
CSE396, Spring 2019 Problem Set 9 Due Thu. 5/2, 11:59pm

Reading:

The rest of the reading is: Chapter 5, sections 5.1 and 5.3, and Chapter 7, but taking the
proof of the NP-completeness of SAT to be the “alternative proof” in Chapter 9. Chapter 6
is skipped, likewise section 5.2. The “computation histories” part of 5.1 may be skimmed in
Thursday’s lecture or held over to next Tuesday.

I have already jumped over the subject of countability and uncountability in chapter 4, but
I recommend skimming it now as a way to reinforce your understanding of functions and for
reviewing “diagonalization” this way: Consider any function f that associates each point a in
a set A with a subset f(a) of A. The question is, does every subset of A get associated? If
A is finite, of size k say, then the answer is “obviously not”—because A has 2k > k subsets
but there are only k points to go around. But we can show this more expressly by actually
demonstrating a set that doesn’t get associated:

Df = {a ∈ A : a is not in the set f(a)}.

If Df did get associated—that is, Df = f(d) for some “set code” d ∈ A—then considering
whether d ∈ Df or not leads to a contradiction either way. So Df is not in the range of
f . Now the point of Cantor’s Theorem is that this logic works the same way even when
A is infinite—and when A = N it leads to the inference that the power set of N (which
under the correspondence between numbers and strings we can think of as the class of all
languages, decidable and undecidable) is uncountable. But uncountability isn’t driving the
bus—diagonalization is—so uncountability isn’t covered here.

The thing to realize about Chapter 5 is that it is titled “Reducibility” but Sipser defers the
key concept until section 5.3. This makes it like watching a movie where the title character
doesn’t show on screen until you’ve already finished all the popcorn. This is despite the
text foreshadowing it all through Chapter 4. I will put it up-front, so Tuesday’s lecture
will cover the definitions in section 5.3 before tackling the examples in section 5.1. The
chain of reductions will then start by reviewing how the end of last Tuesday’s lecture, after
defining KTM to be the complement of DTM , essentially reduced KTM to ATM via the simple
reduction function f(w) = 〈w,w〉. It will continue by reducing ATM to NETM (defined as
{〈M〉 : L(M) 6= ∅}, which is essentially the complement of ETM as defined in the text), and
then reducing ATM to the historical Halting Problem.

The TopHat portion is lengthier but important for final-exam (p)review. It is still coded
as questions with one right answer and a single attempt. However, here are some hints and
reminders about facts related to Chapters 2 and 4 that would be given if it had been coded
as having 2 attempts:

• The complement of a CFL need not be a CFL, so there is no general way to transform
a CFG G into a CFG G′ such that L(G′) = ∼L(G).

• The problem ECFG of whether L(G) = ∅ is decidable, but the problem ALLCFG of
whether L(G) = {0, 1}∗ is undecidable.



• A PDA P can be converted into an equivalent CFG and vice-versa. This plus the
decidability of the ACFG problem via Chomsky normal form makes the APDA problem
decidable too. (In fact, though the text doesn’t say this, the PDA-to-CFG process is
also computationally efficient, so that when we hit Chapter 7 in the last week we will
“officially” say that ACFG and APDA belong to polynomial time, which is stronger than
saying all individual CFLs belong to polynomial time.)

• If the answer to “Is L(M) = ∅” is no, this doesn’t mean L(M) = Σ∗. (Although, we
will bring this about for certain very special Turing machines M that we construct when
doing reductions.)

• We cannot do Cartesian product of two PDAs. Intuitively this is because they might
“fight” over control of the single stack a PDA is allowed. But we can do Cartesian
product of a PDA and a DFA, so long as the Boolean operation involved is not something
like symmetric difference which would involve complementing the PDA (which can’t be
done in general unless the PDA is deterministic). In particular, this is AOK for ∩ as
well as ∪, so the intersection of a CFL and a regular language is still a CFL.

Homework—part online and all individual work—due Thu. 5/2, 11:59pm.

(1) Using TopHat, the “Worksheet” titled Spr’19 HW9.1. There are 10 questions, each
worth 2 points, for 20 total. All are unique-answer questions with 1 attempt given. See list
of hints above.

(2) Give a decision procedure for the following computational problem:

Instance: A DFA M .

Question: Does L(M) equal its reversal?

You should begin by morphing the DFA M into an NFA N such that L(N) = L(M)R by
making each arc go the other way, making FN = {sM}, and making N have a new start state
with ε-arcs to all the old final states of M . Ultimately your algorithm should produce a DFA
M ′ such that deciding the EDFA problem on M ′ tells you the answer about M—it will channel
the text’s Theorem 4.5 but you should give the steps of how. (18 pts.)

(3) Examine the following decision problem:

Instance: A one-tape Turing machine M and an input x to M .

Question: Does M on input x ever erase a non-blank char by overwriting it by the blank?

Show that it is undecidable. Your answer should include giving your understanding of what
lectures said about the ability to code one-tape TMs so they only write blanks over non-
blank chars during a final “good housekeeping” stage before accepting—this is prefatory to
explaining why deciding this problem would achieve the impossible by deciding ATM . (You
need not use a “reduction” per-se. 15 pts., for 53 total on the set.)


