
CSE396, Spring 2019 Problem Set 5 Due Thu. 3/28, 11:59pm

Reading. There are “two-and-a-half” more topics in which class coverage will veer from
the text and have separate handouts. The first, to come on Tuesday of week 8 into the
Thursday, is a version of “Structural Induction” (SI) that applies to context-free grammarg
G. It abbreviates a technique for proving soundness statements of the form L(G) ⊆ B that
is called “induction on the first step of derivations” in other sources. The text seems to
presume that students can do this kind of proof in a few of its problems, but please read the
special handout https://cse.buffalo.edu/ regan/cse396/CSE396SI.pdf on the course webpage.

The “half” is that lectures will present the algorithm to convert a CFG into Chomsky
normal form differently—in a way that emphasizes the step of identifying “nullable” vari-
ables prior to the step of bypassing them, whereas the text combines both steps into one.
Doing so will bring a benefit later in Chapter 4. Hence for Thursday please also read the
handout https://cse.buffalo.edu/ regan/cse396/CSE396ChNF.pdf which is also on the course
webpage.

The other “whole” deviation is actually a “−1”: Please do not read the text’s formulation
of a pushdown automaton (PDA) in section 2.2. Or skim it, but treat the text’s compound
use of ε’s in various places to mean different things the way Perseus treated Medusa’s
snakes. Instead, when lectures reach chapter 3 they will treat PDAs as a special case of two-
tape Turing machines, thus not requiring you to learn a wholly separate notation for PDAs.
Furthermore, Chomsky NF leads naturally into section 2.3 anyway, because it enables a
simpler visualization of the proof of the CFL Pumping Lemma in which the tree is binary.
Section 2.4 will be mentioned only for a few brief passages toward the beginning that
have to do with deterministic PDAs (DPDAs), which again will be meshed into Chapter 3.
Illustrations of PDAs whch are also on the course webpage alongside Turing machines will
be shown later in April.

It may seem strange that we will still be in Chapter 2 through Week 9, with chapters
3,4,5,7 (and one proof in chapter 9 replacing that of the Cook-Levin Theorem in chapter 7)
still to come, but compare the numbers of pages in these chapters with what we’ve read.
The later material is higher-level (especially mapping reductions in section 5.3 which will
superimpose on the coverage of 5.1 while 5.2 is skipped) but it is less varied, so the lectures
too will have a straighter path through them.

The date of Prelim II will highly likely be Thursday, April 25 but this has not yet been
fixed.

Homework—part online and all individual work—due Thu. 3/28, 11:59pm:

(1) Using TopHat, the “Worksheet” titled Spr’19 HW5.1. There are 10 questions, each
worth 2 points, for 20 total. Important: The questions now give only one attempt.

(2) For the following languages L1,L2 over Σ = {a, b}, design context-free grammars G1,G2

such that L(G1) = L1 and L(G2) = L2. You need not prove your grammars correct, but as

https://cse.buffalo.edu/~regan/cse396/CSE396SI.pdf
https://cse.buffalo.edu/~regan/cse396/CSE396ChNF.pdf

usual you should include a few comments explaining how and why the grammars work
correctly. Also give a CFG G3 such that L(G3) = L1 ∪ L2. (12 + 12 + 6 = 30 pts.)

1. L1 = {ambm+nan : m ≥ 1,n ≥ 0},

2. L2 = {xby : #a(x) = #b(y)}.

(3) Consider the following CFG G with terminal alphabet Σ′ = {a, b, e,+, ·, ∗, (,)}. Here
we’ve written Σ′ because G is supposed to represent syntactically the legal regular expres-
sions over the target alphabet Σ = {a, b}, except that we are not providing a symbol for the
empty set (which we’ve seen is useful for calculating regular expressions but do you ever
need it for writing them in the first place?) and ‘e’ stands for the empty string in the syntax
without literally being ε in rules.

S→ a | b | e | S + S | S · S | S∗ | (S).

The periods here and below are just punctuation.

(a) Give both a parse tree and a leftmost derivation for the string r = ((a · b)∗ + a · a).

(b) Show that r is ambiguous in G by giving a different parse tree and corresponding
leftmost derivation for it.

(c) Briefly explain why one parse should be preferred over the other.

(d) Suppose we added the rule S→ SS and wrote r′ = ((a · b)∗ + aa) instead. Would doing
this fix the ambiguity problem?

(e) Give a CFG G′ such that L(G′) = L(G) and G′ is unambiguous. For proof it suffices to
compare your G′ with an example from lectures and/or the text, briefly. Then give a
parse tree for r (not r′) in your G′ and explain why the other parse tree can no longer
be imitated to produce r literally. (6 + 6 + 3 + 3 + 12 = 30 pts., for 80 on the set)

