
CSE305: Programming Languages Week 3
 
Grammars, Derivations, and Ambiguity
 
First, a blast of formal definitions that the text stops short of giving:
 
Definition: A context-free grammar (in BNF notation) has a set  of nonterminals (also called V

grammar variables), a set  of terminals (that is disjoint from ), and a set  of rules of the formT V R
 

A ::=  X
 
where  is a single nonterminal and  is a string of terminals and nonterminals. If  is just a single A X X

nonterminal (or single char or token), then  is a unit rule.  In extended BNF (EBNF, but often A ::=  X

just called BNF),  may include the "EBNF metachar" constructsX

•  meaning that the  part is optional; some notations write  instead.Y[ ] Y Yopt

•  meaning that the  part may be used 0 or more times (which includes its being optional); Y{ } Y

some EBNF notations write  for this.Y{ }*

•  meaning  may be used 1 or more times (so not optional), andY{ }+ Y

•  meaning either  or  may be used---must use one and can't use both.Y | Z( ) Y Z
 
Definition: A derivation in a BNF grammar is a sequence
 

A ⟹  Z  ⟹  Z  ⟹  ⋯  ⟹  Z1 2 k

 
where  means that there is a nonterminal  inside  and a rule  such that Z  ⟹  Zi j A Zi A ::=  X

substituting  for  inside  gives exactly .  If  has EBNF metachars, then first resolve them to X A Zi Zj X

say exactly what conforming rule  is actually used, and then substitute  for .  We say that A ::=  X' X' A

 derives  in  steps.  By convention,  derives itself in 0 steps, so we can write  to A Zk k A A ⟹  Z*

mean that  derives  in some number (i.e., zero or more) of steps.A Z
 
If  is considered the start symbol of the grammar (typically the syntactic category "compilation unit" for A
a whole programmijng language, but can be "EXP" or "TYPE" or "PAT" for what we're focusing on now), 
then each  can be called a sentiential form.  If  is all terminals, it is the yield of the derivation.Zi Zk

 
Definition: A parse tree  is a tree, each of whose internal nodes (i.e., non-leaf nodes) is labeled with T

a single nonterminal , and whose children are labeled with the individual chars (or tokens) of a rule A

.  The yield of  is the sequence of terminals in its leaves reading left-to-right.  A ::=  X T
 
Note that a subtree of a parse tree from any internal node is also a parse tree, whose yield is a 
substring of the overall tree's yield.  Various conventions can be applied, such as shortcutting chains of 
unit-rule applications like EXP ⟹ <variable> ⟹ foo into a single step, or leaving some nonterminals 
unexpanded, treating them as if they were leaves.

 

 



 
Definition: A derivation is leftmost if in every step , the leftmost nonterminal in  is Z  ⟹  Zi j Zi

expanded.  It is rightmost if in every step, the rightmost nonterminal gets expanded.
 
Fact: Every derivation builds a unique parse tree, but multiple derivations can build the same parse 
tree.  However, every parse tree gives a unique leftmost derivation by doing a left-to-right preorder 
transversal of the tree.  It also gives a unique rightmost derivation by doing the transversal right-to-left 
instead.
 
Definition: A terminal string (or more generally, a sentential form)  is ambiguous with respect to a Z

given grammar if it has two or more different parse trees via that grammar.  This is equivalent to  Z
having two or more different leftmost derivations, and to having two or more different rightmost 
derivations.  Otherwise, it is unambiguous for the grammar.
 
A string  may be ambiguous in one grammar but unambiguous in others.  The idealized goal is:Z
 
Definition: A grammar is unambiguous if every terminal string it yields is unambiguous in that 
grammar.
 
 
Ambiguity and How It Can Mislead
 
Let's first revisit our simple expression grammar:
 
        EXP  ::=  <constant> | <variable> | - EXP | EXP <binop> EXP        <binop> ::= + | - | * | /
 
Consider the terminal string x - y + z.  Here are two different parse trees and their corresponding 
leftmost derivations:
 

 

 



 
EXP ⟹ EXP - EXP ⟹ x - EXP ⟹ x - EXP + EXP ⟹ x - y + EXP ⟹ x - y + z
EXP ⟹ EXP + EXP ⟹ EXP - EXP + EXP ⟹ x - EXP + EXP ⟹ x - y + EXP ⟹ x - y + z
 
The ambiguity is palpable.  If, say,  and  and , the former parse groups as x =  8 y =  3 z =  4

, whereas the second intuitively does .  Which should it be?8 -  3 + 4  =  1( ) 8 - 3 + 4 =  9( )

 
[Class also did rightmost derivations: 
EXP ⟹ EXP - EXP ⟹ EXP - EXP + EXP ⟹ EXP - EXP + z ⟹ EXP - y + z ⟹ x - y + z
EXP ⟹ EXP + EXP = EXP + Z ⟹ EXP - EXP + z ⟹ EXP - y + z ⟹ x - y + z.]
 
