
CSE305 Week 10: Subprograms (Sebesta chs. 9--10)
 
First, a conceptual distinction apart from the terms various PLs call subprograms:
 

• A pure function returns a value but does not change any program state.
• A procedure does not return a value, and so either changes program state or is a no-op.

 
Functions in the core part of OCaml---in particular not involving ref or arrays---are pure.  The initial 
versions of Ada also required a function to be pure.  Void "functions" in C/C++/Java are really 
procedures, since void is not a return value (unlike unit () in OCaml).  Procedures in Ada, Modula-2, 
Pascal, PL/1, etc. also do not return values.  The other possibilitiy is:
 

• A subprogram that "walks and chews gum at the same time" by both returning a value and 
altering program state.  Can be called a "function with side effects."

 
This is the chimera that "pure" languages try most to eliminate.  But not all such code is to be panned.  
Perhaps the simplest impure function is the post-increment operator in code like:
 
      item = *itr++;
 
Here itr is an iterator over a data collection, basically a "pointer object."  In C++ the * and (pre or 
post) ++ operators can be overloaded to make it use the same interface as a native pointer.  Or you 
can code a named function like itr.next() in Java, which does the same thing: it returns the current 
object and advances itr to the next object. Either way, this code is an enduring idiom.
 
 Functions "Versus" Methods
 
A method is formally just a subprogram whose first parameter has privileged access to its own fields 
and class scope.  (But that parameter doesn't know its own name, calling itself "this" or "self" or etc.) 
 There are also syntactic differences when (pointers to) methods are passed as arguments.  Beyond 
those surface differences, we can regard methods the same as other subprograms for the concepts in 
these chapters.  
 

• A purely functional method is somewhere between a "getter" (which strictly speaking just returns 
the current value of a class field) and a "const method" (which cannot change the invoking object-
--just the same as if it were a first parameter marked const---but could change other stuff).

• A purely procedural method can be much more than a "setter": it can read from the invoking 
object's state before changing it, and/or change other parameters or visible non-local variables, 
and/or create new objects on the system heap, etc. 

 
Speaking very roughly ("IMPHO"), methods are more apt than other subprograms to do both a change 
of state and give a value.   With these differences digested and put on hold, we can focus on the single 
idea of a subprogram.

 

 



 
Basic Definitions (modified from Sebesta 9.2)
 

• A subprogram definition describes the interface to and the actions of the subprogram 
abstraction.

• A subprogram declaration provides the protocol, but not the body, of the subprogram.  Also 
called a "header" or prototype (in C/C++ especially)

• In C and C++, but not Java or Python or Javascript, a function declaration can be given 
separately in main code.  (They can always be put in interfaces, likewise with signatures in 
OCaml modules.)

• Besides giving names, the header is basically the type of the function, also called the signature, 
so long as you consider the parameter passing modes part of the type.  If all parameters are 
passed by value, as in OCaml, then it is just the type.

• The order of parameters matters to the signature, unless they are all keyword parameters.
• The notion of protocol or function type is further complicated by the mechanism of allowing 

variable numbers of arguments and/or default values to some parameters.
 
In statically compiled languages, by-and-large, all subprogram prototypes must be known at compile 
time.  Whereas in Python, for instance, definitions are ordinary executable code and can be contingent 
on branching, e.g.:
 
      if cond:

         def fun1 (...) :

            ...

      else:

         def fun2 (...) :

            ...

 
Well, unless fun1 and fun2 have the same name (as the text givens it) and the same protocol, the code 
after the if-else statement could give an undefined function error.
 

• A subprogram call is an explicit request that the subprogram be executed.  It can be a separate 
statement, or---in the case of a function---can be in the middle of an expression. 

• A formal parameter is a dummy variable listed in the subprogram header and used in the 
subprogram.

• An actual parameter represents a value or address used in the subprogram call statement.  I 
agree with the "some authors" who prefer the term argument.  The arguments can be given as 
expressions, even ones like an array entry arr[i] that can produce an Lvalue.

 
Positional and Keyword Parameters, With and Without Defaults (9.2.3)
 
With positional parameters, the binding of actual parameters to formal parameters is by position: the 
first actual parameter is bound to the first formal parameter and so forth.

