
CSE305: Programming Languages --- Week 2 Lectures

[Tuesday's lecture first finished the Week 1 notes then reached here in its second half.]

A little more history leading into the subject of Grammars

• Early/mid 1800s: Charles Babbage and Ada Lovelace conceive Universal Computation from a
machine standpoint, mostly numerical.

• Late 1800s: mathematicians started distinguishing concrete/constructive/calculational
mathematics from general mathematics.

• Early 1900s: formalization of recursive processes that are symbolic and generative. This
employed abstract rewriting rules of strings---an idea far older.

• Bertrand Russell and Alfred Whitehead, Principia Mathematica (PM): a system by which to
compute proofs. Developed ("Ramified") Type Theory to resolve Russell's Paradox. PM is a
calculus for generating proofs of theorems...

• ...which Kurt Gödel showed in 1931 cannot capture all of mathematical truths---not in any one
effectively axiomatized system of logic.

• Early 1930s: Alonzo Church developed the (untyped) Lambda Calculus. This is really the first
programming language---it underlies (basic) Lisp (1950s). Soon came the Typed Lambda
Calculus, and later came strongly typed versions of Lisp such as Scheme.

• (Church was awarded an honorary doctorate by UB in 1990.)
• 1936: Alan Turing conceives the Turing Machine and proves it equivalent in computing power to

the lambda calculus and various other generative systems. Comes to Princeton to be
supervised by Church, obtaining his doctorate in 1938---just in time for WW II.

• 1940s: computer machine language developed.
• 1950s: successively higher-level languages conceived and designed: FORTRAN, COBOL, Algol

 (into the 1960s).
• 1950s: Noam Chomsky (still alive!) uses a simplified model of generative processes called

Context-Free Grammars to model human language. 1957 book Syntactic Structures.
• Early 1960s: Shortcomings of Chomsky's CFGs as a model of human languages emerge...
• ...but they turned out to be exactly the right backbone for programming languages.
• As systemized by John Backus and Peter Naur for Algol-60, BNF does not only define the basic

syntax, it guides the compilation process. (It does not do type-checking by itself---but the
compilation stage of doing so comes right on top of the BNF parsing stage.)

• The ML family of languages---including OCaml---not only have a rigorous type-checking system,
they have a full semantics for defining the intent of programs and making sure execution
matches it. (Example.) We will not go that far: to paraphrase a line from the musical Hamilton,
'syntax is easy; semantics is harder.' So we start with syntax.

Grammars (specifically, Context-Free Grammars)

 Chomsky’s Q: How is it that we can speak and understand sentences we’ve never heard before?
 Our Q: How can a compiler understand and translate arbitrarily-big programs that have never been
written before?

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form#History
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Syntactic_Structures
https://www.cs.princeton.edu/courses/archive/fall21/cos326/lec/06-04-operational-semantics.pdf

Secret: by generating them via inductive definitions, and the reverse process, which is parsing.

Indeed, what is IMHO remarkable is the lack of rules for units higher than a sentence. We have the
notion of "paragraph" but it is highly flexible. Newspapers keep them short, blogs try to, but some
famous novels run paragraphs for pages and pages. You may have been taught that an essay is
composed of an introduction, body, and conclusion, and there are prescribed formats of kinds of
business letters, for instance. But if you violated those higher-level rules, it wouldn't make what you
wrote unintelligible. Your boss would still get it.

What struck Noam Chomsky in the 1950s was that although different human languages have different
rules for sentences, the natures of those rules are much the same. To a (debatably) large extent, they
can be given as CFG rules. One result was an effort toward systemabstrimplification of how grammar
was taught in schools. When I was in primary school, I recall a book that had

 S → N V

The intent, rendered more accurately in BNF style as in the text, was

<sentence> ::= <noun-phrase> <verb-phrase>

That rule applies to the great majority of sentences in English--where <verb-phrase> can expand to
allow direct and indirect objects and other forms that can involve more noun phrases. Does every full
sentence follow that rule? At least every non-interrogative sentence? Think about it!

