
CSE396, Spring 2021 Problem Set 9 Due Tue. 4/27, 11:59pm

Reading:

For next week, read Chapter 5, sections 5.1 and 5.3, skim/skipping section 5.2. The last
week will go into Chapter 7, but for the Cook-Levin Theorem of the NP-completeness of
SAT, will use the “alternative proof” in Chapter 9. Chapter 6 is skipped. The “computation
histories” part of 5.1 will be covered after section 5.3 and may even be held over into the
Tuesday of the last week.

I have already jumped over the subject of countability and uncountability in chapter 4,
but I recommend skimming it now as a way to reinforce your understanding of functions
and for reviewing “diagonalization” the way it was covered in the Thu. 4/22 lecture using
functions. The point of Cantor’s Theorem is that this logic works the same way even when
A is infinite—and when A = N it leads to the inference that the power set of N (which
under the correspondence between numbers and strings we can think of as the class of all
languages, decidable and undecidable) is uncountable. But uncountability isn’t driving the
bus—diagonalization is—so I soft-pedal it.

The thing to realize about Chapter 5 is that it is titled “Reducibility” but Sipser defers
the key concept until section 5.3. I put it up-front, doing the definitions in section 5.3 before
tackling the examples in section 5.1. The chain of reductions will continue by reducing ATM

to NETM (defined as {〈M〉 : L(M) 6= ∅}, which is essentially the complement of ETM as
defined in the text), and then reducing ATM to the historical Halting Problem.

The TopHat portion is lengthier but important for final-exam (p)review. It is still coded
as questions with one right answer and a single attempt. However, here are some notes and
reminders about facts related to Chapters 2 and 4 that would be given if it had been coded
as having 2 attempts:

• The complement of a CFL need not be a CFL, so there is no general way to transform
a CFG G into a CFG G′ such that L(G′) = ∼L(G).

• The problem ECFG of whether L(G) = ∅ is decidable, but the problem ALLCFG of
whether L(G) = {0, 1}∗ is undecidable.

• A PDA P can be converted into an equivalent CFG and vice-versa. This plus the
decidability of the ACFG problem via Chomsky normal form makes the APDA problem
decidable too. (In fact, though the text doesn’t say this, the PDA-to-CFG process is
also computationally efficient, so that when we hit Chapter 7 in the last week we will
“officially” say that ACFG and APDA belong to polynomial time, which is stronger than
saying all individual CFLs belong to polynomial time.)

• A deterministic PDA M can be converted into a DPDA M ′ such that L(M ′) = ∼ L(M).
The proof must first make M total before interchanging qacc and qrej.

• If the answer to “Is L(M) = ∅” is no, this doesn’t mean L(M) = Σ∗. (Although, we
will bring this about for certain very special Turing machines M that we construct when
doing reductions.)



• We cannot do Cartesian product of two PDAs. Intuitively this is because they might
“fight” over control of the single stack a PDA is allowed. But we can do Cartesian
product of a PDA and a DFA, so long as the Boolean operation involved is not something
like symmetric difference which would involve complementing the PDA (which can’t be
done in general unless the PDA is deterministic). In particular, this is AOK for ∩ as well
as ∪, so—as was mentioned midway through the Week 10, Tue. 4/6 lecture regarding
closure properties after the CFL Pumping Lemma—the intersection of a CFL and a
regular language is still a CFL.

Homework—part online (TopHat), part written, and all individual work :

(1) Using TopHat, the “Worksheet” titled S21 HW9 Online Part (10 Qs, 20 pts.)

The other two problems are to be submitted as PDFs using the CSE Autograder system.

(2) Consider the following decision problem: Given a CFG G = (V,Σ, R, S) with Σ = {a, b},
is L(G) ∩ a+ 6= ∅? That is, does S generate one or more strings that consist only of one or
more a’s? Sketch a decision procedure in prose similar to what the text does in section 4.1
with ECFG and what my lectures did when comparing the latter to the algorithm for whether
ε ∈ L(G).

(You may if you wish assume the conversion from G to a G′ without ε-rules as the first step
of your procedure with no other comment needed on how to do it, but further steps should
show all details including sketching any while-loops that may be needed. 24 pts.)

(3) Consider the following decision problem—and its two variants in parts (b) and (c) where
the machine M is allowed to be a deterministic pushdown automaton or a deterministic Turing
machine, respectively.

Instance: A DFA M = (Q,Σ, δ, s, F ) and two strings u, v ∈ Σ∗.

Question: Does L(M) contain all strings that can be formed by concatenating u and v as
often as desired in any order?

(a) Give in pseudocode a decision procedure for this problem. (First ask yourself, what kind
of language is (u ∪ v)∗? 18 pts.)

(b) With reference to the above bulleted notes, tweak your procedure so that it solves the
somewhat more general problem where M can be given as a DPDA not just a DFA. (6
pts.)

(c) Show that the problem becomes undecidable when M is allowed to be any DTM. You
need not use a mapping reduction per se, but you should consider modified machines M ′

that run a given machine M on its own code, and only if and when M accepts its own
code, does M ′ then think about accepting any strings. (12 pts., for 36 on the problem
and 80 total on the set)