 

 



 
• Advantage: Safe (easily type-checked) and effective.
• Disadvantage: void what_if(int there, float are, vector<int> zillions, 
char of, set<T> parameters, int whose, string order, int is, double 

hard, int to, string remember);

 
With keyword parameters, the name of the formal parameter to which an actual parameter is to be 
bound is specified with the actual parameter---it must be used in the subprogram call.

• Advantage: Parameters can appear in any order, thereby avoiding parameter correspondence 
errors.

• Disadvantage: User must know the formal parameter’s names.  These can be hard to 
remember exactly too.

 
When positional and keyword parameters are allowed to be mixed, there is generally a rule saying all 
the positional parameters come first.  A similar rule is used when parameters may have default values.  
 
Command-line parameters are an example of treating main as an ordinary subprogram.  In C, C++, 
Java, and Javascript there is formally just one argument vector, but it can have arbitrary length.  It is 
possible to store "flags" in the vector and look them up in a way that simulates keyword parameters.  
Python and Perl and other scripting languages have basically brought this named-argument technique 
to core language level.  
 
[Show example from chess scripts.  Moral is that all three features: keyword arguments (often the 
Python abbreviation "kwargs" is used for the concept), variable number of arguments (the Java syntax 
"..." for that is often called "varargs"), and default values can combine to great effect.]
 
 
(Other) Design Issues For Subprograms (9.3, including short section 9.4)
 
Sebesta's laundry list, showing ones I'll emphasize:
 

1. Are local variables static or dynamic? 
2. Can subprogram definitions appear in other subprogram definitions? 
3. What parameter passing methods are provided?
4. Are parameter types checked?
5. If subprograms can be passed as parameters and subprograms can be nested, what is 

the referencing environment of a passed subprogram?
6. Are functional side effects allowed?
7. What types of values can be returned from functions?
8. How many values can be returned from functions?
9. Can subprograms be overloaded?
10. Can subprograms be generic?
11. If the language allows nested subprograms, are closures supported?

 

 



 
From the "modern" perspective it is IMPHO possible to give short shrift to some of these:
 

1. Generally stack-dynamic, not static.  
2. Yes, even in scripting languages.
3. Treated at length below.
4. Often yes, even if the types are inferred, but Python is an example of a language that is weaker 

in this regard.
5. Treated at length below, after covering section 10.3.
6. Themed at the beginning above.
7. Whether functions can be returned is another running theme.  If so, then basically any type; void

 is not a return type.  
8. Formally one value, but it can be a collection object.  The illusion of returning multiple values can 

come from having reference parameters and/or write-only (out mode in Ada) parameters and/or 
other side effects.

9. Yes-and-no, deferred to when we consider methods in OOP.
10. Often yes, also deferred to OOP.
11. May be picked up at the end in connection with chapter 15.

 
We have already largely covered questions 1 and 2 in section 9.4 when considering nested scopes in 
terms of chapter 5.  Section 9.6 will raise a much bigger aspect of this.  So let's move on to section 9.5.
 
 
Parameter Passing (9.5)
 
Suppose we have a subprogram called bar.  Let it have one parameter p of a general type T  (or it 
could be a pointer of type T*).  Focus for now on one storage object that is involved in the call. Call it z

. And to cover all bases, let’s suppose that there is an explicit pointer q that points at z, in other ↘

words, has z  as its value.  The picture so far looks like:↘

 

 
The exact binding address of the storage object for the parameter will depend on where its stack frame 
is allocated, but let's say it's a number beginning with 9.  Here are three main ways of treating the mode
 of the parameter---in C++ terms:
 

1. Call By Value.  C/C++/Java syntax: bar(T p).  Just the value held by z is copied into p.  
2. Call By Reference.  C++ syntax: bar(T& p).    
3. Call By Pointer.  C/C++ syntax: bar(T* p) or bar(T *p).  
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9xxxxx



In call-by-reference, just the address z  is given via p.  It is not the value "of" p but rather supersedes ↘

the 9xxxxx binding that would be given to p, so that p becomes an alias of z.  Any change made in the 
subprogram body to p is immediately reflected in z.  In call-by-pointer, the address z  does become ↘

the value of p.  Looking up the value requires an extra fetch compared to when p is an alias or when 
the value is directly given to p.  Three other modes merit special mention right away:
 

• Call By Constant Reference.  C++ syntax: bar(const T& p).  
• Call By Value-Return (Ada): bar(p: in out T).
• Call-By-Name (Algol-60): The subprogram code is run as if it used the name "z" rather than "p".  

