
CSE396 Spring 2026 Week 3 Thu.: Regexps to NFAs to DFAs.
 
Continuing both the inductive definition of regular expressions and the proof of their having equivalent 
NFAs (with -transitions):𝜖

 

 
Now back to our recursive construction of regular expressions and NFAs corresponding to them.  

 
Whoops: The machine requires  to be entered at least once, so it really does , not .  N𝛼 L N( 𝛼)+ L N( 𝛼)*

There was what we now consider a glitch in an old programming language's for-loop where it would 
execute at least once even if the range was null.  To get  for "zero-or-more" rather than superscript  * +

for "one-or-more" we can add an extra -arc:𝜖

 

 

(I2)  is a regexp; 𝛾 =  𝛼 ⋅  𝛽 L 𝛾  =  A ⋅  B =  xy :  x ∈ A ∧  y ∈  B .( ) { }

s𝛼
f𝛼N𝛼

s𝛽 f𝛽N𝛽

Then  because....processing....L N  =  L N  ⋅  L N( 𝛾) ( 𝛼) ( 𝛽)

To write the reasoning out:  can process a string  from its start state  to its (unique)N𝛾 z s  =  s𝛾 𝛼

final state  if and only if  has a first part  that gets processed from  to  and af  =  f𝛾 𝛽 z x s𝛼 f𝛼

second part  that gets processed from  to  (with the  from  to  silently in-between).  I.e.:y s𝛽 f𝛽 𝜖 f𝛼 s𝛽
  Thusz ∈  L N  ⟺ z ∈  x ⋅ y :  x ∈  L N  ∧  y ∈  L N  ⟺  z ∈  L N ⋅ L N .( 𝛾) { ( 𝛼) ( 𝛽)} ( 𝛼) ( 𝛽)

.  L N  = L N ⋅ L N  ( 𝛾) ( 𝛼) ( 𝛽)

By IH, this equals , which by how the semantics of L 𝛼 ⋅ L 𝛽( ) ( ) 𝛾 =

 is defined via finally gives us the needed conclusion  𝛼 ⋅ 𝛽 L 𝛾  =  L 𝛼 ⋅ L 𝛽  ( ) ( ) ( ) L N  =  L 𝛾 .( 𝛾) ( )

:N𝛾

L 𝛾  =  L 𝛼  ⋅ L 𝛽( ) ( ) ( )

𝜖

s𝛾
𝜖

f

𝜖

s𝛼 f𝛼N𝛼

(I3) Given any regexp ,   is a regexp; ; and we can build:𝛼 𝛾 =  𝛼* L 𝛾  =  L 𝛼( ) ( )*

s𝛾 f𝛾

𝜖

𝜖𝜖

N  =𝛾

Is this good?  We want to make .  Then the IH L N  =  L N( 𝛾) ( 𝛼)* L N  =  L 𝛼( 𝛼) ( )

will give  as needed---to finish the whole proof.L N = L 𝛼 = L 𝛼 = L 𝛾( 𝛾) ( )* * ( )

This is a Feedback Circuit



 

 
This completes both the formal inductiuve definition of regular expressions  and also the inductive 𝛾

proof that there is always an NFA  such that .  Moreover, the proof gives an algorithm N𝛾 L N = L 𝛾( 𝛾) ( )

for building an equivalent NFA.  The algorithm works by recursion on operators in the regular 
expression.  
 
In practice, you don't have to follow the above proof quite so literally, and you can often avoid most fo 
the -arcs that it introduces.  The most common place to save is in the concatenation case.𝜖

 
What's "electric" about this?  Think of the  and/or  as like resistors (or capacitors) in electrical N𝛼 N𝛽

circuit diagrams.  The  and  points are like entry and terminal nodes; the extra step of having just one s f

accepting state  in the final machine is like the standard advice to ground the final circuit at a single f𝛾

terminus.  Then say, what fundamental circuit construction primitives do the three induction cases 
embody?  I will try to argue later this month that these language operations actually do reflect "wiring" in 
our brains.
 
 

 

 

s𝛼 f𝛼N𝛼

(I3) Given any regexp ,   is a regexp; ; and we can build:𝛼 𝛾 =  𝛼* L 𝛾  =  L 𝛼( ) ( )*

s𝛾 f𝛾

𝜖

𝜖𝜖

N  =𝛾
This is a Feedback Circuit

𝜖
𝜖

with bypass.

