
CSE305 Week 9: Control Structures (Sebesta Ch. 8)
Mashup of my old notes and Sebesta's new ones again:
 
Control Structures
Control Structures define the order of execution of program statements.  E.g.,
 

• sequencing of statements    (we take this for granted)
• if-then-else (and switch and match-case)
• loops

 
After opening with a similar outline that also mentions "unconditional branching" (i.e., goto) and 
"guarded commands" (which we've encountered via "when" in OCaml match-case), Sebesta gives a 
nice big-picture observation that there are "Levels of Control Flow"---

We are tracing flow within expressions and simple sequences of statements right now.  On that score, 
here are some simple translations, supposing the declarations int x,y,z,*p,*q;
 

• x = 3;     is    x 3 store pop
• y = x;     is    y x fetch store pop
• p = &x;    is    p x store pop
• q = p;     is    q p fetch store pop
• *q = 4;    is    q fetch 4 store pop
• y = *q;    is    y q fetch fetch store pop
• arr[i] (Lvalue)  is  arr e i fetch * +        (where arr is 0-based and e is  
• arr[i] (Rvalue)  is  arr e i fetch * + fetch  the element size in bytes) 
• x++        is    x fetch x x fetch 1 + store pop
• p++        is    p fetch p p fetch e + store pop  (e = size pointed at)
• ++x        is    (?)

 
Note that the idea of these control structures is not dependent on any one programming language.  
Each of them is present in some form in all of the languages we’ve considered.  Nor is the idea of stack-
based evaluation---it's just more fun and hairy in C/C++.  (Don’t be misled by syntax:  C has if-then-else 
structures, even though it omits the keyword “then”.  More subtly, C’s “for” loop is really a while loop.) 
 
Other Control Structures
case selection (switch in C/C++/Java)
for-loops
Procedure/Function Calls  -->  Chapter 9
goto (label);  conditional go-to

 

 



 
(We will regard “break” or “exit” as part of other control structures, not ones in their own right.)
 
Sequencing works this way: After any non-branch instruction is executed, the Instruction Counter 
(IC) is automatically incremented to the next machine word, and so the next instruction is processed.  
But if a branch is taken, then the branch label value (b1) is copied into the IC -- and this causes 
execution to jump to the instruction held in memory location b1. The SPARC Book  by R. Paul has 
eighteen (!) different conditional and unconditional branch instructions for integer tests alone (and more 
for floats).  But JMPif0 is enough: it combines aspects of “if-then-else” and “while”.  In fact,
 
  Sequencing and JMPif0 form a complete
  set of assembly-level control structures. 
 
Definition:
  A set of control structures S is complete if every program P, in any language, can be translated into 
an equivalent (and similarly efficient) program P’ that uses only control structures in S.
 
It is a famous fact that sequencing, if-then-else, and “while” form a complete set.  These three 
structures (aka “Dijkstra’s triad”) suffice in any high-level language.  Dijkstra used this fact as part of his 
argument that “goto” should be abandoned.
  There is still some arument that for certain coding situations and on certain compilers using goto is 
more efficient than the alternatives.  But 30+ years experience with goto-less structured programming 
has worked quite well, even in final-production code. Java has no goto statement.
 
The “One-In, One-Out” Principle
 
In BASIC or assembler, it is easy to write “Multi-In, Multi-Out” code like this:
 
    .80  GOTO 140
    ...
    100
    110
    120  IF ... THEN 300
    ...  ...
    140  ...    (can be entered from 80, 130, or 300!)
    ...
    200  IF ... THEN 400
    ...  ...
    ...
    250  GOTO 500
    ...
    300  IF ... THEN 140
    ...

 

 



 
For readability and correctness, it is important to minimize and localize the ways that control can 
spread.  Modern control structures are designed to have a single entry point and a single exit point:

This is one reason why some languages discourage use of break.  In Scala, break would interfere 
with the idea that loops yield a value at the end.  OCaml has only "loop expressions" with no break 
allowed.
 