In English we can further expand:

<noun-phrase> ::= <noun> | <article> <noun>

 | <adjective> <noun-phrase>

 | <noun-phrase> <prep-phrase>

The rule <noun-phrase> ::= <adjective> <noun-phrase> allows you to put one or any number of
adjectives before a noun---with the zero option coming in if you use one of the first two rules
immediately. In "extended BNF" notation you can use square brackets to indicate optional stuff and
braces for zero-or-more (just like Kleene star), so we could write more compactly:

Whereas,
ifyou violate therulesof wordorderand phrase

structureitmay
text

be impossible
for

readersto
figure

out what youreallymeant
.or even

Yoda

Whereas, if you violate the rules of word order and phrase structure it may be

impossible for readers to figure out what you really meant .or even Yoda

<noun-phrase> ::= [<article>] {<adjective>} <noun> {<prep-phrase>}

(Actually, this is not equivalent to the above grammar---it fixes an error in the placement of articles that
actually requires having a separate variable saying the article is optional with the rule
<art-opt-noun-phrase> ::= <article> <noun-phrase> | <noun-phrase>.)

An example taking the optional article, the zero option for adjectives, and one prepositional phrase is
"the cat in the hat". We could extend it to be "the cat in the hat with a bat." It is curious that those
phrases are modifiers like adjectives are but come after the noun. We could have said, "the hat-
wearing, bat-carrying cat."

Let's just use for noun, for noun-phrase, and for adjective. The ruleN NP A

 N A N | NP → P

places no limit on the number of adjectives we can have before a noun. It might seem sensible to have
a limit like 3 or 4, but it is actually both simpler not to impose a limit, and more indicative of how we talk--
-or can talk---especially in the heat of the moment. For instance,

"You are a dirty rotten stinking lying skunk!"

This applies four times before terminating with at the word "skunk". Now French N ANP → P N NP →

has a different rule, basically so that adjectives come after the noun (but not exclusively, N N AP → P

as we'll see). Let's try insulting "Pepé Le Pew" by translating this to French on Google...

[Try the above on Google Translate. You may get some surprises, such as GT thinking that "lying"
means lying down. Change "lying" to "fibbing" or "untruthful". Then try translating the French back to
English (but if you get the word "putain" in the French, don't). See if you can get something that keeps
coming back the same when you go back and forth, so that GT's French and English agree on what is
being said.]

What English and French share is not the vocabulary or rules but the sameness of the nature of the
rules. That sameness extends to non-Indo-European languages. Isolated language communities were
found to have rules that can be modeled to a similarly large extent by CFG rules. The CFG rules don't
catch everything, but they catch a lot, and they appear to matter to our brains in a way that precedes
the meaning of the words. Chomsky's famous sentence to illustrate this is:

Colorless green ideas sleep furiously.

It makes poetic sense, despite the first two words contradicting each other, and the last two words...
Whereas, there are times when even if we completely know in advance what a speaker is going to say
we can still get uptight if we have to wait...

Key Example: Expressions.
 Expressions are a major part of every computer language. Here is an inductive definition that does
not pre-suppose any one lexical notation for expressions.

 Base: Any constant or variable is an expression.

 Ind1: If E is an expression, then applying the unary ‘–’ operator to E also gives an expression.

 Ind2: If E1 and E2 are expressions, then applying any one of the binary operators +,–,*,/ to E1 and
E2 also gives an expression.

Example: To generate E = b*b – 4*a*c, apply the rules as follows:
 E = E1 – E2 (by Ind2), where
 E1 = b * b (by Ind2 on two base exprs “b”), and
 E2 = E3 * c (by Ind2), where
 E3 = 4 * a (again by Ind2---we didn't need to use Ind1 for this expression).

This is “top-down”; a “bottom-up” derivation would start with E3 = 4 * a or with E1 = b * b.
We can re-write the above inductive definition to generate trees:

[The Tue. 2/7 lecture ended here; I will pick up with the above figure on Thu. 2/9.]