Ambiguity occurs all the time in English and other human languages.  There, contextual cues as to 
intended meaning often supply the disambiguation.  Here is a variation on a notorious example in the 
famous Sipser theory-of-computation text where the context might come out different from your 
expectation:
 

The Bachelor chose the woman with the rose.
 
You might parse this as (the bachelor) (chose) (the woman with the rose).  But if you've watched the TV 
show, you know that giving a rose is the method of choosing.  So the intended parse is:

 
 
Here's another derivation that is even more "rogue", now writing just  for EXP:E
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.E ⟹  E*E ⟹  x*E ⟹  x*E + E ⟹  x*y + E ⟹  x*y + z2 2 2

 
Shouldn't we have grouped  ?  Well, we can provide the option to do so:y + z
 

 <var> | <const>E  ::=   E + E | E - E | E*E | E / E | E  |( )

 
so we can derive
 

.E ⟹  E*E ⟹  x*E ⟹ x* E  ⟹  x* E + E  ⟹  x* y + E  ⟹  x* y + z2 ( ) ( ) 2 ( ) 2 ( )

 
But this doesn't solve the problewm of the original derivation being legal.  AND the ambiguity of x*y+z 
shows up in the better-behaved derivation:
 
E ⟹  E + E ⟹  E*E +  E ⟹  x*y +  z.6

 
Well, we can outlaw it by making parentheses always required:
 

 <variable> | <constant>E  ::=   E + E  | E - E  | E*E  | E / E  |( ) ( ) ( ) ( )

<variable> ::=  any alphanumeric legal identifier
<constant> ::= any legal numeric literal.
 

.E ⟹ E + E  ⟹  E - E + E  ⟹  a - E + E  ⟹  a - b + c( ) (( ) ) 2 (( ) ) 4 (( ) )

 
.E ⟹ E - E  ⟹  a - E  ⟹ a - E + E  ⟹  a - b + c( ) 2 ( ) ( ( )) 4 ( ( ))

or rightmost
.E ⟹ E - E  ⟹ E - E + E  ⟹  a - b + c( ) ( ( )) 6 ( ( ))

 
Does anything about these derivations trouble you?  I will say that this "liberal" grammar  generates G
all and only legal numeric expressions, but it "tells fibs" while doing so:  
 

• The sentiential form  seems to say that the whole rest of the expression gets subtracted a - E

from , but that is not how we read the expression  under the left-to-right a a -  b +  c
associativity rule.  

• The sentiential form  seems to say that  will multiply both terms in the expression  x*E x y + z

derived from that , but it only multiplies  in .  (Note that you can write  where E y xy + z x* y + z( )

the  part is counted as a factor.)  y + z( )

• Perhaps most insidiously, what about the expression ?  You might read it as if the intent a / b*c

were  but it will get parsed as  because and  have equal precedence---at least in a

bc
a / b *c( ) / *

C/C++/Java/Python/etc.  
 
 

 

 



Ways to Fix Ambiguity 
 
How can we write a grammar to reflect precedence (and associativity)?  The answer is to add variables 
for the extra syntactic categories "term" and "factor":
 
E  ::=   T  |   E + T  |  E - T

T  ::=   F  |  T*F  |  T / F 

   ::=    <var>  |  <const> | F E( )

 
Example: Mathematically, (3+x)*(y-z) = 3*y - 3*z + x*y - x*z.  But they are quite different as 
expressions.  Here is a leftmosat derivation of the left-hand side (LHS) in the "ETF" grammar:
 
E ⟹ T ⟹ T*F ⟹ F*F ⟹ (E)*F ⟹ (E+T)*F ⟹ (T+T)*F ⟹ (F+T)*F ⟹ (3+T)*F ⟹ (3+F)*F ⟹ (3+x)*F 
⟹ (3+x)*(E)  (3+x)*(y-z)⟹

*

 
Now if we try to imitate the first derivation above by putting the minus sign  in first, we get:-
 
