
CSE396 Spring 2026 Week 4 Tue.: NFA-to-DFA Examples
 
[Lecture will first finish the example begun on Thu. 2/5.]

 
More examples:
The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.

 

 

 

NFA N =
1

23

𝜖

a DFA M =

"Whenever 1
then also 2."b

a

b

a

𝛿 a𝜖* b𝜖*

1 1, 2{ } 3{ }

2 3{ } ∅

3 1, 2{ } 2{ }

S =  E 1  =  1, 2({ }) { }

We could have made 
state 1 accepting too.

"first do  then any 's."p, c  =  𝛿( ) c 𝜖

𝛥 S, a  =  1, a ∪( ) 𝛿( ) 2, a = 1, 2 ∪ 3 = 1, 2, 3𝛿( ) { } { } { }

𝛥 S, b  =  1, b ∪( ) 𝛿( ) 2, b = 3 ∪ = 3𝛿( ) { } { } { }

State  counts as "new" state even though  has it.3{ } N

𝛥 1, 2, 3 , a  =  1, 2 ∪ 3 ∪ 1, 2  =  1, 2, 3({ } ) { } { } { } { }

Must be  since we got to the "omni" state on .1, 2, 3{ } a

𝛥 1, 2, 3 , b  =  3 ∪∅∪ 2  =  2, 3({ } ) { } { } { }

Not "omni" but is new.  Doing state {3} next:
.  Not new, back to .𝛥 3 , a  =  3, a  =  1, 2({ } ) 𝛿( ) { } S

.    Is new. (And is trouble)𝛥 3 , b  =  3, b  =  2({ } ) 𝛿( ) { }

𝛥 2, 3 , a  =  3 ∪ 1, 2  =  1, 2, 3({ } ) { } { } { }

𝛥 2, 3 , b  =  ∅∪ 2  =  2({ } ) { } { } Just {2} left now.
  Not new.𝛥 2 , a  =  2, a  =  3({ } ) 𝛿( ) { }

  So  has a dead state.𝛥 2 , b  =  2, b  =  ∅({ } ) 𝛿( ) M

, .  BFS has closed: done.𝛥 ∅, a  =  ∅( ) 𝛥 ∅, b  =  ∅( )

States  and 1{ } 1, 3{ }

are not possible in .M

"anythingF =  

with 2" = 1, 2, 3 ,{{ }

1, 2 , 2, 3 , 2{ } { } { }}

This is an accepting state of M



 
More on how the states of the DFA tell what the NFA can and cannot process:

• The NFA cannot process the string  from its start state at all.  However you try, you come to bbb

the NFA state 2 being unable to process a .  Nor can it process  from any other state.b bbb

• However,  can process  from start to any one of its three states:N a

– 1, a, 1( )

– 1, a, 1 1, 𝜖, 2( )( )

– .1, 𝜖, 2 2, a, 3( )( )

This is shown in the DFA by the single arc .S, a, 1, 2, 3( { })

• But in the string , even though the initial  "turns on all three lightbulbs of ", the final x =  abbb a N

 still cannot be processed by .  The DFA  does process it via the computation bbb N M

, but that computation ends at , S, a, 1, 2, 3 1, 2, 3 , b, 2, 3 2, 3 , b, 2 2 , b, ∅( { })({ } { })({ } { })({ } ) ∅

which---when present at all---is always a dead state.
 
 
[*** I will skim/skip this big example in lecture, but it is good to work it out for study. ***]
 

.𝛥 P, c  =  p, c( ) ⋃
 

p∈P

𝛿( )

 
Since there are no 's out of the start state (or at all),  is just .𝜖 S s{ }

    (new set-state)𝛥 S, a  =  𝛥 s , a  =  1, 2( ) ({ } ) { }

    (new set-state).  Expand  first:𝛥 S, b  =  1, 3( ) { } 1, 2{ }

 

 

1, 2{ }

3{ }

b
a

b

a

1, 2, 3{ }
a

a

2
2, 3{ }

b

a

b

∅

a, b
b

DFA M =

Start

Note that the original NFA  canN

process  from  to any one of itsa s

three states.  But  can't processN

 from any of its three states.bbb

This DFA  has a dead state butM
does not have any eternally
accepting (cluster of) states.

