
CSE305: Programming Languages --- Week 2 Lectures
 
[Tuesday's lecture first finished the Week 1 notes then reached here in its second half.]
 
A little more history leading into the subject of Grammars

• Early/mid 1800s: Charles Babbage and Ada Lovelace conceive Universal Computation from a 
machine standpoint, mostly numerical.  

• Late 1800s: mathematicians started distinguishing concrete/constructive/calculational 
mathematics from general mathematics.

• Early 1900s: formalization of recursive processes that are symbolic and generative.  This 
employed abstract rewriting rules of strings---an idea far older.

• Bertrand Russell and Alfred Whitehead, Principia Mathematica (PM): a system by which to 
compute proofs.  Developed ("Ramified") Type Theory to resolve Russell's Paradox.  PM is a 
calculus for generating proofs of theorems...

• ...which Kurt Gödel showed in 1931 cannot capture all of mathematical truths---not in any one 
effectively axiomatized system of logic.

• Early 1930s: Alonzo Church developed the (untyped) Lambda Calculus.  This is really the first 
programming language---it underlies (basic) Lisp (1950s).  Soon came the Typed Lambda 
Calculus, and later came strongly typed versions of Lisp such as Scheme.

• (Church was awarded an honorary doctorate by UB in 1990.)
• 1936: Alan Turing conceives the Turing Machine and proves it equivalent in computing power to 

the lambda calculus and various other generative systems.  Comes to Princeton to be 
supervised by Church, obtaining his doctorate in 1938---just in time for WW II.

• 1940s: computer machine language developed.
• 1950s: successively higher-level languages conceived and designed: FORTRAN, COBOL, Algol

 (into the 1960s).
• 1950s: Noam Chomsky (still alive!) uses a simplified model of generative processes called 

Context-Free Grammars to model human language.  1957 book Syntactic Structures.
• Early 1960s: Shortcomings of Chomsky's CFGs as a model of human languages emerge...
• ...but they turned out to be exactly the right backbone for programming languages.
• As systemized by John Backus and Peter Naur for Algol-60, BNF does not only define the basic 

syntax, it guides the compilation process.  (It does not do type-checking by itself---but the 
compilation stage of doing so comes right on top of the BNF parsing stage.)

• The ML family of languages---including OCaml---not only have a rigorous type-checking system, 
they have a full semantics for defining the intent of programs and making sure execution 
matches it.  (Example.)  We will not go that far: to paraphrase a line from the musical Hamilton, 
'syntax is easy; semantics is harder.'  So we start with syntax.

 
Grammars (specifically, Context-Free Grammars)
 
  Chomsky’s Q: How is it that we can speak and understand sentences we’ve never heard before?
  Our Q: How can a compiler understand and translate arbitrarily-big programs that have never been 
written before?

 

 

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form#History
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Syntactic_Structures
https://www.cs.princeton.edu/courses/archive/fall21/cos326/lec/06-04-operational-semantics.pdf


 
Secret: by generating them via inductive definitions,  and the reverse process, which is parsing.
 
Indeed, what is IMHO remarkable is the lack of rules for units higher than a sentence.  We have the 
notion of "paragraph" but it is highly flexible.  Newspapers keep them short, blogs try to, but some 
famous novels run paragraphs for pages and pages.  You may have been taught that an essay is 
composed of an introduction, body, and conclusion, and there are prescribed formats of kinds of 
business letters, for instance.  But if you violated those higher-level rules, it wouldn't make what you 
wrote unintelligible.  Your boss would still get it.
 

 
What struck Noam Chomsky in the 1950s was that although different human languages have different 
rules for sentences, the natures of those rules are much the same.  To a (debatably) large extent, they 
can be given as CFG rules.  One result was an effort toward systemabstrimplification of how grammar 
was taught in schools.  When I was in primary school, I recall a book that had
 

 S  →   N V
 
The intent, rendered more accurately in BNF style as in the text, was
 
<sentence>  ::=  <noun-phrase> <verb-phrase>

 
That rule applies to the great majority of sentences in English--where <verb-phrase> can expand to 
allow direct and indirect objects and other forms that can involve more noun phrases.  Does every full 
sentence follow that rule?  At least every non-interrogative sentence?  Think about it!  
 
