
CSE396 Lecture Thu. 2/11: NFAs and Regular Expressions
 
[I went over academic integrity rules and guidelines on homeworks.  The main guideline is that study 
groups are OK for understanding lectures and the text, but must stop short of trying to work out the 
problems ("red zone").  Any Qs in that zone should go to me or the TA.  Then I showed how AI can now 
solve the TopHat problems---well, with one error---so I specifically barred using Gemini or etc. on those.]
 
 
Lectures so far have featured "Type Discipline", as exemplified by saying that instructions  have p, c, q( )

type , or in C++ terms, type triple<State,char,State>.  Now we will upset this Q × 𝛴 × Q

uniformity.
 
Definition 1: An NFA with -transitions also allows instructions of the form .  They enable the 𝜖 p, 𝜖, q( )

machine to go from state  to state  without processing a character.  p q
 
In the Sipser text, this is included in the basic definition of NFA.  But IMHO it is useful to keep the 
concepts separate and use the abbreviation "NFA " when -transitions are allowed.  They break the 

𝜖
𝜖

type discipline because  is a string not a char.  Sipser continues treating  as a function rather than 𝜖 𝛿

a set, giving it range , the power set of , because both  and  can be sets of more 2Q Q 𝛿 p, c( ) 𝛿 p, 𝜖( )

than one possible next state---or  when there is no possible next state.  Teacherly advice: stick with ∅

the set-of-code-triple form.  This form is especially nice for the following definition, which applies to 
DFAs, NFAs, and NFA s all in one shot:  (Purple indicates definitions that are not in the text and not 𝜖

standard nomenclature.)
 
Definition 2: Say that a finite automaton  can process a string  from state  to state  if there is a N x p q
sequence of instructions
 

,  p, u , q q , u , q q , u , q ⋯ q , u , q q( 1 1)( 1 2 2)( 2 3 3) ( m-2 m-1 m-1)( m-1 u , qm )

 
such that .  Here  is at least the length  of  but can be greater if some of u u ⋯ u  =  x1 2 m m n = |x| x

the  components are . Then we write  (with  understood) and formally define:ui 𝜖 x ∈  Lp,q N

 
.L N  =  ∪  L( ) f ∈F s,f

 
That is, the language  of the automaton  is the set of strings  such that  can process  from L N( ) N x N x
its start state to some accepting state.  The sequence of triples themselves (note that the ends "match 
like dominoes") is called a computation or computation path.
 
If  has only one accepting state  (a design goal we can meet for NFAs but often not for DFAs) then N f

the language is just . An example of a DFA that needs to have two accepting states is the "spears Ls,f

and dragons" game that was shown in last week's demo.
 

 

 

https://cse.buffalo.edu/~regan/cse199/GeminiTopHatMistake.png


 

 
 
So what are NFAs good for?  The very end of last Thursday's third lecture gave a motivation of 
economizing on the number of states.  But even when the NFA has the same number of states, it can 
be argued as being conceptually clearer.  
 
Here is an example.  Consider the language of strings over  that begin by repeating  zero 𝛴 = a, b{ } ab

or more times and then repeat  zero or more times (without being allowed to do more of  after that). ba ab

 Examples:  is in the language.  But  is not, because of the last .  The string  by ababbaba abbaab ab abab

itself is OK, because the "zero option" is allowed for the  part.  Likewise,  uses zero-option for ba baba

 

 

s q

$

0, $
D

x' =  $DDD

dead
 but  is not acceptingx' ∈  Ls,dead dead

so  is not in the language.x'

Without the dead state and arc to it, the NFA on input  would "crash" in state   N x =  $DD s.

Even though  is an accepting state (and even though this would count as legal termination bys

a Turing machine), not all of  would be processed, so it does not count in the FA's language. x

With the dead state present,  gets processed to , but  so  still.x dead dead ∉  F x ∉  L N( )

DFA  M =

Start (no spears)

0

0,$, D

An accepting computation on input  is .   x =  $0D s, $, q q, 0, q q,D, s( )( )( )

Thus  and since the start state is accepting, .x ∈  Ls,s x ∈  L M( )

 
On the other hand, consider

One spear in hand

s, $, q q, D, s s, D, dead( )( )( )

F =  s, q{ }

s q

$

0, $
D

x' =  $DD

N :

 without the dead state is technically an NFA .  Then stringM N

0

cannot be processed.

If you add -arcs to make a single accepting state, it is also technically an NFA:𝜖

s q

$

0, $D

N' :

0

This also means that for an
NFA, having all states in F
does not mean that the
language is all strings.

f

𝜖 𝜖

The above accepting computation
on the string  nowx =  $0D
technically becomes 
s, $, q q, 0, q q, D, s s, 𝜖, f( )( )( )( )

The language of  is just N' Ls,f

s, $, q q, D, s s, D = crash!( )( )( "Crashing" in an accepting state is not accepting the string.

The machine N'

still does not have any
actual nondeterminism. The string  still cannot be processed.$DD



the first part.  But  is not allowed, because it gets the parts in the wrong order.  And how about ?  baab 𝜖

It is in because the "zero option" is allowed for both parts.
 