E  ⟹   E - T  ⟹ T - T ⟹ F - T ⟹   a - T ⟹  a -  F ⟹  a - E  ⟹  a - b + c2 ( ) * ( )

 
and we're stuck: there isn't a rule with  for .  To get  we now must do+ T a - b + c
 
E ⟹ E + T ⟹ E - T + T ⟹ T - T + T ⟹ F - T + T ⟹   a - T + T ⟹   a - b + c.2 6

 
Note: You can also do  and thus get fully-parenthesized E ⟹ T ⟹ F ⟹ E ⟹ E + T( ) ( )

expressions too.  But you cannot get the sentential form  from .E + E( ) E
 
The sentential form  reads the three terms left-to-right (even though the leftmost term was T - T + T

derived last) at equal level, rather than grouping the last two.  Likewise, the only way to derive  is xy + z

by putting out the  first rather than the  first as before---in terms you may have heard already, the  is + * +

the "topmost" or "outermost" operator.  The derivation
 
E  ⟹   E + T  ⟹   T + T  ⟹   T*F + T  ⟹   F*F + T  ⟹   x*y + T ⟹   x*y +  z4 3

 
now makes clear that  was never intended to multiply .  We can also still write the fully-parenthesized x z

forms if we wish, as well as options in-between, even silly but legal ones like .  x* y  +  z( ( ) (( )))

 
We can also tack on more syntactic categories, such as having a <factor> involve powers.  Some 
programming languages have a native operation for powers like , but you have to be careful that it is **

right-associative:  means  , not  because the latter just a**b**c a** b**c  =( ) ab
c

a**b **c =  a( ) b c

becomes .  The grammar would implement this by making  recurse on the right not left:abc F
 

 

 



F  ::=   P  |  P ** F

  |  <var>  |  <const>P   ::=   E( )

 
Combining this with the rules for  and  like above creates what we could call an "ETFP"-type of E T

grammar.  When something like " " is used, it is more often referred to as a "primary expression" than P
as a "power"---but the idea is similar.
 
In practice, the part of the grammar for expressions in modern programming languages has a dozen or 
two dozen variables (i.e., syntactic categories).  But the point is that not only is the grammar able 
perfectly to describe the syntax of the language (still falling short of checking consistency of types and 
the number/sequence of arguments in function/method calls), the grammar also is instrumental to write 
the compiler's parsing stage.  
 
Example: Here is how our previous ambiguous example  works out with parse trees and a -  b +  c
leftmost derivations in the ETF grammar---we go back to the one without powering which is:
E  ::=   T  |   E + T  |  E - T

T  ::=   F  |  T*F  |  T / F 

 <var>  |  <const>F  ::=   E   | ( )

E ⟹ E + T ⟹ E - T + T ⟹ T - T + T ⟹ F - T + T ⟹   a - T + T ⟹   a - b + c.2 6

E ⟹ E - T ⟹ T - T ⟹ F - T ⟹  a - T ⟹ a - F ⟹  a - E ⟹ a - E + T2 ( ) ( )

⟹ a - T + T ⟹ a - F + T ⟹  a - b + T ⟹   a - b + c .( ) ( ) 2 ( ) 2 ( )
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Proposition: Any grammar with the rules  or  for live variables  or  is A AA→ E E + E→ A E
ambiguous.
 
 
Proposition (asserted but not proved in the text): The "ETF" grammar for expressions is unambiguous. 
 So is the one with the added rule for powering.
 
This leads to a "design pattern" for unambiguous grammars that I call the "ski slope and chair lift" 
pattern.  Here it is a grammar that is quote close to the official grammars for expressions in C/C++/Java 
etc."
 
    E   ::=  E2 <assignment_op> E | E2         //assignment is right-associative

    E2  ::=  E2 <binop> E3 | E3                //binops are left-associative

    E3  ::=  +E3 | -E3 | ++P | --P | E4        //pre-increment rules

    E4  ::=  P++ | P-- | P                     //post-increment rules

    P   ::=  (E) | <constant> | <variable>   (etc.)

    <assignment_op> ::= = | += | -=   (etc.)

    <binop>  ::=  == | != | + | - | * | /   (etc.)