I could have made a separate syntactic category "unop" for unary operator. Then I could have
allowed unary + as well as unary - as an option. When a syntactic category is going to be derived
directly to some literal(s), whose details we might not care about so much, we regard it as a "minor
category" and don't emphasize it so much in the figure. Text: Minorcategories give lexemes.

Now we can derive b*b - 4*a*c in tree form in top-down fashion as follows (when it's clear which
node of a tree is the root, you don't need to show the stick going into it.):

EXP ::= constant variable -

EXP

binop

EXPEXP

binop ::= + | - | * | /

constant ::= any legal constant

variable ::= any legal identifier

(continued)

EXP
binop

EXPEXP

binop

EXPbinop

EXPEXP

binop

EXPbinop

EXPvariable

binop

EXPbinop

variablevariable

⟹ ⟹

⟹ ⟹

Here we combined three derivation steps to fix the last three sub-expressions to their minor syntactic
categories. Then it technically took nine more steps to substitute each minor category by a
corresponding literal. It so happened that the first two "variable" nodes went to the same literal, b, but
that is not mandatory---the other two occurrences of "variable" went to a and c, respectively. Each node
is free to derive whatever is allowed to it, regardless of what other nodes do. This is the "context-free"
idea. The final product is the expression tree for the expression b*b-4*a*c.

Note that the expression tree specified how the 4*a*c part should be grouped. It made 4*a as a
separate sub-expression, in away that expresses the intent for it to be evaluated first. That is, it groups
it as if the whole expression were b*b-(4*a)*c. If we wanted b*b-4*(a*c)instead, we would have
needed to apply the "binop" rule to the "EXP" at lower right:

binop

binop

variablevariable

binop

EXPEXP

binop

binop

variablevariable

binop

EXPbinop

EXPEXP

⟹
3

⟹
⟹

binop

binop

variablevariable

binop

binop

constant variable

variable

⟹
9

*

-

*

4

bb

a

* c

More KWR style notes: I keep circles around interior nodes of trees---which in expression trees are
always the operators---but skip them around the leaves of the trees, which are variables and constants
and maybe other keywords and punctuation. Sebesta doesn't use any circles, but the angle brackets
around the syntactic categories are almost as good.

Not just a style note, however: we can convert the expression tree into a parse tree if we keep all the
occurrences of EXP that we expanded in the tree:

binop

binop

variablevariable

binop

EXPEXP

binop

binop

variablevariable

binop

EXP binop

EXPEXP

⟹
3

⟹
⟹

binop

binop

variablevariable

binop

binopconstant

variablevariable

⟹
9

*

-

*

4bb

a

*

c

To avoid confusion with mathematical variables in expressions themselves, and identifiers that are
program variables more generally, the syntactic category (text sometimes "syntactic structure" similarly
meaning the concept not just the nonterminal) names are often called nonterminals rather than
"grammar variables." The literals---that is, the characters or strings in the leaves---are called
terminals.

In "my style", it is OK to cut out the minor nonterminals---and abbreviate any chain of one-for-one
substitutions---by a double line. So the parse tree looks a little trimmer this way:

binop

binop

variablevariable

binop

binop

constant variable

variable

EXP

EXP

EXP

EXP

EXPEXP EXP

EXP EXP

b b

-

*

*

*

4 a

c

EXP

EXP

EXP

EXP

EXPEXP EXP

EXP EXP
b b

-

*

*

*

4 a

c

This also makes it clearer that if you roll up the leaf terminals into their parent nodes, you get the
original expression tree back again.

CFG and BNF

We can express the basis and inductive rules for building up our expressions in a much more compact
symbolic form like so (I've distinguished terminal symbols in orange bold):

 <expr> ::= <constant> | <variable> | -<expr> | <expr> <binop> <expr>
 <binop> ::= + | - | * | /

Here the “::=” symbol (is read “can be a”, and the “|” is read “or a”. This is called a context-free
grammar (CFG) in Backus-Naur form, or BNF grammar for short. CFG notation tends to use capital
letters for nonterminals and arrows → rather than ::=. KWR style: I find it cleaner to use CFG caps for
the major syntactic categories and angle brackets for the minor ones. One reason is that you often
want to treat a minor item as if it were a terminal, without fussing over how to expand it (so the angle
brackets come to mean "not expanded further"). Hence I will tend to write grammars in this hybrid style:

 EXP ::= <constant> | <variable> | -EXP | EXP <binop> EXP
 <binop> ::= + | - | * | /

Applying these rules creates derivations typified by the expression above.

