
CSE305 Week 12: New Issues in OOP

The issues stated at the end of the last lecture:

1. Is there a notion of object that is separate from the notion of class? Can one have objects
without classes?

2. Is there support for singleton objects, like Clientele in the "Customer" example?
3. Are constructor arguments distinguished as class arguments from other fields? (Scala and

OCaml: yes)
4. Are accessor features of classes distinguished in other ways? (get/set in Scala, C#)
5. Is class extension treated as specialization or as generalization? (Continuing discussion from

before spring break, we will use thuis as one "angle" on OCaml...)

These lead right away into some other issues that apply also in the older OO languages. And among
the issues listed by Sebesta, let's recall his #2 (meaning section 12.3.2) "Are Subclasses Subtypes?"
His page there is very meager and uses only the ghostly Ada for an example; OCaml will help us flesh it
out. Let's jump in.

Objects Versus Records in OCaml

An object in OCaml is just like a record---except for lots of differences. Here are thematic ones:

1A. The exact type of a record is what matters. The type has to be declared before a record of that
type can be created. The type of a record is the set of both names and types of its fields. Since
functions are first-class objects, they can be fields. Here is an example:

 type myrec = { start:int ; f: int->int ; name:string };;

 let x = { name="double" ; f = (function n -> 2*n); start=1 };;

Ocaml echoes the first line as type myrec = { start:int ; f: int->int ; name:string} and then
replies: val x : myrec = {start = 1; f = <fun>; name = "double"}. Then

 x.f(x.start);;

gives 2. Is f like a method? Really not. You can't do x.f(start), and this gives an error too:

 let z = { start=1; f=(function n->n*start); name="mulbystart" };; (*Error*)

You can define an ordinary function with a record as parameter, and OCaml will even infer the record
type as the most recent one that is applicable (well, you should really explicitly give the parameter the
desired record type):

 let g y = y.f(y.start);; (* better: let g(y:myrec) = y.f(y.start);; *)

OCaml replies val g : myrec -> int = <fun>. Now for the point of what we mean by needing the
exact type for compatibility, let's define what looks like an "extending type" of myrec:

 type otherrec = { start: int; f: int->int ; name: string; diff: float };;

 let other = { start=3; f = (function n -> n*n); name="square"; diff = -3.0 };;

 g(other);; (* Error *)

Ocaml's error reads like usual: "Error: This expression has type otherrec but an expression was
expected of type myrec." This comes back even though you can execute g(other) to have value

 Languages like Python that allow this kind of call are said to use duck typing ("if it walks like 3 = 9.
2

a duck and quacks like a duck, it counts as a duck"). Ruby is another such language.

1B. Whereas, OCaml objects obey a subtype compatibility rule. It would allow passing an object like
other to a function like g originally defined for an object type myobj that is like myrec.
Before we get into this, we note six other differences:

2. OCaml object types are encased in < ... > not { ... }. Perhaps this is to remind you that their
types obey a kind of '<' relation.

3. The fields and their names are part of the record type. But the fields in OCaml objects are not part of
the type, and in that sense have non-public visibility. You can, however, define a getter method that
returns the value of a given field---and if the field is mutable, also a setter method.

4. OCaml records provide matchable structure; OCaml objects do not.

5. An OCaml object does not need a type declaration. It may be the body of a constructor definition
that is simultaneous with defining the object---as with classes in Scala.

6. OCaml record members cannot see other fields of the same record. The best you can do is try to
define a record object recursively:

 let rec u = { start=1; f=(function n->n*u.start); name="nxstart"; diff=5.0 };;

OCaml accepts this and replies val u : otherrec = {start = 1; f = <fun>; name = "nxstart";
diff = 5.}. Weird, and I haven't seen a case where this is useful, but this works into something many
of us have seen about objects: Some languages like Python require prefixing self to access a field.
Java and C++ (etc.) do not, while Scala is midway in sometimes needing a user-defined "self"-name in
syntax like "class Foo (...) { Outer => " before the class body. OCaml uses self and calls this
"Open Recursion"---I guess by analogy to the above. (?)

