CSE396 Spring 2026 Week 3 Thu.: Regexps to NFAs to DFAs.

Continuing both the inductive definition of regular expressions and the proof of their having equivalent
NFAs (with e-transitions):

(12)y = a - Bisaregexp; L(y) = A-B = {xy: x € A Ay € B}.
L(y) = L(a) -L(B)

Na@f>e<@Nﬁ

Then L(N,) = L(N,) - L(INg) because....processing....

To write the reasoning out: Ny can process a string z from its start state s,, = s, to its (unique)
final state f, = fjifand only if z has a first part x that gets processed from s, to f, and a
second part i that gets processed from sz to fﬁ (with the € from f, to Sg silently in-between). l.e.:
z € L(N,) <z € {x-y: x € L(N,) Ay € L(Ng)} < z € L(N,)-L(Np). Thus
L(N,) = L(N,)-L(Ng) .

By IH, this equals L(«) - L($), which by how the semantics of y =

o - B is defined via L(y) = L(a)- L(p) finally gives us the needed conclusion L(N,) = L(y).

Now back to our recursive construction of regular expressions and NFAs corresponding to them.

(13) Given any regexp o, ¥ = «a” is aregexp; L(») = L(a)*; and we can build:

€

This is a Feedback Circuit

L AN
—® N >—0

Is this good? We want to make L(N,) = L(N,)*. Thenthe IH L(N,) = L(«a)
will give L(N,) = L(a)" = L(a*) = L(y) as needed---to finish the whole proof.

Whoops: The machine requires N, to be entered at least once, so it really does L(N,)*, not L(N,,)".
There was what we now consider a glitch in an old programming language's for-loop where it would
execute at least once even if the range was null. To get * for "zero-or-more" rather than superscript *
for "one-or-more" we can add an extra e-arc:

(13) Given any regexp a, ¥ = ais aregexp; L(y) = L(a)*; and we can build:

N. = This is a Feedback Circuit
Vi1 with bypass.

he yellow fix is good too
because (@ +€)" = a”.

This completes both the formal inductiuve definition of regular expressions y and also the inductive
proof that there is always an NFA N, such that L(N,,) = L(y). Moreover, the proof gives an algorithm

for building an equivalent NFA. The algorithm works by recursion on operators in the regular
expression.

In practice, you don't have to follow the above proof quite so literally, and you can often avoid most fo
the e-arcs that it introduces. The most common place to save is in the concatenation case.

(12)y = a - Bisaregexp; L(y) = A-B = {xy: x € A Ay € B}.

e 0>/

can become

N, D m .>

unless there is both an arc into sz in N and an arc out of fain

What's "electric" about this? Think of the N, and/or Nﬁ as like resistors (or capacitors) in electrical
circuit diagrams. The s and f points are like entry and terminal nodes; the extra step of having just one
accepting state fy in the final machine is like the standard advice to ground the final circuit at a single
terminus. Then say, what fundamental circuit construction primitives do the three induction cases

embody? | will try to argue later this month that these language operations actually do reflect "wiring" in
our brains.

Some Examples

In the earlier lecture example lecture of (ab)*(ba)*, we do need the e-arc in the middle:

O Start
v - O——@)
b
b a a \
(ab)* - (ba)* @ (ab U ba)*

Does not allow baab Does allow baab

Shortcutting the e-arc

basically creates a DFA
4 -
1—=

"Arcs to the
dead state
not shown."

(ab)* U (ba)*

a Allows neither
abba nor baab
(In lecture | added

(ab)*(ba)*

the new state f with
arcs from p and t,
which originally were
the accepting states.)

Instead, we can
redesign the FA
to not have any N3 =
e-arcs. Thenitis
a "DFA manqué"

meaning it lacks

only a dead state
and arcs to it.

The example at bottom right could be "shortcutted" by making s an accepting state (which you can do
anyway) and making its arcs go on a to state g and on b to state r instead. Some texts stop to prove
the theorem that every NFA with e-arcs can be (efficiently!) converted into an equivalent NFA without
them, in order to do "NFA-to-DFA" without them. Our text by Sipser tries to have it both ways by doing
the proof first without them and then with them, but (on Thursday) | will prefer to embrace the €'s. But
for building NFAs, you can usually avoid the e-arcs on the fly because many common examples involve
languages where things naturally go forward.

Example: r = (ab+ bb)" - (aa + bb) - (b(a+€))" -a

4 "Transcribing"
N, = ! the regular
@ expression
b "is" the strategy.

note: b(a+¢€) = b+ba

How can we track this machine on an input such as x = bbaabbaa? We can try individual
computations by trial-and-error:

(s,b,93,b,9s5,a, f,a ---? Crash!

(s,b,q91,b,5,a,92,a,95,b,44,b, - Crash!