Procedure calls can complicate the picture, but the idea holds.
  The “proper way” to code in BASIC used to be the “Double-Braided Spaghetti”:
 
    100 IF <cond> THEN 200
    110 {“ELSE” portion begins here ...
     :
     :
    190 ... and ends here} GOTO 300
    200 {“THEN” portion begins here...
     :
     :
    290 ...up to here.  Done}
    300 IF <cond> THEN 400
    310 {“ELSE” portion ...
       :
       :
    390 ... }  GOTO 500
    400 {“THEN” ...
       :
       :
    490 ... done}
    500 IF... <etc>
 
Similarly with GOSUBS etc.  If done well, this type of structure can be readily understood, but in 
practice it was abused, with long stretches of THEN and ELSE blocks, and errors in editing statement 

 

 

while (...) do {
     ...
}

exit is only here

repeat {
   ...
until (...) exit is only here



numbers, and the temptation to embellish this “Two-In Two-Out structure with more ins and outs...  
Now, even BASIC has adopted the familiar structured control units of FORTRAN, ALGOL-60, COBOL, 
Pascal, etc.
 
 
Comparing Conditionals
 
Ada has the most general form of “if-then-else”:
 
  if <cond> then <stmt_seq>

  {elsif <cond> then <stmt_seq>}

  [else <stmt_seq>]

  end if;

 
C and Pascal (1) lack the elsif option, (2) lack a closing “endif”, and (3) classify each branch as a 
statement rather than a sequence of statements.  Of course, both do allow compound statements—via 
curly braces {...} in C and begin...end blocks in Pascal—so  diference (3) isn’t very large (just a matter 
of clutter).  How important are the other two?
 
  (1) Lack of elsif forces one to use nested ifs
 
Ada                                       Pascal

if    age < 5  then ...;           if age < 5 then ...

elsif age < 13 then ...;              else

elsif age < 18 then ...;                 if age<13 then ...

else ...;                                   else

end if;                                        if age<18 then...

                                                  else ...;

                  
In Ada, semicolon is a separator, if semicolon is a terminator then it ends all three individual IF 
statements!---similar in OCaml with let.
 
Here, Pascal’s nested ifs obscure the parallel structure that the “elsif” makes clear in Ada.
 
 ML/OCaml’s  “if-then-else” expression uses syntax similar  to Pascal, except that the “else” is 
mandatory.  This is similar to C’s conditional expression:
 
  C:     <cond> ? <exp1> : <exp2>
  ML:   if <cond> then <exp1> else <exp2>
 
However, ML and OCaml require that <exp1> and <exp2> have the same type.  This extends to nested 
IFs (which happen when <exp1> or <exp2> is itself a conditional  expression).  
 

 

 



  (2) The lack of a terminating “end if” can lead to the “Dangling Else” problem, as already discussed.  
Kernighan & Ritchie’s ANSI C book gives an example:
 
  if (n >= 0)

    for (i= 0; i < n; i++)

      if (s[i] > 0

      {  print(“i = %d \n”, i);

         return i;

      }

  else

    print (“n is negative”);   <-- WRONG 

 

In the BNF, it is ambiguous whether the else belongs to the inner or outer IF.  C and Pascal use the rule 
that such an else associates to the innermost IF for which it is legal.  But this can produce problem like 
the above.  Ada’s required “endif” terminator avoids the problem.
 
 
The CASE case
 
Ada is also considered to have the quintessential CASE statement:
 
         case EXP is 

            when CHOICES => STMT_SEQ

            {when CHOICES => STMT_SEQ}

         end case;

 
where
         CHOICES::=  CHOICE { “|” CHOICE}

         CHOICE ::=  SIMPLE_EXP | DISCRETE_RANGE | others

 
Example:
 
  case Paper_Rating(Paper) is

    when 0 .. 1 | 10 => Query(Referee);

    when 2 .. 3      => Reject(Paper);

    when 7 .. 9      => Accept(Paper);

    when 4 .. 5      => Print(“Doubtful”);

                      Examine(Paper);

    when 6           => Examine(Paper);

    when others      => raise Report_Error;

  end case;

 

 

 