In English we can further expand:
 
<noun-phrase> ::=  <noun>  |  <article> <noun>        

                           |  <adjective> <noun-phrase>  

                           |  <noun-phrase> <prep-phrase>

 
The rule <noun-phrase> ::= <adjective> <noun-phrase> allows you to put one or any number of 
adjectives before a noun---with the zero option coming in if you use one of the first two rules 
immediately.  In "extended BNF" notation you can use square brackets to indicate optional stuff and 
braces for zero-or-more (just like Kleene star), so we could write more compactly:
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<noun-phrase>  ::=  [<article>] {<adjective>} <noun> {<prep-phrase>}

 
(Actually, this is not equivalent to the above grammar---it fixes an error in the placement of articles that 
actually requires having a separate variable saying the article is optional with the rule
<art-opt-noun-phrase> ::= <article> <noun-phrase>  |  <noun-phrase>.)
 
An example taking the optional article, the zero option for adjectives, and one prepositional phrase is 
"the cat in the hat".  We could extend it to be "the cat in the hat with a bat."  It is curious that those 
phrases are modifiers like adjectives are but come after the noun.  We could have said, "the hat-
wearing, bat-carrying cat."  
 
Let's just use  for noun,  for noun-phrase, and  for adjective.  The ruleN NP A

 
 N    A N   |  NP → P

 
places no limit on the number of adjectives we can have before a noun.  It might seem sensible to have 
a limit like 3 or 4, but it is actually both simpler not to impose a limit, and more indicative of how we talk--
-or can talk---especially in the heat of the moment.  For instance,
 

"You are a dirty rotten stinking lying skunk!"
 
This applies  four times before terminating with  at the word "skunk".  Now French N ANP → P N NP →

has a different rule, basically  so that adjectives come after the noun (but not exclusively, N   N  AP → P

as we'll see).  Let's try insulting "Pepé Le Pew" by translating this to French on Google...
 
[Try the above on Google Translate.  You may get some surprises, such as GT thinking that "lying" 
means lying down.  Change "lying" to "fibbing" or "untruthful".  Then try translating the French back to 
English (but if you get the word "putain" in the French, don't).  See if you can get something that keeps 
coming back the same when you go back and forth, so that GT's French and English agree on what is 
being said.]
 
What English and French share is not the vocabulary or rules but the sameness of the nature of the 
rules.  That sameness extends to non-Indo-European languages.  Isolated language communities were 
found to have rules that can be modeled to a similarly large extent by CFG rules.  The CFG rules don't 
catch everything, but they catch a lot, and they appear to matter to our brains in a way that precedes 
the meaning of the words.  Chomsky's famous sentence to illustrate this is:
 

Colorless green ideas sleep furiously.  
 
 
It makes poetic sense, despite the first two words contradicting each other, and the last two words...  
Whereas, there are times when even if we completely know in advance what a speaker is going to say 
we can still get uptight if we have to wait...

 

 



 
Key Example: Expressions.
  Expressions are a major part of every computer language.  Here is an inductive definition that does 
not pre-suppose any one lexical notation for expressions.
 
   Base: Any constant or variable is an expression.
 
   Ind1: If E is an expression, then applying the unary ‘–’ operator to E also gives an expression.
 
   Ind2: If E1 and E2 are expressions, then applying any one of the binary operators +,–,*,/ to E1 and 
E2 also gives an expression.
 
Example: To generate E = b*b – 4*a*c, apply the rules as follows:
  E = E1 – E2   (by Ind2), where
  E1 = b * b  (by Ind2 on two base exprs “b”), and
  E2 = E3 * c   (by Ind2), where
  E3 = 4 * a   (again by Ind2---we didn't need to use Ind1 for this expression).
 
