CSE396 Lecture Thu. 2/11: NFAs and Regular Expressions

[l went over academic integrity rules and guidelines on homeworks. The main guideline is that study
groups are OK for understanding lectures and the text, but must stop short of trying to work out the
problems ("red zone"). Any Qs in that zone should go to me or the TA. Then | showed how Al can now
solve the TopHat problems---well, with one error---so | specifically barred using Gemini or etc. on those.]

Lectures so far have featured "Type Discipline", as exemplified by saying that instructions (p, c, q) have
type Q X X X Q, orin C++ terms, type triple<State, char, State>. Now we will upset this
uniformity.

Definition 1: An NFA with e-transitions also allows instructions of the form (p, €, ). They enable the
machine to go from state p to state g without processing a character.

In the Sipser text, this is included in the basic definition of NFA. But IMHO it is useful to keep the
concepts separate and use the abbreviation "NFA_" when e-transitions are allowed. They break the
type discipline because € is a string not a char. Sipser continues treating 6 as a function rather than
a set, giving it range 22, the power set of Q, because both 6(p, c) and 6(p, €) can be sets of more
than one possible next state---or @ when there is no possible next state. Teacherly advice: stick with
the set-of-code-triple form. This form is especially nice for the following definition, which applies to
DFAs, NFAs, and NFA_s all in one shot: (Purple indicates definitions that are not in the text and not
standard nomenclature.)

Definition 2: Say that a finite automaton N can process a string x from state p to state g if there is a
sequence of instructions

(P, u1,91)(q1, U2, 92)(G2, U3, 93) *** (Gm=2, Um=1, Gin-1)(Gm—1,Um, q)

such that u u, --- u,, = x. Here m is at least the length n = |x| of x but can be greater if some of
the 1; components are €. Then we write x € Lp,q (with N understood) and formally define:

L(N) = UfeI-'Ls,f-

That is, the language L(N) of the automaton N is the set of strings x such that N can process x from
its start state to some accepting state. The sequence of triples themselves (note that the ends "match
like dominoes") is called a computation or computation path.

If N has only one accepting state f (a design goal we can meet for NFAs but often not for DFAs) then
the language is just lef. An example of a DFA that needs to have two accepting states is the "spears
and dragons" game that was shown in last week's demo.


https://cse.buffalo.edu/~regan/cse199/GeminiTopHatMistake.png

An accepting computation on input x = $0Dis (s, $, 9)(9,0,9)(g, D, s).
Thus x € L and since the start state is accepting, x € L(M).

Start (no spears) F = {sq}

One spear in hand

DFAM= 0

On the other hand, consider x’ = $DD
X" € Lgjeqq but dead is not accepting

so x” is not in the language.
(s,%,9)(q,D,s)(s, D, dead)

Without the dead state and arc to it, the NFA N on input x = $DD would "crash" in state s.
Even though s is an accepting state (and even though this would count as legal termination by
a Turing machine), not all of x would be processed, so it does not count in the FA's language.
With the dead state present, x gets processed to dead, but dead ¢ Fsox ¢ L(N) still.

M without the dead state is technically an NFAN. Then string x’ = $DD cannot be processed.

This also means that for an
NFA, having all states in F
does not mean that the
language is all strings.

(s, %, 9)(q,D,s)(s,D = crash! "Crashing" in an accepting state is not accepting the string.
If you add e-arcs to make a single accepting state, it is also technically an NFA:

The above accepting computation
on the string x = $0D now
0,% .
technically becomes
(s,%,9),0,9)q, D,s)s, €, f)
The language of N' is just L

The machine N’
still does not have any

actual nondet%

€

The string $DD still cannot be processed.

So what are NFAs good for? The very end of last Thursday's third lecture gave a motivation of
economizing on the number of states. But even when the NFA has the same number of states, it can
be argued as being conceptually clearer.

Here is an example. Consider the language of strings over X = {a, b} that begin by repeating ab zero
or more times and then repeat ba zero or more times (without being allowed to do more of ab after that).
Examples: ababbaba is in the language. But abbaab is not, because of the last ab. The string abab by

itself is OK, because the "zero option" is allowed for the ba part. Likewise, baba uses zero-option for



the first part. But baab is not allowed, because it gets the parts in the wrong order. And how about €?
It is in because the "zero option" is allowed for both parts.