Notable features of the Ada case statement:
• EXP can have any discrete, countable type.  (In C/C++/Java, EXP must be convertible to int.)
• The explicit keyword when labels each case alternative.  Alternatives may be in any order, and 

need not be “consecutive.”.
• More than one choice may be put on a case  alternative line.  A choice can be a range.
• Each statement sequence includes an automatic “break”.  Control does not “fall through” to other 

statements.  (Each “when” after the first plays the role of “break” in the C switch statement.)
• Optional “others” allows a “default” branch.
• More than one stmt can be in a stmt seq.
• Explicit scope delimiter  “end case;”
• The possible choices should be mutually exclusive, but need not be exhaustive.  The compiler 

must “bomb” if any two choices overlap.
• The “case constants” and ranges must be fixed and known at compile time!  This is not only 

needed for the last point, but also enables the compiler to build an efficient “jump table” from 
values to the corresponding stmt seqs.  (This is also so in C/C++ and Java and Pascal.)

 
Standard Pascal lacks the vital convenience of a “default” or “others” clause for the case.  Standard 
Pascal compilers would demand that all possible values of the case expression be explicitly included in 
the labeling of the alternatives.  Many Pascal compiler vendors added an “others” or “otherwise” clause 
as a non-standard extension—and Ada standardized it.
 
Pascal and Ada both allow EXP and the case labels to belong to any “countable” type, meaning 
enumerated types (including. char) or integers or subranges thereof.  C requires each labels to be an 
int, because it really is a label!  Ranges and ‘|’ groupings are not allowed in C, and the word “case” 
must appear before each individual label.
 
 
Switch in C/C++/Java
 
The reason for this and C’s “fall-through” property in switch is the history of C’s switch as a generalized 
goto statement!  A C compiler standardly interprets “switch(exp)” as meaning “evaluate exp to get an 
integer v and then goto the the label case v:”  To see this structure, let us not indent the statements 
corresponding to each case alternative, but rather “outdent” the case labels:
 
      switch (Paper_Rating(Paper)) {

case 0: case 1: case10: Query(Referee);break;

        case 2: case 3: Reject(Paper); break;

case 7: case 8: case 9: Accept(Paper); break;

        case 4: case 5: Print(“Doubtful”);

                        Examine(Paper);break;

                case 6: Examine(Paper);break;

               default: throw Report_Error;

       }

 

 



 
It is legal in C for any statement to have more than one label, so the body of the switch is just a 
sequence of labeled stmts.  The body of the “goto case v:”  causes  execution to begin at the 
statement with label “case v:” and proceed from there.  That is why we need to insert 
the “break;” (which the C compiler always treats as  “go to the next enclosing curly brace }”) in order 
to get the Ada/Pascal behavior.
 
 C, Pascal and Ada all require that the identity of the “case constants” be determined and fixed at 
compile time.  Therefore, you cannot do things like:
 
    case Salary is

       when base => ...

 
when “base” is a variable.  If “base” is a constant, so that Ada knows the value at compile time, and 
knows that it can’t change during execution, then OK.  By contrast, although ANSI C has a constant 
construct, e.g.
 
   const int base = 30000;

 
the switch statement cannot trust it, because C does not mandate that an assignment to a constant, 
such as base += 10000; causes a compilation error.  (Our ANSI C compiler in 2007 gave a warning.) 
 Formalizing a capability where constants can be trusted at compile time is the essence of the recent 
development of the constexpr designator in C++.
 
 Ada and Pascal compilers do in fact check at compile time that the case constants cover all the values 
in the discrete type of the case expression (with the help of the optional “others” for Ada), and that no 
duplicate values occur.  C does the latter check, but omits the former—because it does not allow 
ranges and  the type “unsigned int” is pretty big!
 
Here you can see some evolution toward the case-match in Scala and ML/OCaml.  They have a “case 
expression” that can match on other types besides integers—indeed, it can match on any recursively 
defined datatype, including the structural patterns of lists, trees, and more.
 
Lisp has a cond construct that allows arbitrary Boolean expressions before the “=>” (which is a space 
in Lisp).  The first expression in sequence that is true determines the branch taken.  This is really a kind 
of if-then-else construct with “guarded statements.”
 
