CSE305, Spring 2023 Assignment 5 Due Sun. Apr. 16, 11:59pm

The Second Prelim Exam will be on Thursday, April 27 in class period. It will cover
material cumulatively through chapter 12 of the text and assignments 1-6 (esp. 4-6).

Reading:

For this week, read Sebesta chapters 9 and 10 as one unit. Pay closest attention to sections
9.4-9.6 and the diagrams in sections 10.3-10.6 (can read 10.4-10.6 later). Also read section
11.7 on namespaces—because we are using this benefit of modules in OCaml. The previous
parts of chapter 11 should be largely review for you coming out of CSE250 or equivalent course
where the value of implementing data structures via ADTs was emphasized.

-Assignment 5, due Sun. 4/16 “midnight stretchy”

(1) The TopHat portion: 13 questions worth 1 or 2 points each, totaling 20 pts. They
are organized into one assigned document CSE305S23A5, and answers are automatically
recorded and revealed as you work through it.

The rest is to be submitted as a single PDF file via CSE Autograder, with the code in
problem (2) also submitted on timberlake via submit_cse305 CSE305ps5NN.ml.

(2) (36 pts. total)
Augment the ’a exp datatype (inside modules—here you may keep the names CE and SL
from recitations or use your own names) to include the following variants:

e Assign to represent assignments inside expressions.

e Prelnc and PostInc for pre-increment and post-increment, respectively. (Adding sup-
port for pre-decrement and post-decrement via PreDec and PostDec is optional.)

e ArrayEntry. Whereas the above will take two, respectively one, ’a exp arguments, this
one is OK to limit to a string argument for the name of the array and an int exp
argument for the index. Note the fix to the translation of arr[i] now shown on the last
page of the Thu. 3/31 notes and first page of the |Tue. 4/4 notes.

Then rewrite your translation code to handle them. Note that all three will require some
way to distinguish lvalue from rvalue in the tree—but the final stack code output does not
have these labels. You may find it expedient to add a variant LVar to distinguish [value uses
of variables, and maybe do similarly for array entries (and PreInc?). Or you may find that
bumping up pcompile to use a two-level match or extra recursion parameter may do the trick.

Using modules around the extensible datatypes is required, and the type of the stack code
entries can just be ’a token, not ’a ptoken. Please include an augmented version of the
function that converts from the *a token list output into a simple string of the stack code.

(3) (18 pts. total)

Compile the following loop code into our rudimentary stack language, using the scheme with
four stack entries and a “jmpifeq” operation (which you can use more than once) sketched
toward the end of the Thu. 4/6 lecture. State and/or diagram the semantics of how jmpifeq
changes the stack and instruction counter (IC) when the test fails, and when it succeeds.

double sum = O;
for (int i = 0; i < n; i++) { sum += arr[i]l; }


https://cse.buffalo.edu/~regan/cse305/CSE305Week8Thu.pdf
https://cse.buffalo.edu/~regan/cse305/CSE305Week9.pdf
https://cse.buffalo.edu/~regan/cse305/CSE305Week9.pdf

(4) (27 pts. total)
Consider the Ada program at left, or if you prefer, consider the C program at right, which
is completely equivalent for this question][T]

with Ada.integer_text_io; use Ada.integer_text_io;

with text_io; use text_io; #include <stdio.h>
procedure G is /*Global variablesx*/
X: integer := 2; int x = 2;
z: integer := 4; int z = 4;
function A(y: integer) return integer is int A(int y)
Xx: integer := 10; {
begin int x = 10;
return x + y + z; return x + y + z;
end A; +
function B(y,z: integer) return integer is int B(int y, int z)
begin {
X = 8; x = 8;
return A(x +y + 2); return A(x +y + 2);
end B; T
procedure M is void main()
y: integer := 1; {
z: integer := 3; int y = 1;
begin int z = 3;
put ("B(x+y,z) = "); put(B(x+y,z)); printf ("B(x+y,z) = %d ",
put(" and x = "); put(x); new_line; B(x+y,z));
end M; printf("and x = %d\n",x);
begin --of G }
M;
end G; /* end-of-file */

(a) There are three referencing environments in which the identifiers x, y, and z occur in
expressions, namely A, B, and M (or “main” in the C code). Those three blocks are nested
inside the outer block G (which corresponds to “global file scope” in the C code). For
each of the 9 occurrences of x, y, and z, say which block has the declaration that binds
that occurrencef|(9 pts. total)

(b) Trace the execution of the program, showing the sequence of stack frames and activities
including assignments going on inside them. What final values of B(x+y,z) and x are
printed? (18 pts., for 27 on the problem and 101 on the set.)

'Nowadays, not saying int main() in C gives a warning, but let’s ignore that.

2For instance, if w were declared in G and in A, and occurred in A and M, then the occurrence in A would be
called “A.w” as wour answer, while that in M would be “G.w.” You should have 9 such answers, preferably in
a 3 x 3 grid with rows labeled A, B, M and columns labeled x, y, z.



