CSE396 Spr2026 Lecture Thu. Week 4: Completing the Cycle of Regular Languages

Kleene's Equivalence Theorem gives us multiple characterizations of the class of regular languages
(over any designated alphabet X)). We will denote classes of languages in bold green sans-serif
capitals. So we call it REG. To complete the cycle, we resort to a characterization that mashes
together the ideas of "regular epression" and "finite automaton."

Generalized NFAs (GNFAs)

| view these as mathematical bookkeeping devices, not as "real" as NFAs, let alone DFAs. The
meaning of an arc from a state p to a state g is "all ways we know so far to get from state p to state g, in
however many steps." By getting from state p to state § we mean a string processed along the way, so
our notation L,, = {w € X": N can process w from p to g4} comes into play. We will see that this
language is always regular "in the final analysis." Moreover, insofar as € or one single character a or b
(etc.) "is-a" basic regular expression, we start off with arcs labeled by regular expressions with an NFA
anyway. And a loop or edge labeled a, b could really be the non-basic regular expression a U b anyway.
So let us generalize arcs to any regular expressions over the alphabet X, letting Regexp(X) stand for
that.

Definition: A generalized NFA (GNFA) is a 5-tuple G = (Q, X, 6, s, F) where Q, X, s, F are the same
asinan NFAbutnow 6 C (Q X Regexp(X)) x Q.

Definition: A sequence ¢ = [90, u1, 91191, U2, 921192, U3, 93] -+~ [q1-2, 191119121, us, q¢] is a
valid computation if foreach i, 1 < i <, there is an instruction (g;_1, &, q;) € 6 such that the
string ©; matches the regular expression «. The string processed by the computation is the string
U = Uy-Up-Usz -+ U1 - Uy, which might be shorter or longer than t. Then we say the GNFA G can

process u from gg to g; and write u € qu,qf (with G understood). Then as before,

LG = JLyy

feF

Simply and stupidly, if we have a regular expression f, then we can make a GNFA G such that
L(G) = L(p) with just two states and one arc. If 5 falls into the stare case, i.e., if f = a” for some
regular expression &, then we need just one state and one self-loop:

G: —>@ P ©) Go: — @ D)«

The text structures its proof of the FA-to-regexp step with a "preamble" (of adding extra start and final
states) so that the left-hand machine G results at the end. If the start state is also the only accepting
state in the given FA (whether DFA or NFA), you can actually avoid the preamble and get the one-state




machine G at right as the "ultimate base case." , we can often save lots of messy work by
using the general two-state machine as the base case.

The idea can be put across intuitively even when we use abstract regular expressions «, 8, 7/, 11 (alpha,
beta, gamma, eta).

a *
Lix = (a + gy'n)
Liz = Lii-gy* = (a + By'n) By
Ly = (y + na'p)
d :

Lyy = Lap-na” = (V + 770‘*5)*77“*

Lip alsoequals a*f- Loy = a*ﬁ(y i na*ﬁ)*.
4

The three base cases that arise depend on whether s is accepting and whether there is an accepting
state other than s. If there are two or more accepting states different from s, that's the only time you

need to do the text's extra step of adding a new final state f and e-arcs from all the old final states.
(And you never have to do the step of adding a new start state.)

L(Gy) = Ly = (a + py'n) By’
= a'B(y + na'p)’

1 is pronounced "ate-a" in the US, "eat-a" in the UK.

L(Gy) = Ly = (a + pyn)

L(Gs) = Lss U Lsf

Note that in G,, we called the second state f rather than f because it is not accepting. We could boil
G, down all the way to G by "eliminating" the non-accepting state ¢, but there is no need. The virtue

of understanding the general two-state cases is that it helps with the general case of eliminating a non-
accepting state 4.



Note that if «, 8, v, 1 are all basic regular expressions, then we get an NFA. Well, if (say) n = @, then
that's the same as the back-arc from f to s not existing at all, since @ allows no way to pass through.
The definition of accepting computation then "drops down" top being what we defined before. Thus we
can say that a DFA or NFA "Is-A" GNFA too.

General GNFA Case

Here is the algorithm for converting an n-state automaton (of any kind) into an equivalent regular
expression:

1. Subcases:

(a) If there are two or more accepting states besides the start state s, make a new accepting
state f with e-arcs from the old ones. Then you'll be in case (b) but with "n" incremented
by 1 (which makes more work).