This is “top-down”; a “bottom-up” derivation would start with E3 = 4 * a or with E1 = b * b.
We can re-write the above inductive definition to generate trees: 

[The Tue. 2/7 lecture ended here; I will pick up with the above figure on Thu. 2/9.]
 
I could have made a separate syntactic category "unop" for unary operator.  Then I could have 
allowed unary + as well as unary - as an option.  When a syntactic category is going to be derived 
directly to some literal(s), whose details we might not care about so much, we regard it as a "minor 
category" and don't emphasize it so much in the figure.  Text: Minorcategories give lexemes.
 
Now we can derive b*b - 4*a*c in tree form in top-down fashion as follows (when it's clear which 
node of a tree is the root, you don't need to show the stick going into it.):

 

 

EXP         ::=  constant variable -
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binop

EXPEXP

binop ::=  + | - | * | /

constant ::=  any legal constant

variable ::=  any legal identifier



 

(continued)   
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Here we combined three derivation steps to fix the last three sub-expressions to their minor syntactic 
categories.  Then it technically took nine more steps to substitute each minor category by a 
corresponding literal.  It so happened that the first two "variable" nodes went to the same literal, b, but 
that is not mandatory---the other two occurrences of "variable" went to a and c, respectively. Each node 
is free to derive whatever is allowed to it, regardless of what other nodes do.  This is the "context-free" 
idea.  The final product is the expression tree for the expression b*b-4*a*c.
 
Note that the expression tree specified how the 4*a*c part should be grouped.  It made 4*a as a 
separate sub-expression, in away that expresses the intent for it to be evaluated first.  That is, it groups 
it as if the whole expression were b*b-(4*a)*c.  If we wanted b*b-4*(a*c)instead, we would have 
needed to apply the "binop" rule to the "EXP" at lower right:
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More KWR style notes: I keep circles around interior nodes of trees---which in expression trees are 
always the operators---but skip them around the leaves of the trees, which are variables and constants 
and maybe other keywords and punctuation.  Sebesta doesn't use any circles, but the angle brackets 
around the syntactic categories are almost as good. 
 
Not just a style note, however: we can convert the expression tree into a parse tree if we keep all the 
occurrences of EXP that we expanded in the tree:
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To avoid confusion with mathematical variables in expressions themselves, and identifiers that are 
program variables more generally, the syntactic category (text sometimes "syntactic structure" similarly 
meaning the concept not just the nonterminal) names are often called nonterminals rather than 
"grammar variables."  The literals---that is, the characters or strings in the leaves---are called 
terminals.  
 
In "my style", it is OK to cut out the minor nonterminals---and abbreviate any chain of one-for-one 
substitutions---by a double line.  So the parse tree looks a little trimmer this way:
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This also makes it clearer that if you roll up the leaf terminals into their parent nodes, you get the 
original expression tree back again.
 
 
CFG and BNF
 
We can express the basis and inductive rules for building up our expressions in a much more compact 
symbolic form like so (I've distinguished terminal symbols in orange bold):
 

    <expr>  ::=   <constant>  |  <variable>  |  -<expr>  |  <expr> <binop> <expr>
    <binop>  ::=  + | - | * | /
 
Here the “::=” symbol (is read “can be a”, and the “|” is read “or a”.  This is called a context-free 
grammar (CFG) in Backus-Naur form, or BNF grammar for short.  CFG notation tends to use capital 
letters for nonterminals and arrows → rather than ::=.  KWR style: I find it cleaner to use CFG caps for 
the major syntactic categories and angle brackets for the minor ones.  One reason is that you often 
want to treat a minor item as if it were a terminal, without fussing over how to expand it (so the angle 
brackets come to mean "not expanded further").  Hence I will tend to write grammars in this hybrid style:
 

    EXP      ::=   <constant>  |  <variable>   |   -EXP   |   EXP <binop> EXP
    <binop>  ::=  + | - | * | /
 
Applying these rules creates derivations typified by the expression above.
 