 
Loops: from low level to high level
 
Any program that is not “straight line” must have a loop or other backward jump in the control 
somewhere.  The backward jump can come from:
 

 

 



• a GOTO statement that jumps backward;
• a structured loop stmt, in which control, upon hitting the bottom-of-loop, automaticaly goes back 

to the top; or
• recursive procedure calls.

 
Ignoring recursion for now, you can build a loop with a test and GOTO:

This obeys the "One-In, One-Out" principle and was always considered a reasonable use of GOTO.  
Note too that the test x == y could have been written as x - y == 0.  More generally, if you convert true = 
1 and false = 0, then any condition could be tested as (1 - cond) == 0.
 
In fact, the Java Virtual Machine (which is expressly stack-based) has an if_cmp_cond instruction like 
the above, and has some other jump instructions---as do other compilation tagrets.  But we can imagine 
using just a jmpif0 instruction.  All it needs is to add an Instruction Counter (IC) to our rudimentary stack 
language.  Here is a simplified picture for a 32-bit machine where sequencing means advancing the IC 
address a by 4 bytes.
 

If we want to clear the value compared and the address 2nd from the stack after the test, just do 
jmpif0 pop pop.  
 
Given that "Dijkstra's Triad" of sequencing, if-then-else, and a simple test-loop are enough for universal 
programming, and given that we are going to compile into a simple jump construct anyway, why bother 
with extra control structures?

 

 

200: iterated statements begin here

x == y?
yes: goto 200

no

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html#jvms-6.5.if_icmp_cond


 
The real purpose of control structures is to reflect the natural ways programmers think about 
solving problems, and to channel their thoughts into code blocks that are easy to read and 
maintain.  [Steve McConnell, Code Complete: A Practical Handbook of Software Construction.] 

 
A secondary reason is that greater control flexibility can sometimes help one produce more efficient 
object code.  This influenced choices made in C, which grew out of the PDP-11 instruction set.   Pascal 
opted instead for a simple compiler with a restricted set of control structures.  ALGOL-60 had more 
flexibility than Ada kept and that anyone has ever really used.
 
 
Issues for Loops
 
Sebesta's agenda, in a slide titled "Iterative Statements":

Sebesta goes on to consider counter-controlled versus logic-controlled loops, but I want to bring that 
and four other issues to top level:
 

1. Is the loop such that from its header alone---regardless of the statements in its body---the 
runtime system can, upon entering the header, place a bound on the maximum number of 
iterations possible?  If so, call it an "abstract for-loop", else it is "properly a while-loop."  If the 
exact number of iterations is known, call it "strictly counted."

2. Whether for-loop or while-loop, is breakout apart from the header or the main conditional test 
allowed?

3. Is the iteration scheme of the loop itself an object in the program?
4. Does the loop yield a value or values---at the end and/or along the way?

 
The main drift of PL design regarding iteration, IMPHO, is that the only saintly way to get a strictly-
counted for-loop is to not have a counter.  
 
 
The MAD C for loop
 
The for-loop in C originated around 1964 in a language called “MAD” for “Multiple Algorithmic Decoder.” 
 Observe that in its abstract form,
 
     for (E1; E2; E3) <stmt>

 
it is equivalent to the C while loop
 

 

 



     E1;

     while (E2) {

       <stmt>

       E3;

     }

 
except that continue jumps to E3 in the for loop, but jumps past E3 to “}-and-repeat” in the while 
loop.  The equivalent code in Ada (which is taken as representative of languages of the 1960s to 1980s 
that used keywords rather than braces to delimit blocks) is:
 
     E1;

     while E2 loop

       <stmt_seq>

       E3;

     end loop;

 
Note that E1 and E3 are “really” assignment statements, but C/C++ officially classes assignment 
statements as expressions.  In Pascal and Ada they are classed as statements.  C and C++ allow 
general use of the “comma operator” to sequence expressions, but Java restricts its use to E1 inside for 
loops.  Going the other way, the while-loop
 
      while (cond) { stmts }

 
is equivalent to the "for-loop"
 
      for ( ; cond; ) { stmts }

 
In both cases, the stmts need to update something in cond so that it could become false.  Here is a 
concrete example, searching for (the first occurrence of) an element x in an array A:
 
     for (i = 0; x != A[i]; i++) ;

