for its correct labeling function g(x), from the KC of the dataset itslf.
- The time for I(s) to output x is classically not considered...
- ...which makes the function K(x) uncomputable.
- Various notions of resource-bounded information complexity...we will not specify.
- Important test case: Given an algorithm A that tries to compute function g(n), is $s_n =$ "the lexicographically first string x_n of length n such that $A(x) \neq g(x)$ " a meaningful short seed for x_n ?

Threshold Circuits

Computational Complexity Classes

Some regular languages are complete for NC^1 via even finer reductions than tc^0 reductions, and so belong to TC^0 if and only if $TC^0 = NC^1$ (which I believe true).

The "Chasm At Depth 4"

- Actually pertains to arithmetic circuits, not threshold circuits.
- But relevant since basic arithmetical operations belong to TC_3^0 , even division.
- Agrawal-Vinay 2008, Koiran 2012: **Theorem**: Any multlinear polynomial $p(x_1, \ldots, x_n)$ that is computable by arithmetic circuits of size $2^{o(n)}$ has depth-4 arithmetic circuits of size $2^{o(n)}$.

The Complexity Class Neighborhood...