 
 
Yes, assignment statements are classed as expressions that return values in these languages too.  
That is technically needed to support "multiple assignments" like x = y = 3; (though apart from 
speed-critical code, this is dubious).  The grammar spells out the allowed unary operators rather than 
have a syntactic category for them.  This includes separate lines for pre- and post- increment and 
decrement.  Here is a simple challenge:
 

1. Can we derive a legal Java expression that has the substring "++ + ++" in it (noting the 
whitespace around the binary +)?  

 
Yes: here is the derivation:
 
      E ==> E2 ==> E2 BINOP E3 ==> E3 BINOP E3

        ==> E4 BINOP E3 ==> P++ BINOP E3 ==>^2 x++ BINOP E3 ==> x++ + E3

        ==> x++ + ++P ==>^2 x++ + ++y

 
The main takeaway is that the "ETF" or "ski run (with chair lift)" design pattern is so well entrenched, 
and manipulable with grammar parser-generator tools, that 
 

1. giving simple grammar rules typified by EXP ::= EXP <binop> EXP,
2. stating precedence levels for the allowed operators, and
3. stating for each operator whether it associates left or right

 

 

 



is considered tantamount to giving an unambiguous ETF-style grammar.  There are, however, other 
kinds of ambiguity that can't be dealt with unobtrusively.  In fact, if you allow two different kinds of items 

 and  in a certain place, and  is nonempty syntactically, then chances are you can't eradicate A B A ∩  B

the ambiguity for any terminal syntax  in .  You can derive such a  from the rules for  or from t A ∩  B t A

the rules for .  I don't know whether so called inherently ambiguous context-free languages have B
actually cropped up in the design of any real programming language (they could be handled by the 
grammar add-on of attributes but the text doesn't go this far in a section of chapter 3 that is OK to 
skim).  However, the common ambiguity we discuss next tends to be tolerated rather than rewritten.
 
 
The Dangling Else Ambiguity
 
This pops up also in languages that regard statements as their main elements rather than expressions.  
The rules in C/C++/Java and other languages where an else-branch is optional are typified by these 
forms, which all allow the ambiguity:
 
STMT  ::=  if (EXP) STMT [else STMT],   where also  STMT ::= { STMT{; STMT} [;] }
 
STMT  ::=  if EXP then STMT [else STMT]
 
if <condition> then if <condition> then (basic startement); else (basic statement);
 
Which if does the else part go with?  Turning parse trees sideways to imitate indentation:
 

 

 

if <condition> then
I

I

else

I

if <condition> then

I stmt

stmt

I if <condition> then

I
if <condition> then

I

else

I

stmt
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Both trees yield if <condition> then if <condition> then stmt else stmt (where stmt is 
italicized to mean you could put any statement there, or think of it as the STMT nonterminal).  
 
Note that in C/C++/Java/etc., a statement can be a block.  That is, these grammars have rules like
 
        STMT ::=  { { STMT; } }
 
Whoa---the outer braces are the literal ones to define the block; the inner ones are the EBNF 
metachars for "zero or more".  A block can be empty in C/C++/Java/etc.  Some other languages allow 
sequences of statements without the braces---that is, lists of statements.  There are two ways to 
implement lists in regular BNF.  One is unambiguous, the other ambiguous.
 

• With a separate syntactic category for lists: 
STMT_LIST ::= STMT | STMT ; STMT_LIST

STMT ::= other-kinds-of-statements...
• Without:   STMT ::= STMT ; STMT  |   other-kinds-of-statements...

 
The latter is ambiguous for the same reason that EXP ::= EXP <binop> EXP is ambiguous:
 
Proposition: Any grammar that derives terminal strings via the rule  is ambiguous.S ::=  S; S
 
Proof: Assuming  can derive at least one terminal string , we get two parse trees for :S x x; x; x
 

 
Well duh, this just abstracts the expression case we've already seen.  The ambiguity holds even if we 
put a major variable rather than something like <binop> in place of the  part.  It can, however, be fixed ;

if we put a simple begin marker, even if we don't use a balancing end marker:
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• Suppose the rule is S ::= beg S S instead.  Then the ambiguity goes away when we add beg at ;

the dashed lines in the trees.  The left yield becomes beg x  beg x  x whereas the right ; ;

tree yields beg beg x  x  x instead, which is a different string.; ;

 
The abstraction pays off a little more with both the "dangling else" ambiguity and the easy---but 
ignored!---way to fix it.  It actually starts with the good rule of the expression fix, except I'll make the 
cosmetic change of terminal keyword ict in place of beg to suggest "if (condition) then". Where it goes 
ambiguous is by making the second  part optional:S
 
Proposition: Any grammar that derives terminal strings via the EBNF rule  is S ::=  ict S ; S[ ]

ambiguous.  In BNF terms, the rules  are ambiguous.  Again this holds for any S ::=  ict S   |  ict S ; S

terminals or nonterminals in place of ict and ; --- such as else in place of the semicolon.
 