 
Yes, an empty loop body!  The following while-loops in C and Ada are equivalent to this:
 
     i = 0;

     while (x != A[i]) i++;

 
      i := 0;

      while x /= A(i) loop

         i := i + 1;

      end loop;

 

 

 



Note that if x does not appear in A, then all of these three code segments will cause i to go beyond the 
bounds of the array.  In C and C++ the code will merrily (and unsafely!) keep fetching from consecutive 
memory positions.  Modern languages require throwing an exception for any overshoot of array bounts. 
 A standard programming trick is to make the “sentinel assignment” A[n-1] = x; before entering the 
loop, so that i == n-1 after the loop equates to failure.  Then C and C++ reap benefits in speed from 
not having to slow down for safety.
 
 
Bounded Iteration
 
Thus far we’ve discussed C’s for loop and how it relates to while and recursion.  However, 
programmers in other languages usually think of for-loops only as bounded  (or “counted”) iteration 
controls.  Here's hwo they look in various languages besides C/C++/Java:
 
COBOL:    PERFORM <grouped statements>

          VARYING J FROM 1 BY 1 UNTIL J > N 

 
BASIC:    FOR J=1 TO N

            <statements>

          NEXT J;

 
Fortran:  DO 10 J = 1,N

             <statements>

          10  CONTINUE

 
Pascal:   for J:= 1 TO N do

          begin

             <statements>  

          end

 
Ada:      for J in 1..N loop

             <statements>

          end loop;

 
Python:   for j in range(1, N+1):

             <indented-statements>

 
Scala:    for ( j <- 1 to N ) {

             <statements>

          }

 
Here are features common to all of these languages:

 

 



• Single loop variable (here “J”), generally of integer type.
• Loop increment is +1 by default.  
• Loop bounds may be variables,  so long as their values are known at initial loop entry time so 

that the number of iterations is known in advance.
• Some type of end-of-loop delimiter is used---except in Python the delimiter is stopping the 

indentation.
 
One topical difference is whether N should be inclusive or exclusive.   You can get exclusivity in Scala 
by saying "until" rather than "to".  The following two issues involving the loop variable are deeper in 
the sense of being more bug-prone:
 

• Should J be visible outside the scope of the loop?
• May J and/or loop bounds such as N be re-assigned during the loop?  e.g.

 
Besides C, other older languages allowed doing things like this:  
 
  for J = 1 to N do

    ...

    if a(J) < 0 then J = J+3; /*skip 3 places*/

    else ...

  end;

 
The Ada for loop bridged "old" and "new" attitudes:
 
[LABEL:]  for ID in [reverse] DISCR_RANGE loop

      STMT_SEQ

      end loop [LABEL]; --labels if there must match

 
Here DISCR_RANGE can be a subrange of the integers such as 1..N, or it can be (a subrange of) an 
enumerated type (e.g.:  “for Day in Week loop...”).  The increment goes to the next-greater element of 
the discrete range, except that optional reverse gives a step to the next-lesser.  The optional loop label 
is used for possibly breaking out of multiply-nested loops, as treated below.
 
To answer the two questions for Ada:
 

• No, the loop variable is implicitly declared in the loop header and is invisible outside the loop.  It 
is treated the same as a constant parameter to a subprogram, so cannot be altered in the loop 
body.

• No, the range is read and fixed when the loop is entered and cannot be affected.
 
These strictures enable compiler optimization of loops.  We can get a hint of this with our "rudimentary 
stack language.:  To compile
 

 

 



  for J in 1..N loop

    <statements>  -- beginning at memory address a

  end loop;

  <next stmt>     -- beginning at memory address b

 
first push a, then push N,  then push J.  Then translate the body of the loop.  It will be processed above 
J on the stack.  Finally translate “end loop” with a JMPif0 instruction, modified as "jmpifequal", so that 
if N ≠ J, a is copied into the IC (so the loop repeats), while if J = N, all three items are popped and 
control naturally “falls through” to b.

The point is that N (and often J too) need not be re-fetched in order to be tested.
 