f

s

1

a, bb

a

b

N =  

2

3

4

5

Start b

a

a
a

b

b

𝛿 a b

s 1, 2{ } 1, 3{ }

1 ∅ s{ }

2 5{ } ∅

3 ∅ 5{ }

4 5{ } ∅

5 f{ } 4, 5{ }

f ∅ ∅



 
 (new set-state, append to expansion queue)𝛥 1, 2 , a  =  𝛿 1, a  ∪  𝛿 2, a  =  ∅ ∪  5  =  5({ } ) ( ) ( ) { } { }

. Not new--back to the start state of the DFA.𝛥 1, 2 , b  =  𝛿 1, b  ∪  𝛿 2, b  =  s  ∪  ∅ =  s({ } ) ( ) ( ) { } { }

 
.  This means that the DFA has a reachable dead 𝛥 1, 3 , a  =  𝛿 1, a  ∪  𝛿 3, a  =  ∅ ∪  ∅ =  ∅({ } ) ( ) ( )

state.  We can say  right off the bat, no need to expand further.𝛥 ∅, a  =  𝛥 ∅, b  =  ∅( ) ( )

.  New state.  But expand  next.𝛥 1, 3 , b  =  𝛿 1, b  ∪  𝛿 3, b  =  s  ∪  5  =  s, 5({ } ) ( ) ( ) { } { } { } 5{ }

 
    (new)𝛥 5 , a  =  f({ } ) { }

    (new).  Now we come to expand  but we have more stuff in the queue.𝛥 5 , b  =  4, 5({ } ) { } s, 5{ }

 

 
.  New again---this might worry us about blowup.𝛥 s, 5 , a  =  1, 2 ∪ f  =  1, 2, f({ } ) { } { } { }

.  Even more uh-oh...𝛥 s, 5 , b  =  1, 3 ∪ 4, 5  =  1, 3, 4, 5({ } ) { } { } { }

 
What this means is that the string  can be processed from  to four different states!  Keep going:bbb s

.  OK, that one was quick.𝛥 f , a  =  𝛥 f , b  =  ∅({ } ) ({ } )

.  New, but adding  to  is no biggie.𝛥 4, 5 , a  =  𝛿 4, a  ∪  𝛿 5, a  =  5  ∪  f  =  5, f({ } ) ( ) ( ) { } { } { } f 5{ }

.  Not new---we just looped back.𝛥 4, 5 , b  =  𝛿 4, b  ∪  𝛿 5, b  =  ∅ ∪  4, 5  =  4, 5({ } ) ( ) ( ) { } { }

 
.  Old, .𝛥 1, 2, f , a  =  𝛿 1, a ∪ 𝛿 2, a ∪ 𝛿 f, a  =  ∅∪ 5 ∪∅ =  5({ } ) ( ) ( ) ( ) { } { } = 𝛥 1, 2 , a({ } )

.  Of course, .𝛥 1, 2, f , b  =  𝛿 1, b ∪ 𝛿 2, b ∪ 𝛿 f, b  =  s ∪∅∪∅ =  s({ } ) ( ) ( ) ( ) { } { } = 𝛥 1, 2 , b({ } )

 
Drumroll: because  will work out the same as  we really have just the one big state to go.5, f{ } 5{ }

 
eyeball rows 1,3,4,5 in column  of the table .  Almost home...𝛥 1, 3, 4, 5 , a  =  ({ } ) a =  5, f{ }

eyeball column , we see .  Thunderation!---this is another new state.𝛥 1, 3, 4, 5 , b  =  ({ } ) b s, 4, 5{ }

 
 since nothing comes out of , so it .𝛥 5, f , a  =  𝛥 5 , a({ } ) ({ } ) f =  f{ }

 which is now old, so all eyes now on expanding .𝛥 5, f , b  =  𝛥 5 , b  =  4, 5({ } ) ({ } ) { } s, 4, 5{ }

 

 

 

f

s

1

a, bb

a

b

N =  

2

3

4

5

Start b

a

a
a

b

b

𝛿 a b

s 1, 2{ } 1, 3{ }

1 ∅ s{ }

2 5{ } ∅

3 ∅ 5{ }

4 5{ } ∅

5 f{ } 4, 5{ }

f ∅ ∅



.  New 𝛥 s, 4, 5 , a  =  1, 2  ∪  5  ∪  f  =  1, 2, 5, f({ } ) { } { } { } { }

.  Not New.  Keep Going...𝛥 s, 4, 5 , b  =  1, 3  ∪  ∅ ∪  4, 5  =  1, 3, 4, 5({ } ) { } { } { }

