
From Java to C++

From Java to C++
CSE250 Lecture Notes Weeks 1–3

Kenneth W. Regan
University at Buffalo (SUNY)

September 20, 2010

From Java to C++

First Day

1 Fill out “Class Survey”—Weeks 1 and 2 recitations. . .
2 Go over course syllabus:

(a) Total points system, pre-set curve.
(b) Exams 50%, + up-to-5% in quizzes.
(c) Individual and group project(s), problem sets.
(d) Instructor may re-weight by 5%, e.g. drop half of bad prelim while

up-weighting good final or homework. Attendance a factor.

3 “Pep-Unpep Talk”—course is unavoidably content-full, hard work.
Only CSE C++ course. Like “Orgo” for pre-meds.

4 Hello World—Jello World?

From Java to C++

From Java to C++

1 Show JelloWorld.cpp—C++ and Java on same screen.

2 C++ and Java code look similar, but. . .

3 . . . two major differences in behavior: C++ Values versus java
References, and Method Override is Not the Default in C++.

4 To get Java behavior, need pointers and virtual.

5 New Syntax: & * -> :: << >> #

From Java to C++

C++ Values, References, and Pointers

C++ Type System

Java: primitive values, class references.

C++:
Value type T

Pointer type T*

“Alias” type T&
Prefixing const makes a new type. We will prefer pointers to
references/aliases, except for employing the type

const T&

for certain parameters and special constructors. We will use all of:

const T* xp Pointer to constant T
T* const xp Constant pointer to T

const T* const xp Const ptr to const T

From Java to C++

C++ Values, References, and Pointers

What is a Java reference?

In Java, Foo x = new Foo() creates two items:

x↓ 5004 −→ 5004 anObj .

This == what you get with the C++ declaration

Foo* x = new Foo()

In both languages, the name x is bound to an integer object whose value
is the memory address of an unnamed Foo object. Java hides this
“pointer value”; C++ doesn’t.

From Java to C++

C++ Values, References, and Pointers

C++ References are Just Aliases

C++ references are “disembodied pointers”–they don’t have the 5004
part at all.
Main operational difference from Java references: If you do

string xhost = "Jello";

string yhost = "Bello";

string& xr = xhost;

string& yr = yhost;

yr = xr;

xr[0] = ’H’;

cout << xr << " " << yr << " " << xhost << endl;

you get yr = "Jello", whereas with pointers and Java references, yr =

xr; does not copy the contents of xr. One cannot initialize a
non-constant reference to a pure value, only to the variable beign
aliased. Note that xhost is not copied, and winds up saying "Hello"

too.

From Java to C++

C++ Values, References, and Pointers

Pointers and Const

Foo y; //when value, NO (), would look like function dec.

const Foo* xpcd = new Foo();

Foo* const xcp = new Foo();

xpcd = &y; //OK

xpcd->meth(); //OK *if* meth is const!

//xcp = &y; //can’t reassign Foo* const

xcp->mutate(); //OK

And const Foo* const xcpc = new Foo(); tells the compiler that
xcpc cannot be re-assigned, and that the anonymous Foo object cannot
be modified through xcpc (though it could be modified thru a non-const
pointer, a “hole” which some newer OO languages try to fill).

[HelloConst.cpp illustrates this with strings.]

From Java to C++

C++ Values, References, and Pointers

C++ const and Java final

On primitive types they are equivalent, e.g. const double PI =

3.14159;

A Java final reference is equivalent to a C++ constant pointer,
but not a pointer to constant data.

On methods, the meanings are perpendicular:

C++ const methods can be overridden.
C++ const methods cannot modify the invoking object—at least
not its top-level fields. (“Deep Const” is a current research issue.)
(A field that is not really part of the “constant state” of the object
can be marked mutable, to allow const methods to change it!)

From Java to C++

C++ Values, References, and Pointers

Why C++?

C++ compilers are smarter than Java compilers are allowed to be.

C++ gives programmers more control over how objects are laid
out:

on the stack as values, vs. on the heap via pointers,
by user-managed memory,
by “packing” and assembly-level tricks.

C++ allows more-efficient code.

C++ has more-advanced O-O features (except that it does not yet
have Java’s template bounds).

Most working code is in C++, and will be for a long time.