7. Instead of the dot, OCaml objects use # to access fields.

https://towardsdatascience.com/duck-typing-python-7aeac97e11f8

Objects in OCaml

The official OCaml source https://v2.ocaml.org/manual/objectexamples.html leads off with classes, as
does section 18.2 of the book by Stuart Schieber used as reference before spring break. The other
reference given at the end of my Week 11 notes, https://dev.realworldocaml.org/classes.html, leads with
a nice integer stack istack example having a class, but the previous chapter---

https://dev.realworldocaml.org/objects.html

---starts with a simpler version of the same example without a class. So let's go there. (I've condensed
some lines and changed indentation.) This example shows mutability right away:

let s = object

 val mutable v = [0; 2] (* see below for general construction *)

 method pop = match v with

 | hd :: tl ->

 v <- tl;

 Some hd

 | [] -> None

 method push hd = v <- hd :: v

end;;

OCaml responds with the type of the object:

 val s : < pop : int option; push : int -> unit > = <obj>

The type does not have a given name, though you can do "type foo = " followed by that to give it a
name. It has to be a lowercase name, an issue we will "fix" by residing objects inside a module.

The pop method uses sequencing to execute a side effect on the stack, which is represented as a list
called v with top at the left. The push method has body that only executes a side effect and has return
type unit. This is in the manner of a void method in C/C++/Java but unit is more versatile. The
thing to note first is that the field v is not part of the type.

This version of a stack ADT does not raise an error for trying to pop an empty stack. You could make it
throw an exception---but where to define the exception? does it make sense as a field member of the
object? hmmm... Before we get there, let's continue with the site's examples:

https://v2.ocaml.org/manual/objectexamples.html
https://book.cs51.io/pdfs/abstraction.pdf
https://dev.realworldocaml.org/classes.html
https://dev.realworldocaml.org/objects.html

s#pop;;

- : int option = Some 0 (* stack now has just [2] *)

s#push 4;;

- : unit = () (* stack now has [4;2] *)

s#pop;;

- : int option = Some 4 (* stack back to [2] *)

Before we move on with the site's next example of giving the object a constructor, let's see the point
about type compatibility in action. Without referencing the type or any stack object at all, let's define a
function that illustrates the point about subtyping:

let iggypop(x) = if x#pop = Some 2 then "Two!" else "Not Two!";;

Ocaml says: val iggypop : < pop : int option; .. > -> string = <fun>. Again, it gives an
object type without giving the type a name. This type only specifies that there has to be a zero-
parameter pop method that returns int option. Will it work on our stack object s from a type that
defines more stuff? Unlike with the analogous record example, yes:

iggypop(s);;

This works! Anything that "pops like a duck" is compatible with the parameter x. More notable, with the
above example (either with or without doing the above three lines), if you repeat the call

iggypop(s);;

the answer comes out different. No referential transparency here. The sinfulness of this is maybe why
the official OCaml site wards off using objects in its preamble, but there's much to like. A way to
understand it is by analogy to interfaces in Java or C# or traits in Scala. In these languages, one
can write an interface/trait called "Poppable" specifying just the presence of a pop() function (returning
int or could be generic). Then the iggypop function could be written---

String iggypop(Poppable x) { return (x.pop().equals(new Integer(2)) ? "Two!" : "Not Two!"); }

---and any object whose class implements Poppable could be passed to it. OCaml infers the
interface(s) that an object can implement automatically---as was remarked also about OCaml modules
and their signature types. This is IMPHO the best way to understand traditionally what otherwise
comes off as "duck typing"---where an important difference from Python is that OCaml can tell that
things are type-safe at compile time, thus avoiding run-time errors.

Objects With Construction, and Syntax of Bodies

Again from the "RealWorldOCaml" page:

(** int list -> object of this type *)

let stack init = object

 val mutable v = init

 method pop = match v with

 | hd :: tl ->

 v <- tl;

 Some hd

 | [] -> None

 method push hd = v <- hd :: v

end;;

let s = stack [3; 2; 1];;

s#push 4;;

We can think of stack as the name of the class and the name of the constructor. But it is just an
ordinary function. Its body is an "object expression"---which is the last option in the official OCaml
grammar for expressions and which has forms like so:

Note that the last part involves braces too and has completely optional contents---what's up with that?
Except for noting that the third line says that a method invocation is an expression, let's focus on the
second line:

The braces are EBNF braces, not class curly braces like in C/C++/Java/C#/etc. The rest of the syntax--
-you need only treat lines 3 and 7 and maybe the last line as necessary---is:

https://v2.ocaml.org/manual/expr.html
https://v2.ocaml.org/manual/expr.html#object-expr

This needs some "translation from French"---as the OCaml site warns, "Note that the relationship
between object, class and type in OCaml is different than in mainstream object-oriented languages
such as Java and C++, so you shouldn’t assume that similar keywords mean the same thing."

