
CSE396 Spr2026 Lecture Thu. Week 4: Completing the Cycle of Regular Languages

Kleene's Equivalence Theorem gives us multiple characterizations of the class of regular languages
(over any designated alphabet). We will denote classes of languages in bold green sans-serif 𝛴
capitals. So we call it REG. To complete the cycle, we resort to a characterization that mashes
together the ideas of "regular epression" and "finite automaton."

Generalized NFAs (GNFAs)

I view these as mathematical bookkeeping devices, not as "real" as NFAs, let alone DFAs. The
meaning of an arc from a state to a state is "all ways we know so far to get from state to state , in p q p q

however many steps." By getting from state to state we mean a string processed along the way, so p q

our notation can process from to comes into play. We will see that this L = w ∈ 𝛴 : Np,q { * w p q}

language is always regular "in the final analysis." Moreover, insofar as or one single character or 𝜖 a b
(etc.) "is-a" basic regular expression, we start off with arcs labeled by regular expressions with an NFA
anyway. And a loop or edge labeled could really be the non-basic regular expression anyway. a, b a∪ b

 So let us generalize arcs to any regular expressions over the alphabet , letting Regexp(stand for 𝛴 𝛴)

that.

Definition: A generalized NFA (GNFA) is a 5-tuple where are the same G = Q, 𝛴, 𝛿, s, F() Q, 𝛴, s, F

as in an NFA but now .𝛿 ⊆ Q × Regexp 𝛴 × Q(())

Definition: A sequence is a = q , u , q q , u , q q , u , q ⋯ q , u q q , u , qc [0 1 1][1 2 2][2 3 3] [t-2 t-1 t-1][t-1 t t]

valid computation if for each , , there is an instruction such that the i 1 ≤ i ≤ t q , 𝛼, q ∈ 𝛿(i-1 i)

string matches the regular expression . The string processed by the computation is the string ui 𝛼

, which might be shorter or longer than . Then we say the GNFA can u = u ⋅ u ⋅ u ⋯ u ⋅ u1 2 3 t-1 t t G

process from to and write (with understood). Then as before,u q0 qt u ∈ Lq ,q0 t
G

.L G = L() ⋃

f∈F

s,f

Simply and stupidly, if we have a regular expression , then we can make a GNFA such that 𝛽 G

 with just two states and one arc. If falls into the stare case, i.e., if for some L G = L 𝛽() () 𝛽 𝛽 = 𝛼*

regular expression , then we need just one state and one self-loop:𝛼

The text structures its proof of the FA-to-regexp step with a "preamble" (of adding extra start and final
states) so that the left-hand machine results at the end. If the start state is also the only accepting G
state in the given FA (whether DFA or NFA), you can actually avoid the preamble and get the one-state

𝛽
s sf 𝛼G :0G :

machine at right as the "ultimate base case." However, we can often save lots of messy work by G0

using the general two-state machine as the base case.

The idea can be put across intuitively even when we use abstract regular expressions (alpha, 𝛼, 𝛽, 𝛾, 𝜂
beta, gamma, eta).

The three base cases that arise depend on whether is accepting and whether there is an accepting s

state other than . If there are two or more accepting states different from , that's the only time you s s

need to do the text's extra step of adding a new final state and -arcs from all the old final states. f 𝜖
(And you never have to do the step of adding a new start state.)

Note that in , we called the second state rather than because it is not accepting. We could boil G2 t f

 down all the way to by "eliminating" the non-accepting state , but there is no need. The virtue G2 G0 t
of understanding the general two-state cases is that it helps with the general case of eliminating a non-
accepting state .q

1

2

𝛼

𝛽

𝛾

𝜂

L = 𝛼 + 𝛽𝛾 𝜂1,1
*

*

L = L ⋅ 𝛽𝛾 = 𝛼 + 𝛽𝛾 𝜂 𝛽𝛾1,2 1,1
* *

*
*

L = 𝛾 + 𝜂𝛼 𝛽2,2
*

*

L = L ⋅ 𝜂𝛼 = 𝛾 + 𝜂𝛼 𝛽 𝜂𝛼2,1 2,2
* *

*
*

 also equals L1,2 𝛼 𝛽 ⋅ L = 𝛼 𝛽 𝛾 + 𝜂𝛼 𝛽 .*
2,2

* *
*

𝛽

𝜂

𝛼 𝛾

s f
G1

L G = L = 𝛼 + 𝛽𝛾 𝜂 𝛽𝛾 (1) sf
*

*
*

 = 𝛼 𝛽 𝛾 + 𝜂𝛼 𝛽* *
*

𝛽

𝜂

𝛼 𝛾

s tG2

L G = L = 𝛼 + 𝛽𝛾 𝜂(2) ss
*

*

 is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂

𝛽

𝜂

s f
G3

𝛼 𝛾

L G = L ∪ L(3) ss sf

Note that if are all basic regular expressions, then we get an NFA. Well, if (say) , then 𝛼, 𝛽, 𝛾, 𝜂 𝜂 = ∅

that's the same as the back-arc from to not existing at all, since allows no way to pass through. f s ∅

The definition of accepting computation then "drops down" top being what we defined before. Thus we
can say that a DFA or NFA "Is-A" GNFA too.