Proof: We get two parse trees for ict ict x ; x like so:  
 

 
• To fix this ambiguity, we could disallow  being by itself---that is, allow only the rule ict S

.  When ; is "else", that is like making the else branch of an if statement S ::=  ict S ; S

mandatory.  Standard ML does this with if-then-else expressions.  OCaml and Scala and Python 
and most other languages do not require else.

• But there is another way.  We could require that both kinds of if statement have a closing 
keyword, such as fi or endif or just end.  Here's how end fixes it: The left-hand tree yields 
ict ict x end ; x end. The right-hand tree gives ict ict x ; x end end. Once 
again those are different strings.

 
Many older languages required a closing keyword, but Python and Scala and OCaml do not, as well as 
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C/C++/Java and Javascript.   Why not?  There is a universal rule for resolving this ambiguity:
 

In if <condition> then if <condition> then STMT else STMT, the else branch 
always goes with the latter, innermost if.

 
A vital reason for this choice will come out when we see more of this ambiguity in OCaml.
 
 
More Ambiguity in OCaml
 
Let's hunt for ambiguity in the OCaml grammar again:

      EXP  ::=  <value-path>  |  <constant>  |  (EXP)  |  begin EXP end

            |   EXP  , EXP .  { }+

            |   <prefix-symbol> EXP  |  -EXP  |  -. EXP
            |   EXP <infix-op> EXP

            |   if EXP then EXP [else EXP]

            |   while EXP do EXP done

            |   for <value-name> = EXP (to | downto) EXP do EXP done

            |   EXP ; EXP
            |?  let [rec] VPAT = EXP { and VPAT = EXP } in EXP 

 
The rules with red bars have ambiguity.  The abstract form made this super-obvious with the rule  EXP 
::= EXP;EXP (not to mention the comma form on line 2).  This could be fixed with an extra EXP_LIST 
nonterminal like we did with STMT_LIST above.  That's what compilers do under the hood, but for 
human readers, the OCaml people don't care.  
 
The for-loops do not have ambiguity because the leading while or for keyword and the mandatory 
closing done keyword work like beg and end in the above examples.  
 
But OCaml uses neither of the above policies for disambiguating the rule for if expressions.  
 
OCaml gives the impression of ambiguity in let expressions.  Let's do the simple form without rec 
where VPAT is just an identifier for a variable and there is only one such binding:  
 
                  let <ident> = EXP  in  EXP

 
The fact that we can write things like "let x = 3" standing alone makes it seem like the rule makes 
the in part optional:
 
                  let <ident> = EXP  [in EXP]   (?)

 

 



 
This plugs right in to the same abstract form as the "dangling else" ambiguity.  An ambiguous form 
(substituting in variable names) would then be let x = let y = EXP  in EXP
 
The ambiguity would be whether this is grouped as let x = (let y = EXP)  in EXP or as the 
expression let x = (let y = EXP  in EXP).  The same "goes with inner" resolution of the dangling-
else ambiguity would dictate the latter.  Indeed, if you write
 

let x = let y = 3 in y+1;;

 
it is legal, and you get the same result as let x = (let y = 3 in y+1);;  That helps you understand 
why OCaml finally says val x:int = 4 back to you.  But if you try either of
 

let x = (let y = 3) in y+1;; 

or
let x = (let y = 3) in x+1;; 

 
you get a Syntax Error in both, even though you think x=4 should be the outcome of both.  The 
reason is that the let form without in is not a rule of EXP in the grammar but rather a rule of a 
different syntactic category, a definition.  In OCaml this is classed as a primitive case of a module, 
which in turn is a basic compilation unit, which can also give an optional [;;].   The rule at 
https://v2.ocaml.org/manual/modules.html#start-section is
 
                 DEF  ::=  let [rec] VPAT = EXP { and VPAT = EXP }

                        |  (other stuff)
 
Well, that's just like the rule for a let expression without the in part.  But the point us that as a 
definition, you can't throw something like "let y = 3" into the rule for EXP like that.  But even if you 
could, if you allowed (let y = 3) grouped like that, you would have a problem of prematurely cutting 
off the scope (text chapter 5) of the variable y before you got to the body y+1.
 