ANSI C drew a page from Ada by allowing the loop variable to be declared inside the loop:
 
    for (int J = 1; J <= N; J++) {
     <statements>

  }

 
Then, however, the variable J is not visible outside the loop body.  Java adopted this idea.  
Theoretically this is supposed to work even if a different variable “J” is in scope just outside the loop, 
with that J being left unaffected, but the ANSI C and C++ compilers we have seem to hiccup in this 
case!  Overall, there seems to be no firm consensus on the question  of J’s scope.  However,  there is a 
fairly strong consensus on the second question, namely that allowing J or N to be altered inside the 
loop is a bad idea, for both users and compilers!  PL/1 was especially bedeviled by this.
 
 
Breaking Out
 
  Ada allows “multiple breakout” via named loops.
 
  . . .

  OUTER: for i in 1..m loop

    INNER: for j in 1..n loop

      if A(i, j) = Sought_Value 

        then exit OUTER;

 

 

loop body processed
and popped off stack

J

N

a

b



      end if;

    end loop INNER;

  end loop OUTER;

 
There have been arguments about whether “multiple breakout” is too powerful a jump (like goto) and 
whether it was hard on compilers.  The fact that Ada embraces it indicates that people consider it safe 
and readable enough.  It is certainly neater than cluttering up nested loops with extra Boolean flags!
 
Ada offers two other devices that help compilers minimize the overhead of executing loops.  The “short-
cricuit evaluation” of and then (which equals the standard behavior of && in C/C++/Java), and 
exceptions, which will be treated later.  Here is an example of the former.
 
function Sumarray(N: in integer; A in IntArray; 

              Sum out natural) is

  -- A has bounds 1..N.  Function sums contents of A

  -- so long as they are positive values.

  k: natural := 1;

begin

  sum := 0;

  while k <= N and then A(k) > 0 loop

    sum := sum + A(k);

    k := k + 1;

  end loop;

end Sumarray;

 
The short-circuit evaluation of and then allows us to avoid run-time errors without extraneous flags, but 
it’s not necessarily the best way to write the loop.  A “breakout” could make it more explicit that the loop 
is being aborted early because of a non-positive value.
 
function Sumarray(A in IntArray; Sum out natural)  is  --Sum contents of A so long as 

they are positive.

  Neg-Entry: exception;

begin

  sum := 0;

  for k in A’range loop

    if A(k) <= 0 then raise Neg-Entry; end if;

    sum := sum + A(k);

  end loop;

exception

  when Neg-Entry =>

    put_line(“Negative Entry found”);

end Sumarray;

 

 



 
 
Counted Loops Without Counting
 
The one (almost-)sure way to indicate that you want a strictly counted for-loop is to iterate over the 
data, not with a counter.  This feature has been added to languages that didn't originally have it, e.g. 
Java:

Some languages distinguish this via the "foreach" keyword.  C++ has a whole generalized interation 
scheme (instead).
 
 
Recursion as a Loop Structure
 
The basics of an unbounded loop are 1. initialization, 2. tests, and 3. incrementing.  Here is how these 
three are reflected by recursive function calls:
 

1. Initialize via the parameters in the initial call.
2. Test in the function body to determine when (or whether) to stop the recursion.
3. Increment by changing the values passed to the next recursive call.

 
A simple example in C++ (using “#define null 0”):
 
  int sumlist(Intlist* curr)

  {  if (curr == null) return 0;

    else return curr->val +

                sumlist(curr->next);

  }

 

 

https://www.geeksforgeeks.org/for-each-loop-in-java/


 
The increment is from curr to curr->next.  If we assume that the “Intlist” object is a linked list 
whose last item has a null next pointer, then we have a sentinel.
 
 Recursion is considered inefficient in C/C++ because compilers generally allocate a stack frame for 
each recursive call, at considerable time overhead.  In ML and OCaml, however, the form of the 
language is so regularized that compilers are often able to convert recursions into iterations that are at 
least as efficient as the equivalent C code.  
 
[My previous Ch. 8 notes ended with Tail Recusion which has only a brief mention in the text and also 
goes with chapter 9 anyway, so I will pick it up there.]
 

 

 