The yellow fix is good too
because .𝛼 + 𝜖  =  𝛼( )+ *

(I2)  is a regexp; 𝛾 =  𝛼 ⋅  𝛽 L 𝛾  =  A ⋅  B =  xy :  x ∈ A ∧  y ∈  B .( ) { }

s𝛼 f𝛼N𝛼
s𝛽 f𝛽N𝛽𝜖

:N𝛾

can become

s𝛼 f = s𝛼 𝛽N𝛼
f𝛽N𝛽:N𝛾

unless there is both an arc into  in  and an arc out of  in .s𝛽 N𝛽 f𝛼 N𝛼



Some Examples
 
In the earlier lecture example lecture of , we do need the -arc in the middle:ab ba( )*( )* 𝜖

 

 
The example at bottom right could be "shortcutted" by making  an accepting state (which you can do s

anyway) and making its arcs go on  to state  and on  to state  instead.  Some texts stop to prove a q b r

the theorem that every NFA with -arcs can be (efficiently!) converted into an equivalent NFA without 𝜖

them, in order to do "NFA-to-DFA" without them.  Our text by Sipser tries to have it both ways by doing 
the proof first without them and then with them, but (on Thursday) I will prefer to embrace the 's.  But 𝜖

for building NFAs, you can usually avoid the -arcs on the fly because many common examples involve 𝜖

languages where things naturally go forward.
 
 
 

 

 

𝜖
fs

q r

a
b

a
b

N  =  1

ab ⋅ ba( )* ( )*

s

q

N  =  2

a
b

r

a

b

ab ∪  ba( )*

Does not allow baab Does allow baab

fs

q r

a
b

a

N'  =  1

ab ba( )*( )*

bb

𝜖

f

p

q r

a
b

a b

N  =  3

s
𝜖

ab  ∪  ba( )* ( )*

Allows neither 
 nor abba baab

Shortcutting the -arc𝜖
basically creates a DFA

"Arcs to the
dead state
not shown."

Start Start

Start Start

t
𝜖

𝜖

p

q r

a

b
a b

N  =  3

sStart

t

a b

(In lecture I added
the new state  withf
arcs from  and , p t
which originally were
the accepting states.)

Instead, we can
redesign the FA
to not have any 
-arcs.  Then it is𝜖

a "DFA manqué"
meaning it lacks
only a dead state
and arcs to it.



Example: .r =  ab + bb ⋅ aa + bb ⋅ b a + 𝜖 ⋅ a( )* ( ) ( ( ))*

 
How can we track this machine on an input such as ?  We can try individual x =  bbaabbaa
computations by trial-and-error:
 

 ---? Crash!s, b, q , b, q , a, f, a( 3 5

 --- Crash!s, b, q , b, s, a, q , a, q , b, q , b,( 1 2 5 4

 --- Cannot process the final , so Crash!s, b, q , b, s, a, q , a, q , b, q , b, q , a, f, a( 1 2 5 5 5 a

: end of string, and state is , so accept.s, b, q , b, s, a, q , a, q , b, q , b, q , a, q , a, f( 1 2 5 5 4 5 ) f
 
The idea of the DFA conversion in the next lecture is to keep track of all the possibilities in-parallel:
 

.  s , b, q , q , b, s, q , a, f, q , a, q , b, q , q , b, q , q , a, f, q , a, f({ } { 1 3 } { 5 } { 2 } { 5 } { 4 5 } { 4 5 } { 5 } { })

 
 
The Equivalence Theorem, Part II: NFA-to-DFA
 
Theorem: Given any NFA  we can build a DFA  such that N =  Q, 𝛴, 𝛿, s, F( ) M =  Q, 𝛴, 𝛥, S,F( )

.L M  =  L N( ) ( )

 
Notice that  got capitalized to , which hints that  is a set rather than a single element. And  got s S S 𝛿

capitalized to .   and  were already sets, but they got...curlier.  What does that mean?  Well, that 𝛥 Q F
they are "of an even higher order"---sets of sets, for instance.  An important set of sets is:
 

 also written , called the power set of  and defined as .P Q ,( ) 2Q Q R :  R ⊆  Q{ }

 
Unlike what textbooks tend to say, we will not necessarily make  be all of , just those subsets  Q P Q( ) R

that are reachable from .  What this means is that the states of the DFA will be sets of states of the S

NFA---the states that are possible upon processing a given part of the input string .x
 
This suggests the question, which states (of ) are possible before we process any chars in ?  N x

Obviously the start state  of  is possible, but are there any others?  Yes, if there are -transitions out s N 𝜖

 