Dicey when the actual argument is an expression, in particular an array item arr[i].
 
Ada reflected mathematical purity of the notion of how values go in and come out:

• Just read the value v of z: Ada in mode.
• Just write to p without reading what storage object is given to it: Ada out mode.
• Both: Ada in out mode, which is closest to how reference parameters work in C++.

 
The difference with call-by-value is that both the value of z and the address of z are passed but the 
latter is kept walled off from the subprogram body.  The following diagram may look more involved than 
ways this was actually implemented, but the extra copying depicted is genuine:
 

 
We will say more about differences among these modes after seeing more details about stack frames.
 
 
How Subprograms Work (10.1--10.3 after 9.1--9.4)
 
A subprogram has two footprints in the memory used for execution.  Neither affects any part of the 
system heap.
 

• The executable code belonging to the subprogram.
• Its activation frame, which in general contains the following information, not necessarily in the 

order shown:
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1. The return address is the IC value of the instruction that will be executed immediately after the 

call is finished.  (It is in the stored compiled obejct-or-machine code; it can be within a source 
line of code.)

2. The dynamic link goes to the calling frame, which is immediately underneath.  It is also called 
the control link.

3. The static link goes to the activation frame of (the most recent invocation of, in case of 
recursion) the nearest lexically enclosing scope of the subprogram's source code.

 
Under static scoping of references in the subprogram body to a non-local variable x, the chain of 
static links is followed until a frame is found where x is declared, and its value is read there.  This is 
faithful to the local referencing environment of the subprogram's text.  Under dynamic scoping, the 
chain of dynamic links is followed instead.  Because static scoping is widely presumed, the static link is 
also what's usually meant by the term access link.
 
When there are no non-local variables, and when we either talk about a pure procedure or have a 
regime where the return value is just the value left by the last instruction---which will appear naturally as 
the item left on the stack when the processing of the frame is done, we get Sebesta's simpler diagram 
in section 10.3:
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The diagram scheme also presumes that the arguments given in a subprogram call---which can be 
expressions, which can even involve other function calls---are evaluated down to values before the 
stack frame begins to be processed.  Then their values are given when the storage objects for the 
parameters are created.  Those and the initializations of the subprogram's local variables go atop the 
stack frame---intuitively because their values will be worked on next as the subprogram body is 
processed.  This is called strict evaluation of parameters in the text; I prefer the term eager evaluation
 for a better contrast with lazy evaluation.  (This used to be here but now Sebesta leaves this to the 
functional languages chapter---"lazy" applies mainly there but "eager" is quote general!)
 
Assuming strict evaluation, when a subprogram is called, the following happens:
 

1. The expressions passed as arguments are evaluated down to values.  (In case of a reference 
parameter, such as var in Scala or & syntax on the parameter in C/C++, the reault must be an 
Lvalue; in case of a pointer parameter, the "value" is the binding-address value of the pointer.)

2. A lesser issue is, in case of multiple parameters, in which order are their arguments evaluated?  
[Example EvalOrder.cpp versus EvalOrder.java shows a difference.]

3. The stack frame is allocated on the system stack, directly atop the calling frame.  It is possible 
that the subprogram's code may be "just-in-time compiled" at this moment.

4. The IC is loaded with the beginning address of the frame's code, so that execution begins.  The 
address to return to is usually made part of the frame, rather than say the IC has its own stack.

5. Processing begins on that frame---which may allocate further frames, especially in case the 
subprogram calls itself recursively.

6. On exit of the subprogram, the frame is deallocated:
(a) The storage objects for the parameters and local variables of the frame cease to exist.
(b) Any changes made to non-local variables or via the Lvalues of reference parameters have 

already occurred.
(c) Likewise any creation of objects on the system heap or changes to them have already 

happened.
(d) The IC is given the return address and the return value (if any) is propagated to the calling 

frame, whose processing then resumes.
7. But if the subprogram throws an exception Foo that is not handled within the subprogram's own 

code, stacked frames are popped destructively and mercilessly until an activation record with a 
handler for that exception is found.  If none is found, the frame for main is popped too and the 
program exits with an error.  (Sebesta puts more detail in chapter 14.)