EXP ⟹ EXP <binop> EXP

 ⟹ EXP <binop> EXP <binop> EXP

 ⟹ b <binop> EXP <binop> EXP
 ⟹ b * EXP <binop> EXP
 ⟹ b * b - EXP
 ⟹ b * b - EXP <binop> EXP
 ⟹ b * b - EXP <binop> EXP <binop> EXP
 ⟹ b * b - 4 <binop> EXP <binop> EXP
 ⟹ b * b - 4 * EXP <binop> EXP
 ⟹ b * b - 4 * a <binop> EXP
 ⟹ b * b - 4 * a * EXP
 ⟹ b * b - 4 * a * c

(Here we availed the shortcut of skipping <constant> or <variable>.) Every line in this derivation is
a legal sentential form from the starting EXP nonterminal. The above is a leftmost derivation. We
can also do the corresponding rightmost derivation.

EXP ⟹ EXP <binop> EXP

 ⟹ EXP <binop> EXP <binop> EXP

 ⟹ EXP <binop> EXP <binop> EXP <binop> EXP

 ⟹ EXP <binop> EXP <binop> EXP <binop> c

 ⟹ EXP <binop> EXP <binop> EXP * c

 ⟹ EXP <binop> EXP <binop> a * c

 ⟹ EXP <binop> EXP * a * c

 ⟹ EXP <binop> 4 * a * c

 ⟹ EXP - 4 * a * c

 ⟹ EXP <binop> EXP - 4 * a * c

 ⟹ EXP <binop> b - 4 * a * c

 ⟹^2 b * b - 4 * a * c

However, programming language references have gravitated toward using neither of these styles.
Instead they use italics for syntactic categories in a way pioneered by Brian Kernighan and Dennis
Ritchie's brilliantly economical book The C Programming Language. Here is OCaml using it. Well,
what they call "BNF-like" notation includes the square brackets [...] for "optional" and braces {...} for
"zero or more", which Sebesta calls "EBNF" for "extended BNF". Other common EBNF styles use a
subscript _opt for optional elements and/or a superscript star * (called "Kleene star") to mean zero-or-
more repetitions of an element in braces (or parens or other brackets), with a superscript + meaning
one-or-more. With EBNF, you have to distinguish when brackets or braces or * or + are literal terminal
symbols, or when they are the "meta-symbols" of EBNF. A third extension allowed by EBNF is "internal
choices" exemplified by (FOO | BAR), where the parentheses and | are "meta" and one of FOO or BAR
must be substituted.

The actual OCaml grammar for expressions includes a lot more rules and syntactic categories. Let's
take a look. (Magnifying the page is needed to tell some of the brown terminals from the EBNF meta-
symbols left in black.) This subset of the rules should look fairly familiar. In place of <variable>,
OCaml has <value-path>, which allows for paths thru modules and is otherwise a <value-name>,
which in turn enforces that regular variables begin with a lowercase letter.

 EXP ::= <value-path> | <constant> | (EXP) | begin EXP end

 | EXP , EXP . { }+

 | <prefix-symbol> EXP | -EXP | -.EXP
 | EXP <infix-op> EXP

 | if EXP then EXP [else EXP]

 | while EXP do EXP done

 | for <value-name> = EXP (to | downto) EXP do EXP done

 | EXP ; EXP
 | let [rec] VPAT = EXP { and VPAT = EXP } in EXP

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://v2.ocaml.org/manual/language.html
https://v2.ocaml.org/manual/expr.html
https://v2.ocaml.org/manual/expr.html

This is almost self-contained: VPAT adds a few extra value-name options to PAT which is a major
separate syntactic category of OCaml. We will encounter the aspects of PAT used in pattern matching
next week. The pleasant surprise for me is how close this is to basic expression examples. It is also
hugely ambiguous---we'll cover this next week---and thereby hangs a tall tale: this is not the actual
grammar used by any OCaml compiler. It is a "human reference grammar."