From Java to C++

C++ Classes

Java to C++:

Foo x = new Foo(a,b);

Foo* xp = new Foo(a,b);

x.field, x.method();

xp->field, xp->method();

Also legal are (*xp).field, (*xp).method

Assignment:

x = y;

xp = yp; no change—

—because a Java reference assignment is overtly the same as a C++
pointer assignment.

From Java to C++

C++ Classes

Translating Java Classes

Trailing ; after class-closing brace }
extends becomes : public

public, private, and protected denote regions, not individual
items. Can alternate repeatedly. . .

No “default/package scope”—instead write
friend class Bar;

within class Foo, to enable class Bar to access internals of class Foo.
One can also declare a “global function” to be a friend—we will
reserve this almost exclusively for operators associated to classes
such as operator<< in example files LinkArg.{h,cpp}.
C++ namespaces are like Java packages, and provide a prefix to
avoid ambiguity, e.g. std::cout

Between class (or namespace) and field, C++ uses :: not Java .

From Java to C++

C++ Classes

Translating Within Classes

Put virtual before a method meth to get Java behavior—when
you call meth thru a pointer!

If meth is an accessor—i.e., cannot change the object that invokes
it—then it should have const after the method parameters.

Method code can be “inlined” like in Java, but for all but tiny
bodies, putting the method header in a Foo.h file and the body in
a separate Foo.cpp file is preferred. (Recitations next week will
focus on code files.)

Special syntax for constructors and “The Big Three”. . .

From Java to C++

C++ Classes

Constructors

C++ constructors use special initialization syntax:

struct Point { //struct => top region is public

double x, y;

Point(double x, double y) : x(x), y(y) { }

};

In Java you would write this.x = x; and this.y = y; as the first 2
lines inside the {...} of the constructor.

The C++ system attempts to default-construct all fields of a C++ class
that are NOT mentioned in the “ : ” part before the opening { is
hit—wasting time and sometimes causing havoc! So, use the “:” syntax.

From Java to C++

C++ Classes

Member Differences

Can’t initialize non-constant fields outside constructor.

Can use this->x akin to this.x in Java.

Accessor methods should—must!—have const right after their
parameters.

No keyword abstract—instead C++ marks abstract member
functions (which must be virtual) by appending = 0; to
them—nulling out their function pointers!

A class is abstract if it has an abstract method.

From Java to C++

C++ Classes

No Interfaces!?

C++ has unrestricted multiple inheritance:

class Foo: public Bar, Com, Delta {...

So one can get the effect of a concrete interface by:

class Comparable {

public:

virtual int compare(const Comparable& rhs) const = 0;

};

Note the const & parameter idiom, and the abstract method itself
being const. (No const after & is needed—const references already
can’t be on LHS of any assignment.)

From Java to C++

C++ Classes

C++ Templates Are Real Code

Java class Foo<T> {... becomes C++

template<typename T> //say class T if T should be a class

class Foo { //NOT "class Foo<T>" as in Java-->weird errors!

...

Foo(...) ... //constructors MAY do "Foo<T>", but text doesn’t

};

template<typename T> //must repeat for bodies outside class

Foo<T>::Foo(..){..} //first <T> required, second MIGHT be error!

Declarations in the body of Foo that use T should have typename in
front.

Major difference from Java: C++ generates separate object code for
Foo<Bar> and Foo<Com> etc. To save code bloat, Java erases the
template after compile time and generates just Foo.class, but you
can’t tell at runtime whether a client is Bar or Com or etc.

From Java to C++

C++ Classes

C++ Templates Are Not Real Code

If you have a template class Foo, compiler will let you put declarations
in Foo.h and bodies in Foo.cpp, and even do CC -c Foo.cpp to create
Foo.o.

However, Foo.o does not really have object code—instead, when a client
file Bar.cpp (or Main.cpp or etc.) instantiates a Foo<Bar> object, the
object code for Foo<Bar> is embedded into Bar.o (or, put in a separate
templates repository as the Sun CC compiler used to do, or etc.).

Thus Foo.o is not “real code,” so all template classes are morally
headers. More to the point:

With g++ (still) and many other compilers, linking will fail if Foo.cpp is
separate from Foo.h and only the latter is included. Hence we will
require that template bodies be in the same file, either inside or outside
the template class braces. (I’ve read that “outside” can cause another
problem, but haven’t gotten it with any compiler, and whole previous
CSE250 years were not affected.)