 

 

 



Some further observations:
 

• The subprogram has a single point of entry and a single destination of exit.  
• The return value is formally regarded as a single value.  It can of course be a compound object, 

such as an array or list or tuple, but it is a single item.
 
The grand moral is:
 

Execution follows a stack discipline throughout: from evaluating expressions to executing 
loops to the macro-scale of processing subprogram calls.

 
Two Examples
 
The example in Q18 of the TopHat part of HW3 can be traced more fully as follows:
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[It was remarked that "int main()" should strictly be "int main(int argc, char** argv)" 
and that since those can be referenced inside main, they should count as parameters of main.  Fair 
point---and something similar is true of the Scala code as well (it was actually used in my Spr'22 
CSE250).  The fact that the C code as given still compiles on our machines is a laxity of the compilers.]
 
A more-complicated example:

 

 



[See remarks about Tail Recursion that were inserted into lecture at this time, at bottom.]
 
Here, incidentally, is the table of references to variables given by tracing the static links:
 

 
The fact of the static link going to the most recent invocation is consonant with why the big numbers 
"777" and "888" were not involved in the recursive computation on Prelim I:
 
let rec f ell (x,y) = match ell with

   | [] - > x + y

   | [x] - > x + y

   | x::y::rest - > x + f(y:;rest) (1,2)

 
f[5;4;3] (777,888)

         --> 5 + f[4;3] (1,2)

         --> 5 + 4 + f[3] (1,2)

         --> 5 + 4 + (x+y) where x = C.x = 3 but y = A.y = 2 

 
Here, however, there is no need to trace links: the "y = 2" is already in the stack frame for the call f[3]
(1,2).
 
 
Parameter Passing Example
 
Here is an example using call by value and call by reference in C++ notation, followed by imaging how 
it would work under call-by-name.  It has an array and a linked list made via a Node class with fields 
char ch and Node* next.
 
void testVal(int J2, int A2, Node* P2) {

   cout ≪ "Incoming values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
   J2++;

   P2 = P2->next;

   cout ≪ "Outgoing values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
}

 

 



 
int main() {

   int J1 = 0;

   int A[3] = { 30, 45, 26 };

   int A1 = A[J1];

   Node* P1 = new Node('*', new Node('%', new Node('$', NULL)));

   cout ≪ "Before Call: " ≪ J1 ≪ " " ≪ A[J1] ≪ " " ≪ P1->next->ch ≪ endl;
   test(J1,A1[J1],P1->next);

   cout ≪ "After Call: " ≪ J1 ≪ " " ≪ A[J1] ≪ " " ≪ P1->next->ch ≪ endl;
   return 0;

}

 
The status before any call:

 
[Remark: During lecture I confused myself by thinking "next" was the arrow coming down from the 
separate storage object for the P1 reference. It is the second field of the first list Node with value 5558, 
meaning it is the arrow from that node to the node with the '%' character.  So there is no off-by-one 
error and the subsequent diagrams are correct after all.  (It was a brain blip, since I did after all change 
the array part from 1-based to 0-based.)  Here is testVal again:]
 
void testVal(int J2, int A2, Node* P2) {

   cout ≪ "Incoming values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
   J2++;

   P2 = P2->next;

   cout ≪ "Outgoing values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
}

 

 



 
The Code With Call-By-Reference
 
void testRef(int& J2, int& A2, Node*& P2) {

   cout ≪ "Incoming values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
   J2++;

   P2 = P2->next;

   cout ≪ "Outgoing values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
}

 

 



 

 
 
The Unspeakable Call-By-Name
 
For the call   test(J1,A1[J1],P1->next);
 
void testName(int J2, int A2, Node* P2) {

   cout ≪ "Incoming values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
   J2++;

   P2 = P2->next;

   cout ≪ "Outgoing values: " ≪ J2 ≪ " " ≪ A2 ≪ " " ≪ P2->ch ≪ endl;
}

would compiled as if it were literally
 
void testName(int J1, int A1[J1], Node* P2) {

   cout ≪ "Incoming values: " ≪ J1 ≪ " " ≪ A1[J1] ≪ " " ≪ P1->next->ch ≪ 
endl;

   J1++;

   P1->next = P1->next->next;

   cout ≪ "Outgoing values: " ≪ J1 ≪ " " ≪ A1[J1] ≪ " " ≪ P1->next->ch ≪ 
endl;

}

 
What does Java do?
 