EXP ⟹ EXP <binop> EXP 

    ⟹ EXP <binop> EXP <binop> EXP 

      ⟹ b <binop> EXP <binop> EXP
      ⟹ b * EXP <binop> EXP
      ⟹ b * b - EXP
      ⟹ b * b - EXP <binop> EXP
      ⟹ b * b - EXP <binop> EXP <binop> EXP
      ⟹ b * b - 4 <binop> EXP <binop> EXP
      ⟹ b * b - 4 * EXP <binop> EXP
      ⟹ b * b - 4 * a <binop> EXP
      ⟹ b * b - 4 * a * EXP
      ⟹ b * b - 4 * a * c
 
(Here we availed the shortcut of skipping <constant> or <variable>.)  Every line in this derivation is 
a legal sentential form from the starting EXP nonterminal.  The above is a leftmost derivation.  We 
can also do the corresponding rightmost derivation.
 

 

 



EXP ⟹ EXP <binop> EXP 

    ⟹ EXP <binop> EXP <binop> EXP 

    ⟹ EXP <binop> EXP <binop> EXP <binop> EXP

    ⟹ EXP <binop> EXP <binop> EXP <binop> c

    ⟹ EXP <binop> EXP <binop> EXP * c

    ⟹ EXP <binop> EXP <binop> a * c

    ⟹ EXP <binop> EXP * a * c

    ⟹ EXP <binop> 4 * a * c

    ⟹ EXP - 4 * a * c

    ⟹ EXP <binop> EXP - 4 * a * c

    ⟹ EXP <binop> b - 4 * a * c

    ⟹^2 b * b - 4 * a * c

  
However, programming language references have gravitated toward using neither of these styles.  
Instead they use italics for syntactic categories in a way pioneered by Brian Kernighan and Dennis 
Ritchie's brilliantly economical book The C Programming Language.  Here is OCaml using it.  Well, 
what they call "BNF-like" notation includes the square brackets [...] for "optional" and braces {...} for 
"zero or more", which Sebesta calls "EBNF" for "extended BNF".  Other common EBNF styles use a 
subscript _opt for optional elements and/or a superscript star * (called "Kleene star") to mean zero-or-
more repetitions of an element in braces (or parens or other brackets), with a superscript + meaning 
one-or-more.  With EBNF, you have to distinguish when brackets or braces or * or + are literal terminal 
symbols, or when they are the "meta-symbols" of EBNF.  A third extension allowed by EBNF is "internal 
choices" exemplified by (FOO | BAR), where the parentheses and | are "meta" and one of FOO or BAR 
must be substituted.
 
The actual OCaml grammar for expressions includes a lot more rules and syntactic categories.  Let's 
take a look.  (Magnifying the page is needed to tell some of the brown terminals from the EBNF meta-
symbols left in black.)  This subset of the rules should look fairly familiar.  In place of <variable>, 
OCaml has <value-path>, which allows for paths thru modules and is otherwise a <value-name>, 
which in turn enforces that regular variables begin with a lowercase letter.  
 

      EXP  ::=  <value-path>  |  <constant>  |  (EXP)  |  begin EXP end

            |   EXP  , EXP .  { }+

            |   <prefix-symbol> EXP  |  -EXP  |  -.EXP
            |   EXP <infix-op> EXP

            |   if EXP then EXP [else EXP]

            |   while EXP do EXP done

            |   for <value-name> = EXP (to | downto) EXP do EXP done

            |   EXP ; EXP
            |   let [rec] VPAT = EXP { and VPAT = EXP } in EXP 

 

 

 

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://v2.ocaml.org/manual/language.html
https://v2.ocaml.org/manual/expr.html
https://v2.ocaml.org/manual/expr.html


 
This is almost self-contained: VPAT adds a few extra value-name options to PAT which is a major 
separate syntactic category of OCaml.  We will encounter the aspects of PAT used in pattern matching 
next week.  The pleasant surprise for me is how close this is to basic expression examples.  It is also 
hugely ambiguous---we'll cover this next week---and thereby hangs a tall tale: this is not the actual 
grammar used by any OCaml compiler.  It is a "human reference grammar."   
 