(b) If there is exactly one accepting state f other than s, numbers = 1, f = 2, and the other
states 3, ..., n. It does not matter whether s is accepting too.

(c) If s is the only accepting state, then number s = 1 and choose an arbitrary other state to
get numbered 2.

2. All of the states g = 3, ..., n are nonaccepting states. Looping from 1 down to 3, we will
eliminate them one-by-one, until one of the above two-state base cases is left.

3. If we were given an NFA or DFA, we reinterpret it as a GNFA with basic regular expressions on
the edges. Non-edges implicitly have @ as their label.

4. As we eliminate states, we update the regular expressions on edges between states that still
exist. Those expressions will become non-basic (and may get bushy).

5. Eventually only states 1 and 2 are left, and we read off the answer as above.

The idea of eliminating a state g that is not the start state and is non-final is that no accepting
computation can begin or end at q. Hence, if an accepting computation enters g from some state p,

then it must exit at some state r (which can be the same as p).

Considering multiple such states r, ’, ¥’” gives us the following diagram:



If the arc with « is absent, that is ’ T + By
the same as its havinga = Q. -7 Crew = oid + YN

- 0 AN =R e R Y

e = fia + B
FF——t @O =T

& The last works if p = " when
, a” is a self-loop at p. If the self-
MO g loop is absent, it turns out not to
% NEN matter whether you take it to give
The GNFA G’ obtained after R N @ or €. The reason is that it will
updating &, a’, a”’, ... is @ ultimately be inside a Kleene star,
equivalent to the original G. and (@ +0)" = (€ + O)* = C

Once we have bypassed every for any regular expression C (zeta).

edge into g, we can delete 4.

That's the entire algorithm: we delete such states g one-by-one until only two states are left.

Symbolic Implementation

If we imagine ourselves programming this with a RegExp package, then we can represent a given n-

state finite automaton (DFA, NFA, or GNFA, all the same to start with) by an n X 7 matrix T of
RegExp. If we have two or more accepting states other than the start state, then we do have to do the

preamble with an extra final state---but in any event, we get to the situation where states 3 to n are all
nonaccepting states. Then the main code is simply:

for k = n downto 3:
fori=1to k-1:
forj=1to k-1:
T(i,j) += T(i,k) - T(k,k)" - T(k,j)-

(The convenience of writing "+=" here is one reason | like using + rather than U for union.) Note that
even if there is no self-loop at g, so that T(k, k) = @ (or €; it doesn't matter), the update is not killed
because T(k, k)* = €. Butif there is no arc from i into k, that is, if T(i, k) = @, then the right-hand
side does get nulled and the update is simply a no-op. Likewise if no arc from k out to j, whereupon
Tk, j) = @.

That's it. Anyway, what we have proved is:



Theorem. Given any DFA, NFA, or GNFA G, we can calculate a regular expression p (Greek rho) such
that L(p) = L(G).

This also completes the proof of the final part of Kleene's Equivalence Theorem.

Example---revisiting a previous NFA:

Brample : .
,\)1 [
N=4

(¢ o)

f
meant>
|t e 2
TiAn L‘r_."' f:ﬁ 3 a

We want to eliminate state 2. If we were using the code approach, we could re-number it as state 3.
But we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations
of them. Here we have:

In: 1 (on €) and 3 (on b).
Out: only to 3 (on a).
Update: T(1, 3) and T(3, 3).

TA,3)pew = TA,3)0s + T(1,2)T(2,2)*T(2,3)
=b+e€-€-a=">0+a.
T3,3)new = T3,3)0s + T(3,2)T(2,2)*T(2,3)

=@ +b-€e-a = ba.

[Suppose we try to update T(3, 1). The rule would be

TG, Dew = TG, Do + T(3,2)T(2,2)"T(2, 1)
= a + b- € - @ because there is no arc from 2 to 1.
= a + @ = a,whichisnochange from T(3,1),,.]

The new GNFA is



=i LG) = Ly = (a + py'n) By’

= @ + ((b+a)(ba)'a) (b +a)(ba)".

L(Gy) = Ly = (a + By™n) By’

= (a + ((b + a)(ba)*a)*(b + a)(ba)”.