 

f

s

q1

a, bb

a

b

N  =  r

q2

q3

q4

q5

Start b

a

a a

b

b

"Transcribing"
the regular
expression 
"is" the strategy.

note: b a + 𝜖  =  b + ba( )

a

b



of .  Define  to be the set of states of  that are reachable this way.  If  has no -arcs (out of  or s E s( ) N N 𝜖 s

overall), then  is just .  Thus we begin building  by taking E s( ) s{ } M
 

.  S =  E s( )

 
We could have said " " in place of " " to begin with, but the  notation in the textbook is useful S E s( ) E

because we can use it to define the following for any set  of states of :R ⊆  Q N
 

E R  =  r :  for some q ∈  R,  N can process 𝜖 from q to r( ) { }

 
This is called the epsilon-closure of .  If  then  is already epsilon-closed. It sounds R E R  =  R( ) R

"weeny" technical, but we will only need to use subsets that are -closed. The insights are 𝜖

 
• : applying a closure operation once is always enough.E E R  =  E R( ( )) ( )

• The states of the DFA need only be the possible subsets of states of the NFA. 
• A subset  is good if it contains at least one accepting state, i..e, if , because that R R ∩  F ≠  ∅

will mean it is possible for the NFA to accept the string.
 
 We are thus ready to specify this much of the DFA:
 

• Q =  possible R ⊆  Q ;{ }

•  is the same;𝛴

• ;S =  E s( )

• F =  R ∈  Q :  R ∩  F ≠  ∅ .{ }

 
The only component of  left to define is .  For any  (i.e.,  and  is possible) and M 𝛥 P ∈ Q P ⊆  Q P

definec ∈ 𝛴 

 
.𝛥 P, c  =  r :  for some p ∈ P,  N can process c from p to r( ) { }

 
This means that  can be a virtual instruction, but it might not be a literal instruction in  because p, c, r( ) 𝛿

we might have to process 's before and after the character .  We can save half the trouble by 𝜖 c

realizing that any " 's before" are taken care of by the possible set-states  already being -closed.  𝜖 P 𝜖

The text doesn't say this, but when solving these problems, it is IMHO a help to use the following 
definition first to build a table from the given NFA:
 

you can get from  to  by first processing  at , then doing any -arcs .p, c  =  r :  𝛿( ) { p r c p 𝜖 }

 
More formally, .  Then for possible  and , p, c  =  r :  ∃q p, c, q ∈ 𝛿 ∧  r ∈  E q𝛿( ) { ( )[( ) ( )} P ∈ Q c ∈ 𝛴

we get the equivalent definition

.𝛥 P, c  =  p, c( ) ⋃
 

p∈P

𝛿( )

 

 



 
Even if there are no 's, the idea of limiting to "possible"  often helps in a second way: we avoid 𝜖 P
having to define instructions for set-states that are never actually encountered.  At the beginning, we 
encounter .  Then "expanding"  means computing  for each char .  Thus, if  then S S 𝛥 S, c( ) c 𝛴 =  0, 1{ }

the "first generation" are the states  and .  One  (or both) of these might P  =  𝛥 S, 00 ( ) P  =  𝛥 S, 11 ( )

equal  again, in which case we have nothing more to do with it.  But whichever one(s) are new need to S
be expanded again to fill out the "second generation."  We keep on expanding new set-states---"new" 
meaning we have not encountered that exact set before---until a generation turns up no new state.  
Then we say "the DFA has closed" and we're done.
 
[FYI: It is really a breadth-first search that has closed.  If you've seen breadth-first search executed on 
graphs, this one is scaled up in a big way.  It is not done on the graph  of  but rather on the GN N

potentially exponentially bigger graph  whose nodes are the sets of states.  The graph  is given G G

implicitly via the table  and the rule for .  Just don't think you necessarily have to write out all 𝛿 𝛥

 set-states when given a -state NFA like some sources show in diagrams.2  =  164 4

 
If there are no 's, then  is just the same as the text's set-valued  function.  But when there are 's, 𝜖 𝛿 𝛿 𝜖

writing out the  table (which cuts out the 's) is a much better use of your time, IMPO, than just 𝛿 𝜖

copying out the text's  table with the  column.  Why just recopy information that is already explicitly 𝛿 𝜖

present in the diagram?  Whereas, IMHO, the step from  to  is not typo-prone when done on-the-fly N 𝛿

and most usefully breaks your work in half.]
 
 
Example

[Lecture ended here.  See next Tuesday's notes for the pickup.]

 

 