 
.  Not new.𝛥( 1, 2, 5, f , a  =  5, f{ } ) { }

.  Also not new.   Just like that, the DFA has closed!  𝛥( 1, 2, 5, f , b  =  s, 4, 5{ } ) { }

Once you get used to inspecting the  or  table, you can draw the DFA as you go without writing out 𝛿 𝛿

so many sets.  Here it is after the first two generations:

The whole DFA:

 

 

f

s

1

a, bb

a

b

N =  

2

3

4

5

Start b

a

a
a

b

b

𝛿 a b

s 1, 2{ } 1, 3{ }

1 ∅ s{ }

2 5{ } ∅

3 ∅ 5{ }

4 5{ } ∅

5 f{ } 4, 5{ }

f ∅ ∅

S 1, 2{ }

1, 3{ }

5{ }

s, 5{ }

f{ }

∅

4, 5{ }

1, 2, f{ }1, 2, 5, f{ }

1, 2, 4, 5{ }

5, f{ }

s, 4, 5{ }

1, 3, 4, 5{ }

b

a

b

a

a
b

a, b

b



 
For any string , the set-state of the DFA after processing  equals the set of states that  can process x x N

 to.  Thus, for instance:x

•  can process the string  to any of its states , 2, and all the way across to .N bba 1 f

•  can process , however, only back to its start state .N bbab s

•  accepts  but cannot process .N aaa aaaa

• The shortest string that  can process to four different states is .N bbb

• The shortest string that goes to 4 states, one of which is , however, is .f bbbba

• There is no string that  can process to more than four different state---in particular, there is no N

string that "lights up" every state, because the "omni" set-state  was s, 1, 2, 3, 4, 5, f  =  Q{ }

never encountered in the breadth-first search. 
• There is no state that guarantees acceptance: every state can reach a rejecting state with more 

chars.  In fact, every state has a path to the dead state.
 
In other cases, the DFA  may never reach a dead state.  It might (also) have an "eternal state", M
meaning an accepting state that loops to itself.  The "omni" state, even when reached, need not be 
eternal (though if  has any eternal state, "omni" is eternal).   can even have a cluster of accepting M M
states that cycle amongst themselves without ever going to a rejecting state---though such a cluster 
can then be "condensed" into a single eternal state.  This last possibility also tells you that the DFA 
cranked out by the algorithm is not necessarily optimal in size.  

 

 

S = s{ } 1, 2{ }

1, 3{ }

5{ }

s, 5{ }

f{ }

∅

4, 5{ }1, 2, f{ }

1, 2, 5, f{ }

5, f{ }

s, 4, 5{ }

1, 3, 4, 5{ }

b

a

b

a

a
b

a, b

a
a, b

To ∅

b

a

a
b

b

a

b

a

b

a

b

a a

b
b

Since the NFA  had onlyN

one final state , the finalf

states of the DFA  areM

just those sets that have .f



 
 
Proof of the Theorem  [In 2026, I may skip this too.]
 
First recall these definitions and notations:
 
Epsilon closure: E R  =  r :  for some q ∈  R,  N can process 𝜖 from q to r( ) { }

 
• Q =  possible R ⊆  Q ;{ }

•  is the same;𝛴

• ;S =  E s( )

• F =  R ∈  Q :  R ∩  F ≠  ∅ .{ }

 
you can get from  to  by first processing  at , then doing any -arcs .p, c  =  r :  𝛿( ) { p r c p 𝜖 }

 
• For any  (i.e.,  and  is possible) and defineP ∈ Q P ⊆  Q P c ∈ 𝛴 

 .𝛥 P, c  =  p, c( ) ⋃
 

p∈P

𝛿( )

 
How do we prove ?  What we want to prove is that for every string , the state  that L M  =  L N( ) ( ) x Rx

 is in equals the set of states  such that  can process  from  to .  Then the definition of the final M r N x s r

states  of  kicks in to say that the languages are equal.F M
 

• Define  to be the statement that this holds for all strings  of length .  G i( ) x i