(s,b,91,b,5,a,92,a,95,b,95,b, 45,4, f,a --- Cannot process the final 4, so Crash!
(s,b,91,b,5,a,492,0a,95,b,45,b,94,a,95,a, f): end of string, and state is f, so accept.

The idea of the DFA conversion in the next lecture is to keep track of all the possibilities in-parallel:

({s}, b, 191,93}, b, 1s, g5}, a,{f, 92}, Y, 0,{94,95), 0,194, 95}, a,{f, g5}, a, {f}).

The Equivalence Theorem, Part ll: NFA-to-DFA

Theorem: Given any NFAN = (Q,X,0,s,F)we canbuildaDFAM = (Q,X, A, S, F) such that
L(M) = L(N).

Notice that s got capitalized to S, which hints that S is a set rather than a single element. And 6 got
capitalized to A. Q and F were already sets, but they got...curlier. What does that mean? Well, that
they are "of an even higher order"---sets of sets, for instance. An important set of sets is:

P(Q), also written 29, called the power set of Q and defined as {R: R C Q}.

Unlike what textbooks tend to say, we will not necessarily make Q be all of P(Q), just those subsets R
that are reachable from S. What this means is that the states of the DFA will be sets of states of the
NFA---the states that are possible upon processing a given part of the input string x.

This suggests the question, which states (of N) are possible before we process any chars in x?
Obviously the start state s of N is possible, but are there any others? Yes, if there are e-transitions out

of s. Define E(s) to be the set of states of N that are reachable this way. If N has no e-arcs (out of s or
overall), then E(s) is just {s}. Thus we begin building M by taking

S = E(s).

We could have said "S" in place of "E(s)" to begin with, but the E notation in the textbook is useful
because we can use it to define the following for any set R C Q of states of N:

E(R) = {r: forsomeq € R, N can process € from q tor}

This is called the epsilon-closure of R. If E(R) = R then R is already epsilon-closed. It sounds
"weeny" technical, but we will only need to use subsets that are ¢-closed. The insights are

« E(E(R)) = E(R): applying a closure operation once is always enough.

» The states of the DFA need only be the possible subsets of states of the NFA.

« A subset R is good if it contains at least one accepting state, i..e, if R N F # @, because that
will mean it is possible for the NFA to accept the string.

We are thus ready to specify this much of the DFA:

Q = {possible R C Q};

« X is the same;

S = E(s);

F ={Re Q:RnNnF # o}

The only component of M left to define is A. Forany P € Q (i.e., P C Q and P is possible) and
¢ € X define

A(P,c) = {r: forsomep € P, N can process ¢ from p to r}.

This means that (p, ¢, 1) can be a virtual instruction, but it might not be a literal instruction in 6 because
we might have to process €'s before and after the character c. We can save half the trouble by
realizing that any "€'s before" are taken care of by the possible set-states P already being e-closed.
The text doesn't say this, but when solving these problems, it is IMHO a help to use the following
definition first to build a table from the given NFA:

O(p,c) = {r: you can get from p to r by first processing c at p, then doing any e-arcs}.

More formally, 5(p,c) = {r: (A9)[(p,c,q9) € 6 A r € E(q)}. Then for possible P € Q andc € X,
we get the equivalent definition

AP0 = Jsw, o).

peP

Even if there are no €'s, the idea of limiting to "possible" P often helps in a second way: we avoid
having to define instructions for set-states that are never actually encountered. At the beginning, we
encounter S. Then "expanding" S means computing A(S, c) for each char c. Thus, if X = {0, 1} then
the "first generation" are the states P, = A(S,0) and P; = A(S,1). One (or both) of these might
equal S again, in which case we have nothing more to do with it. But whichever one(s) are new need to
be expanded again to fill out the "second generation." We keep on expanding new set-states---"new"
meaning we have not encountered that exact set before---until a generation turns up no new state.
Then we say "the DFA has closed" and we're done.

[FYI: Itis really a breadth-first search that has closed. If you've seen breadth-first search executed on
graphs, this one is scaled up in a big way. It is not done on the graph Gy of N but rather on the
potentially exponentially bigger graph G whose nodes are the sets of states. The graph G is given
implicitly via the table 6 and the rule for A. Just don't think you necessarily have to write out all

2% = 16 set-states when given a 4-state NFA like some sources show in diagrams.

If there are no €'s, then 0 is just the same as the text's set-valued 6 function. But when there are €'s,
writing out the § table (which cuts out the €'s) is a much better use of your time, IMPO, than just
copying out the text's 6 table with the € column. Why just recopy information that is already explicitly
present in the diagram? Whereas, IMHO, the step from N to 0 is not typo-prone when done on-the-fly
and most usefully breaks your work in half.]

Example

...'ﬂ New Stade
\ 10

. A -5’2’1:} 9ty o¥]-

5

N)

[Lecture ended here. See next Tuesday's notes for the pickup.]