Here are some interesting points to note:

• Putting any expression inside literal parentheses makes it an "atomic unit" just like any variable
or constant. (We'll see why this matters when covering precedence next week.)

• The begin ... end form is equivalent to parentheses but looks better using indentation with
compound expressions that span multiple lines of code.

• That's right: if-then-else "statements" and the "while" and "for" kinds of looping "statements" are
expressions in OCaml. Their value is the if/else branch taken or the yield of the last expression
executed as the loop exits. Scala behaves the same way.

• OCaml classes unary minus (in both integer and floating-point forms) apart from other prefix
operators. This resolves a potential clash with binary minus. Standard ML avoided such a clash
by making unary minus a separate symbol: the tilde ~.

• An expression returning (), which is called "unit", is intended to act like a statement. The () is
classed as both a constant and a basic "type constructor" (alongside [] which is the only way to

write the empty list---there is no keyword nil as in Standard ML or Nil as in Scala). In both
ways, "unit" is like "void" in C/C++/Java, but it is more versatile.

• OCaml has two ways to sequence expressions: comma or semicolon. The ; is the time-
sequential operator and works like the "comma operator" in C/C++: its value is the value of the
last expression in the chain. You will get a warning if the previous expressions return anything
other than unit.

• The comma works like in Python: it forms tuples. You can enclose the tuple in parentheses by
doing, say, EXP ⟹ (EXP) ⟹ (EXP, EXP, EXP) but this is optional. It is curious that the
OCaml grammar provides EXP ::= EXP;EXP but not EXP ::= EXP,EXP as a rule, since the

latter could be iterated to have the same effect as EXP ::= EXP , EXP . The official rule { }+

may intend its use of EBNF braces to signify that an unambiguous BNF list form is intended,
whereas the EXP ::= EXP;EXP rule is ambiguous from the get-go.

• The EBNF square brackets in if EXP then EXP [else EXP] signify that having an "else"
branch is optional. This is a difference from Standard ML where the "else" branch is required---
as is the ":" part of the if-then-else expression (foo ? bar1 : bar2) in C/C++/Java.

• The EBNF required-choice notation shows up in (to | downto) of the for-loop. It would not be
cricket to write this as [down]to because that would be splitting up a keyword.

Now let's see a different way of doing expressions---just the numerical part again---that is typical of
"reference grammars" for C/C++/Java syntax.

 E ::= E2 <assignment_op> E | E2 //assignment is right-associative

 E2 ::= E2 <binop> E3 | E3 //binops are left-associative

 E3 ::= +E3 | -E3 | ++P | --P | E4

 E4 ::= P++ | P-- | P

 P ::= (E) | <constant> | <variable> (etc.)

 <assignment_op> ::= = | += | -= (etc.)

 <binop> ::= == | != | + | - | * | / (etc.)

[The Thursday 2/9 lecture ended here; Tuesday 2/14 will pick up here, then go to week 3 notes.]

Yes, assignment statements are classed as expressions that return values in these languages too.
That is technically needed to support "multiple assignments" like x = y = 3; (though apart from
speed-critical code, this is dubious). The grammar spells out the allowed unary operators rather than
have a syntactic category for them. This includes separate lines for pre- and post- increment and
decrement. Here is a simple challenge:

1. Can we derive a legal Java expression that has the substring "++ + ++" in it (noting the
whitespace around the binary +)?

Yes: here is the derivation:

 E ==> E2 ==> E2 BINOP E3 ==> E3 BINOP E3

 ==> E4 BINOP E3 ==> P++ BINOP E3 ==>^2 x++ BINOP E3 ==> x++ + E3

 ==> x++ + ++P ==>^2 x++ + ++y