Well, the DEF rule is like Python and Scala if you used def rather than let as the opening keyword.  
But it is considered to be on a par with a different rule:
 

let <ident> = fun parameter_1 … parameter_m -> EXP

 
The abbreviation is familiar from recitation examples:
 

let <ident> parameter_1 … parameter_m = EXP

 
So instead of let plus1 x = x + 1 you can write let plus1 = fun x -> x+1.  The latter is 
like what Scala allows doing with the lambda keyword in place of fun. 

 

 

https://v2.ocaml.org/manual/modules.html#start-section


 
So this is technically not an ambiguity in the let part of the OCaml grammar, because it comes from 
teh different nonterminal DEF. But it looks like it and the behavior works the same way as for "dangling 
else".  As my linking an older definition document of OCaml signifies, the actual compilers work with 
longer grammars than the public one.  (Standard ML requires the fun keyword in function definitions 
and makes an end keyword mandatory in its let ... in ... end expression syntax, so there is less of 
this kind of confusion.)
 
 
Building Up Types (in OCaml)
 
Recitations covered the base types in OCaml, including int, float, bool, char, string, and unit. 
  We can now express how OCaml builds up compound types by giving EBNF rules for the major 
syntactic category of types.  
 
OCaml (like Standard ML) distinguishes between "expressions" made up from its native types and user-
constructed type definitions, calling the former (in my all-caps style) TYPEXP and the latter TYCON.  
The base types are actually classed as type constructors since they (except float) are the bedrock of 
pattern-matching and type inference, so we have to mention TYCON to get the basis.  But we'll skip the 
other stuff in TYCON for now.  Again, this is just an illustrative subset of the actual rules in the (public) 
grammar at https://v2.ocaml.org/manual/types.html#start-section.
 
    TYCON ::= the basic types  |   list   |   lots of other stuff.
 
  TYPEXP ::= '<ident>  |  _  |  (TYPEXP)  ( 'a is like template <A> in C++/Java )
          |  TYPEXP -> TYPEXP                       (function type, associates to the right)
          |  TYPEXP { * TYPEXP }               (tuple type, no left/right handedness)+

          |  [TYPEXP] TYCON                          (simple example: int list)
          |  (TYPEXP {, TYPEXP}) TYCON

          |  TYPEXP as <ident>            (like typedef TYPEXP <ident> in C/C++)
 
The underscore _ is a "wildcard" type expression and is used like with matching in Scala.  The rule 
TYPEXP ::= TYPEXP -> TYPEXP is ambiguous, but we followed the "main takeaway" by stating an 
association rule for it.  The order of giving the rules expresses precedence.  Thus, for instance, in
 
      int * int -> float

 
the * "binds tighter" than the arrow.  That is to say, this is grouped as (int * int) -> float, which 
is a function of a tuple of two integers giving a float result, rather than being grouped as  int * (int 
-> float), which is a tuple like (3, fun x -> (float_of_int x)/. 2.0).  "Under the hood" 
here is an "ETFP"-like grammar that associates function composition right-to-left as done with powering-
--but groups it loosest rather than tightest. 

 

 

https://v2.ocaml.org/manual/types.html#start-section


 
 
The beautiful point here is that not only do these inductive grammar rules generate the syntax by which 
you can write type annotations (after a colon :) if need be, they define how OCaml builds up its entire 
type system internally to begin with.  And when we get to the rest of TYCON, it places that power into 
user hands, giving the user programming syntax that is like BNF grammar itself.  But before creating 
"matchable structure" via TYCON, let's see how we define the patterns usable in matching.
 
 
Patterns in OCaml
 
Let's dive right into the grammar rules before showing how examples conform to them.  Again we give a 
subset of the rules at https://v2.ocaml.org/manual/patterns.html#start-section:
 
PAT ::=  <vname>  |  _  |  <constant>  |  PAT as <vname>  |  (PAT [: TYPEXP])

      |  PAT | PAT

      |  <cname> PAT

      |  PAT {, PAT }                                 (tuple pattern)+

      |  [ PAT {; PAT}[;] ]            (pattern for fixed-size list)
      |  PAT :: PAT                    (pattern to handle general-size list)
      |  [| PAT {; PAT}[;] |]          (pattern for fixed-size "value array")
      |  <char> .. <char>

      |  lazy PAT

      |  exception PAT

 
The first line of options are like those we had with ordinary expressions: constant and variable 
(lowercase) are options, but now also _ for wildcard.  The second line says a pattern can have internal 
BNF-like alternatives and they are the outermost/loosest/highest "operators" in any pattern.  
 