A common Java question is whether Java uses call-by-value or call-by-reference.  The answer is: only 
the former, but for non-primitive types this becomes call-by-pointer, which can simulate call-by-
reference!  Using this, however, requires a sharp understanding of the difference between re-assigning 
a pointer and modifying the object it points to—an issue that Java’s erasure of C++ *’s serves to blur.  A 
full example:
 

 

 



public class CallByString {

  static void put(String s) { System.out.println(x); }

  public static void modify(StringBuffer p, String q,

                                       StringBuffer r) {

    p.setCharAt(0,' '); p.setCharAt(1,' ');

    q = "changed";

    r = new StringBuffer("changed");

  }

  public static void main(String args[]) {

    StringBuffer a = new StringBuffer("unchanged");

    String b = "unchanged";

    StringBuffer c = new StringBuffer("unchanged");

    put("Pre: a = " + a + ", b = " + b + ", and c = " + c);

    modify(a,b,c);

    put("now a = " + a + ", b = " + b + ", and c = " + c);

   }

}

Pre: a = unchanged, b = unchanged, and c = unchanged

now a =   changed, b = unchanged, and c = unchanged

 
 
Passing Subprograms As Parameters (9.6)
 
Pascal allows passing whole procedures or functions as parameters to other routines. C and C++ 
achieve a similar effect by passing pointers to functions. A typical example where one wants to do this 
is where you have an array A of Items with various fields, and want to (re)sort A with different sorting 
functions on various fields. In ANSI C/C++ one can write:
 
void arraySort (Item A[],

                bool (*lessThan)(Item, Item))

{  ...

   if ( (*lessThan) (A[i]. A[j]) ) ...

   ...

}

 
This is fine for a disciplined programmer, but as you might imagine, if the “lessThan” function does 
weird assignments to global variables etc., it could get even hairier to figure out what is going on!  
Section 9.6 covers the issue of whether to determine the referencing environment of lessThan as:
 

• where it was defined (buzzword: “deep binding”);
• wherever arraySort calls it (“shallow binding”);
• where arraySort itself is called (“ad hoc binding”).

 

 



 
In any statically-scoped language, clearly only option 1 is consistent, and that could be all we need to 
say about it.  But the mechanics are still important.   
 
[The lecture ended here.   I had intended to go to Sebesta's slides to touch on a little more about 
section 9.6 and then fly over the text's remaining points in chapters 9--10.  I'd actually forgotten when 
preparing the lecture that I had missed 10-15 intended minutes on tail recursion the previous week.  I 
actually spent about 5 minutes on tail recursion during the lecture itself when expanding on the "more-
complicated example" of tracing activation frames, since it had two tail-calls without being full tail 
recursion.  Since the following also harks back to an example that discussed tail recursion in week 5, 
I've expanded that into the following "officially covered" notes.]
 
Tail Recursion Notes to Insert Above: 
 
A tail call (apart from recursion) is a line in a subprogram A of the form 
 
      return B(...)

 
where there is nothing else in the line outside the call to B but any stuff may be going on inside the 
(...).  (Or in case A is a pure procedure, its last line of code is a call to B(...), nothing else.)  The 
"more complicated example" of stack frames above has two such statements in A(y), one returning 
C(3*y) and the other calling itself recursively as A(y-1).  The first effect of a tail call to a function is 
that the return value from B immediately becomes the return value from A, so that no further use of the 
stack frame for A is needed.
 
Note that "return A(y)-1" or "return sum + A(y)" is not a tail call, because there is other 
processing in the expression outside the call and its arguments.  Put another way, B(...) is a tail call 
only if B is the root of the expression tree of what is being returned.  In these other two cases, - and + 
are the root operations.  
 
Among various levels of precision in definitions of tail recursion, I think this one works well enough in 
relevant cases:
 
Definition: Code A for a function is tail recursive if every branch of A either returns a value without 
calling any other subprogram, or is a tail call to A.  
 