From Java to C++

C++ Classes

No Interface Bounds!

Java has class Foo<T extends Comparable> {... to ensure that any
valid argument Bar for T defines int Bar.compare(Comparable rhs).

C++ doesn’t do this—a proposal called “Concepts” was dropped from
next-update plans in July (2009)!

If a client Bar fails to implement Compare, a file building a Foo<Bar>

may still compile separately—leaving the fault to be found at link time.
Our g++ on timberlake seems to be more proactive. Please try the
dompare typo in the files Link*.* in .../Java2C++/ on your home
systems.

Later , we will do better by passing a function object for compare when
constructing Foo. (Cf. “COMP” at bottom of p300 in text.)

From Java to C++

C++ Classes

A Java 5 Idiom to Know

interface Comparable<T extends Comparable<T>> {

public int compare(T rhs);

}

class Bar extends Comparable<Bar> {

public int compare(Bar rhs) { ... }

...

}

class Foo<T extends Comparable<T>> { //Bar OK as T

...aMethod(T[] args) {

...if (args[i].compare(args[j]) < 0) { ... }

}...

} //generic T[] array OK as parameter in Java, can’t construct one

The difference is that if a different class Delta extends Comparable, now
you get a compile-time error if you mistakenly do bar.compare(delta),
instead of a runtime exception. Java 5 convulsed the language to
achieve this. C++ templates and linking do this, but less explicitly.

From Java to C++

Construction in C++

Constructors [slide repeated]

C++ constructors use special initialization syntax:

struct Point { //struct => top region is public

double x, y;

Point(double x, double y) : x(x), y(y) { }

};

In Java you would write this.x = x; and this.y = y; as the first 2
lines inside the {...} of the constructor.

The C++ system attempts to default-construct all fields of a C++ class
that are NOT mentioned in the “ : ” part before the opening { is
hit—wasting time and sometimes causing havoc! So, use the “:” syntax.

From Java to C++

Construction in C++

No Constructor Forwarding

Unlike in Java, a C++ constructor may not call another, not even
with the initialization syntax (as in C#).

When a class has many fields, and different constructors must be
provided, this forces ugly code duplication. . . at least of the
field-initialization syntax.

Forwarding is proposed for the next C++ revision, but it’s being
stalled by disagreement over when an object can be considered
“constructed”:

when the last (i.e., initially called) constructor exits?
when the first constructor exits?
when the initially-called constructor finishes its initialization syntax
and starts on its body (if any)? (my preference!)

From Java to C++

Construction in C++

The Big Three

Usually needed only when a class allocates memory, or when the default
field-by-field destruction/clone/copy is not the desired behavior. . .

[virtual] ~Foo(...) {...} //destructor

Foo(const Foo& rhs) {...} //copy constructor

Foo& operator=(const Foo& rhs) {...} //assignment

Defining a trivial virtual destructor in a base class Foo, namely
virtual ~Foo() { }, allows derived classes to override it.
Recommended in general.

A class can disable cloning by declaring the copy constructor and
operator= to be private.

Prime examples: C++ streams. Hence for user-created streams we
will initially follow the general use-pointers-for-objects policy.

From Java to C++

Construction in C++

Implicit Conversions

A single-argument constructor Foo(Bar bar) automatically gets
invoked when you write foo = bar; . . .

. . .unless you prevent this dangerous behavior by putting the
keyword explicit before the constructor’s declaration.

A class Foo can also define an implicit conversion the other way via:
operator Bar() const { ... return bar; }

Both kinds apply in assignments and parameter calls, but not
stream operators—see LinkArg.{h,cpp}.

From Java to C++

Construction in C++

Summary of Java2C++:

Much of the line syntax is similar, differences-as-noted.

File handling is different: {.h,.cpp}, #include, make. . .
Recitations are emphasizing this and stream I/O.

C++ has a richer type system, and the notion of value differs from
Java on non-primitive types.

And there are C++ “references,” which I prefer to call “aliases.”
They inhibit copying, provide assignment and streaming targets,
and behave like values when read from.

Class hierarchies are similar, but the Java default method behavior
requires extra work in C++ to get: virtual, pointers. . .

Templates have similar use to Java generics, but work differently
under-the-hood. . . and give beastly errors. . .

	C++ Values, References, and Pointers
	C++ Classes
	Construction in C++