In the third line, <cname> mostly means a capitalized identifier name.  Those come from user-defined 
type constructors, which includes classes but more primitive stuff first (next week).
 
The next four lines are the bread-and-butter tuple and list patterns, plus one for arrays.  One technical 
note: The empty list [] is classed as a <constant> .  So is the empty array [||].  Note that if we had 
written the rule for list patterns as [ {PAT ;} ] it would have suggested that you could put space 
between the brackets.  (Voiceover: you can...)  It would also require a final ; in a nonempty list pattern.  
 
Next we can also allow a range of literal characters as a pattern.  The last two lines are just for forward 
reference, FYI for now.   And incidentally, here is the rule for VPAT:
 
      VPAT  ::=  PAT  

         |  <vname> { PARAM } [: TYPEXP] [:> TYPEXP]   

         |  <vname> : POLYTYPEXP

 

 

https://v2.ocaml.org/manual/patterns.html#start-section


 
where we will see the :> type coercion (which is like extends or implements in OOP languages) and 
polymorphic type expressions later.  (The actual OCaml grammar writes these rules with the "= EXP" 
part of "VPAT = EXP" down here, calling the whole thing a let-binding.)
 
 
 
Pattern Matching in OCaml
 
To show how patterns are used, we need only mention two more lines of the rules for expressions:
 
EXP ::=  match EXP with PATMATCH

       | EXP { ARG }      +

 
PATMATCH ::=  [ | ] PAT [when EXP] -> EXP { | PAT [when EXP] -> EXP }

         

 
I could have put the line with ARG earlier; ARG goes right back to EXP but with label options too.  If we 
ignore the optional when feature, and ignore that OCaml doesn't care if you put an unnecessary bar | 
before the first pattern in your match body, we can condense this into one simplified rule---also 
showing possible indentation:
 
EXP ::=  match EXP with 

            PAT -> EXP

        { | PAT -> EXP }

 
This says that you do need bars to separate multiple patterns used in your match.  Let's derive a whole 
example function that does pattern matching.  The example is
 
      let rec sumList ell = match ell with

           [] -> 0

         | x :: rest -> x + sumList rest;;

 
As noted before, the syntactic category for this is DEF (which comes as a simple case of COMPUNIT, 
which is the start symbol for the whole programming language grammar).  
 
DEF ⟹ let rec VPAT = EXP

⟹ let rec <vname> PARAM = EXP                    (taking one param from { PARAM })
⟹ let rec sumList PARAM = EXP

⟹ let rec sumList ell = EXP

⟹ let rec sumList ell = match EXP with 
         PAT -> EXP

 

 



       | PAT -> EXP                                        (taking one extra pattern from { | PAT -> EXP })
⟹ let rec sumList ell = match ell with   (via EXP ⟹ <value-path> ⟹ <vname> ⟹ ell)
         PAT -> EXP

       | PAT -> EXP 

⟹ let rec sumList ell = match ell with

         <constant> -> EXP

       | PAT -> EXP

⟹ let rec sumList ell = match ell with

         [] -> EXP

       | PAT -> EXP

⟹ let rec sumList ell = match ell with

         [] -> 0

       | PAT -> EXP

⟹ let rec sumList ell = match ell with

         [] -> 0

       | PAT :: PAT -> EXP

⟹  let rec sumList ell = match ell with2

         [] -> 0

       | <vname> :: <vname> -> EXP

⟹  let rec sumList ell = match ell with2

         [] -> 0

       | x :: rest -> EXP

⟹ let rec sumList ell = match ell with

         [] -> 0

       | x :: rest -> EXP + EXP

⟹ let rec sumList ell = match ell with

         [] -> 0

       | x :: rest -> EXP + EXP ARG

⟹  let rec sumList ell = match ell with*

         [] -> 0

       | x :: rest -> x + sumList rest

 
 
More lines for expressions---point is that pattern matching is basic to defining functions:
 
EXP ::=  match EXP with PATMATCH     

      |  function PATMATCH

      |  fun { PARAM }  [: TYPEXP] -> EXP+

      |  try EXP with PATMATCH

 

 

 