The impact when the tail call is to A itself is that we don't have to allocate a new stack frome for A.  
Because the calling frame will have no further action, and because it was a frame for A to begin with, 
we can re-use it.  Furthermore, because there will be no further calls to other functions, we can 
dispense with the idea of redoing frames entirely.  A compiler can treat the whole body of A as a loop 
that exits when a non-recursive branch is taken.  This saves the whole still-relatively-expensive 
overhead of allocating frames.  

 

 

https://en.wikipedia.org/wiki/Tail_call


 
Now let us revisit the countPeaks example from toward the end of the week 5 notes with these 
considerations in mind.  
 
let rec countPeaks ell = match ell with

     [] -> 0

   | [_] -> 0

   | [_; _] -> 0

   | x::y::z::rest -> if   y > x && y > z 

                      then 1 + countPeaks(z::rest) 

                      else countPeaks (y::z::rest);;

 
This has 3 nonrecursive branches from the first three match-cases and 2 recursive branches from the 
if-then-else.  The else branch is already a tail call, but the then branch is not because of the "1 +" 
part.  There is a standard code transformation that hoists the recursive call to countPeaks to be 
highest in that branch as well.  It involves making the output value a second parameter that is 
accumulated, in what is called accumulator passing style:
 
let rec countPeaks (ell,n) = match ell with

     [] -> n   (* output not 0 but the running count n *)

   | [_] -> n

   | [_; _] -> n

   | x::y::z::rest -> if   y > x && y > z 

                      then countPeaks(z::rest, n+1) 

                      else countPeaks(y::z::rest, n);;

 
The base cases now change to output n.  The new version has one more parameter, but works the 
same overall if you call it initially with n=0.  
 
Now both branches of the if-then-else are tail calls.  Thus, this version of countPeaks satisfies my 
definition of tail recursion above.  There is, however, a "little fib" going on that is exposed when you 
follow how Assignment 4 said to process an if-then-else (or ? : ) expression under the Postfix 
conversion.  This said to evaluate the condition and both the then and else expressions first, before 
finally processing the ternary ( ? : ) node in the postorder traversal.  The enormous downside of 
following these instructions literally is that we would execute a double-branch recursion in a case that 
is not divide-and-conquer and that here would cause an exponential explosion!  
 
In reality, OCaml is able to give efficiency "as though" the if-then-else is really control where only 
one alternative is executed.  That is not how it actually behaves, though.  Instead, the compiler exploits 
a second "hoist" trick (one that, as far as I gather, is usually easier than determining the accumulator 
form) exemplified by the following version:
 

 

 



let rec countPeaks (ell,n) = match ell with

     [] -> n

   | [_] -> n

   | [_; _] -> n

   | x::y::z::rest -> countPeaks(if   y > x && y > z 

                                 then (z::rest, n+1) 

                                 else (y::z::rest, n));;

 
Now this complies with stricter definitions of tail recursion, even ones requiring there to be just one 
recursive branch.  The if-then-else expression inside the (...) does get evaluated entirely, but 
because there are no recursive calls inside it, there is no explosion.  
 
Many compilers actually allow further liberalizations of the definition.  They can allow preliminary parts 
of the body of A to call other functions, provided those functions are either non-recursive or themselves 
tail-recursive in ways the compiler can recognize.  Then the compiler can still generate a loop---one 
whose body calls those functions.  There are also cases where two or more mutually recursive 
functions are regimented enough that they would repeat the same two stack frames, so the compiler 
can convert both together into an iteration.  One case that cannot be helped, however, is if you code up 
"if-then-else" as your own ternary function:
 
let ite (a,b,c) = if a then b else c;;

 
and then rework the first version above as
 
let rec countPeaks ell = match ell with

     [] -> 0

   | [_] -> 0

   | [_; _] -> 0

   | x::y::z::rest -> ite(y > x && y > z, 

                          1 + countPeaks(z::rest), 

                          countPeaks (y::z::rest));;

 
Now the rules of OCaml require eager evaluation of all three expressions given to your ite function, 
whose body the compiler cannot presume to be able to analyze.  This actually mandates the naive way 
Assignment 4 said to evaluate the native if-then-else.  Try it---inserting a print statement before the 
match---and on a list of a dozen-plus elements, you will see the explosion.
 

 

 