As a first example of a regular expression that does some grouping, this language can be denoted by
(ab)* - (ba)*. Here are a DFA and an NFA:

abba = ab-ba = ab-€-ba
abab ab - ab but we don't use the
e-arc after the first ab.

Does N have actual nondeterminism?
(s,a,9)(q,b,s)... Not when a next

(SI al 4)(511 b’ S)(S/ €, f) Char comes

Technically we "cheated" by not
including the dead state in M. So
M really has 5 states.

The most economical diagram is at right. N = \Q

The triples (s, ab, s) and (f, ba, f) technically . € @
have regular expressions as middle component. %) O
We will see these Generalized NFAs next week. a

ba

Between "NFA" and "DFA", which is the more basic, fundamental concept? The notion of DFA seems
simpler, so you might go with that. But let's morph this question into one of object-oriented design
philosophy: between class DFA and class NFA, which should be the base class?

class 27?7 {
set<State> Q;
set<char> Sigma;
State s;
set<State> F,
set<triple<State,char, State> > delta;

}s

My position: NFA should be the base class, because a DFA "Is-A" NFA. In this O-O sense, "NFA" is the
more basic concept. [Maybe insert discussion of the "Square Is-A Rectangle?" dilemma, but

maintain that const Square definitely Is-A const Rectangle.]



The most instrumental reason to use NFAs, however, is their relationship to regular expressions.
Between now and the next lecture, we will try to convince you this relationship is "electric" in a literal
sense. We've already introduced all the ingredients informally, so let's dive right in to a formal
inductive definition of them. Intertwined will be an inductive proof of the theorem that for every
regexp a we can build an NFA_ N such that L(N) = the language L(c) denoted by .

"Defineorem": Regular Expressions and Their Corresponding NFAs (with e-transitions):

(B1) @isaregexp; L(») = @; N_ = @ (0 = 2)
(B2)eisaregexp; L(€) = {¢};, N, = - @
s
Forallcharsc € X: Ohas (s, €, f)
B3) cisaregexp; L(c) = {c}; N. = ‘
(B3) gexp; L(c) = {c} S
dhas (s, c, f)

This completes the basis of an inductive definition of regular expressions. Now let & and 8
be any two regular expressions, with languages A = L(a) and B = L(f). By inductive
hypothesis (IH) we have NFAs N, and N such that L(N,) = A and L(Ng) = B. Then:

(M)y = a U Bisaregexp; L(y) = A U B.

gamma alpha beta

Now to complete the induction case (I1) we need to show how to build an NFA_ N,, such

that L(N,) = L(y). What we have to work with is (are) N, and Ng. We know they have
start states we can call s, and Sg- Taking a cue from the base case NFAs, and mainly for

convenience, we may suppose they have unique accepting states f, and fﬂ. Besides that,
we make no assumptions about their internal structure, so we draw them as "blobs":

O ® Nﬁ>

The goal is to connect them together to make Ny with needed properties, also for the cases:

(12)y = a - Bisaregexp; L(y) = A - B.

(13) ¥ = a is a regexp; L( ) = A”*. (In I3 we have only N, given.)



This does: L(N,) = L(N,) U L(Np)

Target: L(y) = L(a) U L(B) L(a) U L(B)

Construction for (11):

(s) N
noterule:€e-x = x

for all strings x.

This builds N, but we still need to prove it is correct, i.e., L(N,) = L(y) . Note the rhythm:

1.L(N,) = L(N,) U L(Npg) by machine construction;
2. L(N,) = L(a)and L(Ng) = L(B) by inductive hypothesis;
3. Thus L(N,) = L(a) U L(B) = L(@UpB) = L(y) by definition of .

[I will continue as time permits by copy-and-paste and moving things around to do the other two
inductive cases to complete the proof. ... As it happened, time ended here. | used the chalkboard for
this U case but wrote y = ¢ + f instead. | put all the following up before drwing the picture:

The definition L()’) = L(a) U L(p).

The inductuive hypothesis (IH) of their being NFA_s N, and Ny for the taking such that
L(N,) = L(a) and L(Ng) = L(p).

The goal of building N,, such that L(N,,) = L(y) needed to complete the induction step.
* How you can deduce the goal after building N, such that L(N,) = L(N,) U L(Np).

The statement L(N,,) = L(N,) U L(Np) is what you get from the diagram. The next lecture will pick up
with the concatenation and star cases.]