• "virtual" means the same as abstract in Java and @abstractmethod in Python.
• "method!" means that the method must override some superclass method---well, we haven't

seen inheritance yet. Also, val! allows overriding a field and inherit! just means that the class
or object being defined has to override something it inherits.

• The initializer part exactly means extra lines of code that some constructors have to do after
initializing the class fields.

• A method with templated type variables 'a etc. has to be given a type annotation saying so.

Example: Running an Iterator on a Fixed String

[show code Swi.ml (draft, hence only in ~regan/LANGUAGES/OCAML/ on "timberlake")]

Subtypes and Compatibility.

It is OK to state the definitions intuitively and operationally before grappling with the formal definition
and its generally-useful ramifications.

https://v2.ocaml.org/manual/objectexamples.html

Definition: An object x is compatible with a type T if whenever a function f is defined with a parameter
t of type T, the call f(x) is legal.

Definition: A type S is compatible with a type T if every object of type S is compatible with T.

We may already greenlight the identification the notion of subtype with being compatible, and write S
< T if so. It should maybe be S <= T since a type is always compatible with itself, but that could
overlap other syntax. Sometimes by S < T we really mean that S is a proper subtype of T. The <
relation is not symmetric---just like the relationship of derived class to base class does not go the other
way around. Some mantras of OCaml that go with this:

• Subclass need not imply subtype.
• Classes don't have types in OCaml anyway; only their internal object has a type.
• Subset does not imply subtype either: int is not a subtype of float (the way it is in C/C++/Java

etc.)

The basic types do not have any subtype relations in OCaml, except for the identity relation: int is a
subtype of int, etc.. The only basis for the following two recursive definitions is the duck-typing of
objects shown above:

Definition: A function type C -> D is a subtype of a function type A -> B if D < B and A < C.

The mantra here is: wider arguments, narrower return. In conventional OO languages this is what
makes a legal override.

Definition: For object types S and T, we write S < T and say S is a subtype of T if for every method foo
 (or other visible member) in the type spec of T, foo is in the type spec of S by the same name, and the
type of S#foo is a subtype of the type of T#foo.

More simply put, S has everything that T has, and for each of those shared things, the version in S is
compatible with the version in T.

Example: < pop : int option; push : int -> unit > is a subtype of < pop : int option; >

That is why our stack type was compatible with the parameter of the function iggypop. Remember that
"subtype" is meant inclusively: a type is compatible with itself.

A good traditional way to understand what is going on is to pose Sebesta's question: Are subclasses
subtypes?

• On the face of it, a derived class inherits all the (fields and) methods of the base class, and only
adds "more stuff". The use of private can complicate this picture, but that's the basic idea of
why subclasses are treated as subtypes in traditional OO.

• Revisiting (at long last) the Square versus Rectangle example, the issue is that a Rectangle can

have a mutator method double_x() that doubles one of its sides, but if a call r.double_x() is
made when the Rectangle variable r holds a Square object s, this will violate the logical property
of s being a Square. The call is still type-safe, however---provided the separate x and y fields of
Rectangle were inherited without private.

• Where things get dicier is if the class defines a method like this:

class Rectange {

 ...

 bool nestedIn (Rectangle other) {

 ...body using rectangle representation ...

 }

}

class Square extends Rectangle {

 @Override??

 bool nestedIn (Square other) {

 ...body using square representation to take shortcuts...

 }

}

Now the problem is, what happens if we have a call

 r1.nestedIn(r2)

where r1 and r2 are variables of type Rectangle? The problem occurs when r1 holds a Square but
r2 only holds a Rectangle.

• Because dynamic dispatch only consults the invoking object (run-time type lookup of parameters
too could be really slow), if Square.nestedIn were taken as a legal override, it would bind that
code.

• But running that code would crash because r2 holds an object that does not have the Square-
specific elements needed for the body.

The nub is that Square.nestedIn is not a legal override because its parameter needs to be at-least-
as-wide, not at-least-as-narrow as the parameter of Rectangle.nestedIn(Rectangle). In this case it
would make sense to code Square.nestedIn(Rectangle)from the get-go. But now let's just move
things up one step in the object hierarchy to Rectangle extends Polygon. Determining whether a
rectangle is nested inside an arbitrary polygon is a nontrivial matehmatical task.