Here are some interesting points to note:
 

• Putting any expression inside literal parentheses makes it an "atomic unit" just like any variable 
or constant.  (We'll see why this matters when covering precedence next week.) 

• The begin ... end form is equivalent to parentheses but looks better using indentation with 
compound expressions that span multiple lines of code.

• That's right: if-then-else "statements" and the "while" and "for" kinds of looping "statements" are 
expressions in OCaml.  Their value is the if/else branch taken or the yield of the last expression 
executed as the loop exits.  Scala behaves the same way.

• OCaml classes unary minus (in both integer and floating-point forms) apart from other prefix 
operators.  This resolves a potential clash with binary minus.  Standard ML avoided such a clash 
by making unary minus a separate symbol: the tilde ~.

• An expression returning (), which is called "unit", is intended to act like a statement.  The () is 
classed as both a constant and a basic "type constructor" (alongside [] which is the only way to 

write the empty list---there is no keyword nil as in Standard ML or Nil as in Scala).  In both 
ways, "unit" is like "void" in C/C++/Java, but it is more versatile.

• OCaml has two ways to sequence expressions: comma or semicolon.  The ; is the time-
sequential operator and works like the "comma operator" in C/C++: its value is the value of the 
last expression in the chain.  You will get a warning if the previous expressions return anything 
other than unit.  

• The comma works like in Python: it forms tuples.  You can enclose the tuple in parentheses by 
doing, say, EXP ⟹ (EXP) ⟹ (EXP, EXP, EXP) but this is optional.  It is curious that the 
OCaml grammar provides EXP ::= EXP;EXP but not EXP ::= EXP,EXP as a rule, since the 

latter could be iterated to have the same effect as EXP ::= EXP  , EXP .  The official rule { }+

may intend its use of EBNF braces to signify that an unambiguous BNF list form is intended, 
whereas the EXP ::= EXP;EXP rule is ambiguous from the get-go.

• The EBNF square brackets in if EXP then EXP [else EXP] signify that having an "else" 
branch is optional.  This is a difference from Standard ML where the "else" branch is required---
as is the ":" part of the if-then-else expression (foo ? bar1 : bar2) in C/C++/Java.

• The EBNF required-choice notation shows up in (to | downto) of the for-loop.  It would not be 
cricket to write this as [down]to because that would be splitting up a keyword. 

 
Now let's see a different way of doing expressions---just the numerical part again---that is typical of 
"reference grammars" for C/C++/Java syntax.

 

 



 
    E   ::=  E2 <assignment_op> E | E2         //assignment is right-associative

    E2  ::=  E2 <binop> E3 | E3                //binops are left-associative

    E3  ::=  +E3 | -E3 | ++P | --P | E4

    E4  ::=  P++ | P-- | P

    P   ::=  (E) | <constant> | <variable>   (etc.)

    <assignment_op> ::= = | += | -=   (etc.)

    <binop>  ::=  == | != | + | - | * | /   (etc.)

 
[The Thursday 2/9 lecture ended here; Tuesday 2/14 will pick up here, then go to week 3 notes.]
 
Yes, assignment statements are classed as expressions that return values in these languages too.  
That is technically needed to support "multiple assignments" like x = y = 3; (though apart from 
speed-critical code, this is dubious).  The grammar spells out the allowed unary operators rather than 
have a syntactic category for them.  This includes separate lines for pre- and post- increment and 
decrement.  Here is a simple challenge:
 

1. Can we derive a legal Java expression that has the substring "++ + ++" in it (noting the 
whitespace around the binary +)?  

 
Yes: here is the derivation:
 
      E ==> E2 ==> E2 BINOP E3 ==> E3 BINOP E3

        ==> E4 BINOP E3 ==> P++ BINOP E3 ==>^2 x++ BINOP E3 ==> x++ + E3

        ==> x++ + ++P ==>^2 x++ + ++y

 

 