General GNFA Case

Here is the algorithm for converting an -state automaton (of any kind) into an equivalent regular n
expression:

1. Subcases:
(a) If there are two or more accepting states besides the start state , make a new accepting s

state with -arcs from the old ones. Then you'll be in case (b) but with " " incremented f 𝜖 n
by 1 (which makes more work).

(b) If there is exactly one accepting state other than , number , , and the other f s s = 1 f = 2

states . It does not matter whether is accepting too.3, … , n s

(c) If is the only accepting state, then number and choose an arbitrary other state to s s = 1

get numbered .2

2. All of the states are nonaccepting states. Looping from down to , we will q = 3, … , n n 3

eliminate them one-by-one, until one of the above two-state base cases is left.
3. If we were given an NFA or DFA, we reinterpret it as a GNFA with basic regular expressions on

the edges. Non-edges implicitly have as their label. ∅

4. As we eliminate states, we update the regular expressions on edges between states that still
exist. Those expressions will become non-basic (and may get bushy).

5. Eventually only states and are left, and we read off the answer as above.1 2

The idea of eliminating a state that is not the start state and is non-final is that no accepting q

computation can begin or end at . Hence, if an accepting computation enters from some state , q q p

then it must exit at some state (which can be the same as). r p

Considering multiple such states gives us the following diagram:r, r', r''

That's the entire algorithm: we delete such states one-by-one until only two states are left.q

Symbolic Implementation

If we imagine ourselves programming this with a RegExp package, then we can represent a given -n

state finite automaton (DFA, NFA, or GNFA, all the same to start with) by an matrix of n × n T
RegExp. If we have two or more accepting states other than the start state, then we do have to do the
preamble with an extra final state---but in any event, we get to the situation where states to are all 3 n
nonaccepting states. Then the main code is simply:

for k = n downto 3:

for i = 1 to k-1:
for j = 1 to k-1:

T(i,j) += T(i,k) T(k,k) T(k,j).⋅ ⋅*

(The convenience of writing "+=" here is one reason I like using rather than for union.) Note that + ∪

even if there is no self-loop at , so that (or ; it doesn't matter), the update is not killed q T k, k = ∅() 𝜖

because . But if there is no arc from into , that is, if , then the right-hand T k, k = 𝜖 ()* i k T i, k = ∅()

side does get nulled and the update is simply a no-op. Likewise if no arc from out to , whereupon k j

. T k, j = ∅()

That's it. Anyway, what we have proved is:

p q

r

r'

r''

𝛽 𝛾

𝜂

𝜂''

𝜂'

𝛼

𝛼'

𝛼''

𝛼 = 𝛼 + 𝛽𝛾 𝜂new old
*

𝛼' = 𝛼' + 𝛽𝛾 𝜂'new old
*

𝛼'' = 𝛼'' + 𝛽𝛾 𝜂''new old
*

The last works if when p = r''

 is a self-loop at . If the self-𝛼'' p
loop is absent, it turns out not to
matter whether you take it to give

 or . The reason is that it will∅ 𝜖
ultimately be inside a Kleene star,
and ∅(+ 𝜁 = 𝜖 + 𝜁 = 𝜁)* ()* *

for any regular expression (zeta). 𝜁

If the arc with is absent, that is𝛼

the same as its having . 𝛼 = ∅

Once we have bypassed every
edge into , we can delete .q q

The GNFA obtained after G'

updating is𝛼, 𝛼', 𝛼'', …

equivalent to the original .G

Theorem. Given any DFA, NFA, or GNFA , we can calculate a regular expression (Greek rho) such G 𝜌

that .L 𝜌 = L G() ()

This also completes the proof of the final part of Kleene's Equivalence Theorem.

Example---revisiting a previous NFA:

We want to eliminate state 2. If we were using the code approach, we could re-number it as state 3.
But we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations
of them. Here we have:

In: 1 (on) and (on).𝜖 3 b

Out: only to (on).3 a

Update: and T 1, 3() T 3, 3 .()

T 1, 3 = T 1, 3 + T 1, 2 T 2, 2 T 2, 3()new ()old () ()* ()

 = b + 𝜖 ⋅ 𝜖 ⋅ a = b + a.

T 3, 3 = T 3, 3 + T 3, 2 T 2, 2 T 2, 3()new ()old () ()* ()

 = ∅ + b ⋅ 𝜖 ⋅ a = ba.

[Suppose we try to update . The rule would beT 3, 1()

T 3, 1 = T 3, 1 + T 3, 2 T 2, 2 T 2, 1()new ()old () ()* ()

 because there is no arc from 2 to 1.= a + b ⋅ 𝜖 ⋅ ∅

 , which is no change from .]= a + ∅ = a T 3, 1()old

The new GNFA is

𝛽 = b + a

𝜂 = a

𝛼 = a 𝛾 = ba

1 3G1

L G = L = 𝛼 + 𝛽𝛾 𝜂 𝛽𝛾 (1) sf
*

*
*

= a + b + a ba a b + a ba .(()()*
*
()()*

𝛽 = b + a

𝜂 = a

𝛼 = a 𝛾 = ba

1 3G1

L G = L = 𝛼 + 𝛽𝛾 𝜂 𝛽𝛾 (1) sf
*

*
*

= a + b + a ba a b + a ba .(()()*
*
()()*𝜖

f