As a first example of a regular expression that does some grouping, this language can be denoted by 

.  Here are a DFA and an NFA:ab ⋅ ba( )* ( )*

 

 

 
Between "NFA" and "DFA", which is the more basic, fundamental concept?  The notion of DFA seems 
simpler, so you might go with that.  But let's morph this question into one of object-oriented design 
philosophy: between class DFA and class NFA, which should be the base class?
 
class ??? {

   set<State> Q;
   set<char> Sigma;
   State s;
   set<State> F;
   set<triple<State,char,State> > delta;
};

 
My position: NFA should be the base class, because a DFA "Is-A" NFA.  In this O-O sense, "NFA" is the 
more basic concept.  [Maybe insert discussion of the "Square Is-A Rectangle?" dilemma, but 
maintain that const Square definitely Is-A const Rectangle.]
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Technically we "cheated" by not
including the dead state in .  SoM

 really has 5 states.  M

a

dead

a
b

s, a, q q, b, s ...( )( )
s, a, q q, b, s s, 𝜖, f ...( )( )( )

 have actual nondeterminism?Does N

abba =  ab ⋅ ba =  ab ⋅ 𝜖 ⋅ ba
abab =  ab ⋅ ab but we don't use the

-arc after the first .𝜖 ab

Not when a next
char comes

a, b

𝜖
fs

N' =  

ab ba

The most economical diagram is at right.
The triples  and  technicallys, ab, s( ) f, ba, f( )

have regular expressions as middle component.
We will see these Generalized NFAs next week.



 
The most instrumental reason to use NFAs, however, is their relationship to regular expressions.  
Between now and the next lecture, we will try to convince you this relationship is "electric" in a literal 
sense.  We've already introduced all the ingredients informally, so let's dive right in to a formal 
inductive definition of them.   Intertwined will be an inductive proof of the theorem that for every 
regexp  we can build an NFA   such that the language  denoted by .𝛼 𝜖 N L N =( ) L 𝛼( ) 𝛼

 
"Defineorem": Regular Expressions and Their Corresponding NFAs (with -transitions):𝜖

 

 

(B1)  is a regexp; ∅ L ∅  =  ∅;       N  =  ( ) ∅
s f 𝛿 =  ∅( )

(B2)  is a regexp; 𝜖 L 𝜖  =  𝜖 ;       N  =  ( ) { } 𝜖 s f
𝜖

For all chars :c ∈  𝛴

(B3)  is a regexp; c L c  =  c ;       N  =  ( ) { } c
s f

c

This completes the basis of an inductive definition of regular expressions. Now let  and  𝛼 𝛽

be any two regular expressions, with languages  and .  By inductiveA =  L 𝛼( ) B =  L 𝛽( )

hypothesis (IH) we have NFAs  and  such that  and .  Then:N𝛼 N𝛽 L N  =  A( 𝛼) L N  =  B( 𝛽)

Now to complete the induction case (I1) we need to show how to build an NFA   such𝜖 N𝛾

that .  What we have to work with is (are)  and .  We know they haveL N  =  L 𝛾( 𝛾) ( ) N𝛼 N𝛽

start states we can call  and .  Taking a cue from the base case NFAs, and mainly for s𝛼 s𝛽
convenience, we may suppose they have unique accepting states  and . Besides that,f𝛼 f𝛽

we make no assumptions about their internal structure, so we draw them as "blobs": 

(I1)  is a regexp; 𝛾 =  𝛼 ∪  𝛽 L 𝛾  =  A ∪  B.( )

s𝛼 f𝛼 s𝛽 f𝛽N𝛼 N𝛽

The goal is to connect them together to make  with needed properties, also for the cases:N𝛾

(I2)  is a regexp; 𝛾 =  𝛼 ⋅  𝛽 L 𝛾  =  A ⋅  B.( )

(I3)  is a regexp; 𝛾 =  𝛼* L 𝛾  =  A .( ) * (In I3 we have only  given.)N𝛼

  has 𝛿 s, 𝜖, f( )

 has 𝛿 s, c, f( )

alpha betagamma



1.                                            by machine construction;L N  =  L N  ∪  L N( 𝛾) ( 𝛼) ( 𝛽)

2.  and                               by inductive hypothesis;L N  =  L 𝛼( 𝛼) ( ) L N  =  L 𝛽( 𝛽) ( )

3. Thus     by definition of .L N  =  L 𝛼  ∪  L 𝛽  =  L 𝛼∪ 𝛽  =  L 𝛾( 𝛾) ( ) ( ) ( ) ( ) 𝛾

 
[I will continue as time permits by copy-and-paste and moving things around to do the other two 
inductive cases to complete the proof.  ...  As it happened, time ended here.  I used the chalkboard for 
this  case but wrote  instead.  I put all the following up before drwing the picture:∪ 𝛾 = 𝛼+ 𝛽

 
• The definition .L 𝛾 = L 𝛼 ∪ L 𝛽( ) ( ) ( )

• The inductuive hypothesis (IH) of their being NFA s  and  for the taking such that 𝜖 N𝛼 N𝛽

 and .L N = L 𝛼( 𝛼) ( ) L N = L 𝛽( 𝛽) ( )

• The goal of building  such that  needed to complete the induction step.N𝛾 L N = L 𝛾( 𝛾) ( )

• How you can deduce the goal after building  such that .N𝛾 L N = L N ∪ L N( 𝛾) ( 𝛼) ( 𝛽)

 
The statement  is what you get from the diagram.  The next lecture will pick up L N = L N ∪ L N( 𝛾) ( 𝛼) ( 𝛽)

with the concatenation and star cases.]
 
 

 

 

Construction for (I1):

N  =  𝛾 s𝛾

s𝛼 f𝛼N𝛼

s𝛽 f𝛽N𝛽

𝜖

𝜖

This builds , but we still need to prove it is correct, i.e., . Note the rhythm:N𝛾 L N  =  L 𝛾  ( 𝛾) ( )

note rule:  𝜖 · x =  x

for all strings .x

f𝛾

𝜖

𝜖

Target :  L 𝛾  =  L 𝛼  ∪  L 𝛽( ) ( ) ( )

This does :  L N  =  L N  ∪  L N( 𝛾) ( 𝛼) ( 𝛽)

 L 𝛼  ∪  L 𝛽( ) ( )