• Then  says that the start state of  should equal the set of states  such that  can G 0( ) M r N

process  from  to .  Since this is exactly the meaning of , which is made the start state  𝜖 s r E s( ) S

of , the base case  holds.M G 0( )

• To prove , then, we only need to show  for each .L M  =  L N( ) ( ) G i - 1  ⟹  G i( ) ( ) i
 
In the step , the fact that  is -closed sets up the assumption that  in  is -closed.  The i =  1 S 𝜖 P 𝛥 P, c( ) 𝜖

value  is automatically -closed, since  so any trailing -arcs can count as part of 𝛥 P, c( ) 𝜖 c ⋅ 𝜖  =  c*
𝜖

processing .  If we---c
 

• assume  as our induction hypothesis, G i - 1( )

• take the set  which the property  refers to, and Ri-1 G i - 1( )

• define , R  =  𝛥 R , xi ( i-1 i)

 
---then we only need to show that  has the property required for the conclusion .  This is that  Ri G i( ) Ri

equals the set of states that  can process the bits  to.  The core of the proof observes N x ⋯ x x1 i-1 i

that:
 

 

 



 can process  if and only if there is a state  such that  can process N x x ⋯ x x  from s to r1 2 i-1 i p N

 from  to  (which by IH  includes  into ) and such that  can process x x ⋯ x1 2 i-1 s p G i - 1( ) p Ri-1 N

the char  from  to .  xi p r
 
Then by the inductive hypothesis ,  equals the set of states  such that  can process G i - 1( ) Ri-1 q N

 from  to .  Now put .  x ⋯  x1 i-1 s q R  =  𝛥i (R , xi-1 i)

• Let .  Then for some .  By IH ,  can process  r ∈  Ri r ∈ q, x  𝛿( i) q ∈ Ri-1 G i - 1( ) N x ⋯  x1 i-1

from  to .  And  can process  from  to  by definition of .  So  can process s q N xi q r r ∈ q, x  𝛿( i) N

 from  to .x ⋯ x1 i s r

• Suppose  can process  from  to .  Then---and this is the key point---the processing N x ⋯ x1 i s r

goes to some state  just before the char  is processed.  By IH ,  belongs to .  q xi G i - 1( ) q Ri-1

Moreover,  because we first do the step that processed the char  at , then any r ∈  q, x𝛿( i) xi q

trailing -arcs.  Thus , which means .𝜖 r ∈  𝛥 R , x( i-1 i) r ∈  Ri

Thus we have established that  equals the set of states  such that  can process  from  to Ri r N x ⋯ x1 i s

.  This is the statement , which is what we had to prove to make the induction go through.  This r G i( )

finally proves the NFA-to-DFA part of Kleene's Theorem. ☒
 
 
Another example: The "Leap of Faith" NFAs  for any :Nk k >  1

 
Now here is a simple algorithm for telling whether a given string  matches a given regexp :x 𝛼

 
1. Convert  into an equivalent NFA .𝛼 N𝛼

2. Convert  into an equivalent DFA .N𝛼 M𝛼

3. Run  on .  If it accepts, say "yes, it matches", else say "no match".M𝛼 x

 

 

. . .

0, 1

1

0 0 0

1 1 1

k - 1 arcs

L N  =  0 + 1 1 0 + 1( k) ( )* ( )k-1

.=  x ∈  0, 1 :  the kth bit of x from the end is a 1{ }*

Fact (will be proved the week after next): Whereas the NFA  has only  Nk k + 1

states, the smallest DFA  such that  requires  states.  Mk L M  =  L N( k) ( k) 2k

This is a case of exponential blowup in the NFA-to-DFA algorithm. 



 
This algorithm is correct, but it is not efficient.  The reason is that step 2 can blow up.  An intuitive 
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that 
would ever be used on all possible strings , but most of them are unnecessary for the particular  that x x
was given.  
 
There is, however, a better way that builds just the set-states  that are actually R , … , R , … , R1 i n

encountered in the particular computation on the particular .  We have  to begin with. x R  =  S =  E s0 ( )

 To build each  from the previous , iterate through every  and union together all the sets Ri Ri-1 q ∈ Ri-1

.  If  has  states---which roughly equals the number of operations in ---then that takes q, x𝛿( i) N𝛼 k 𝛼

order  steps.  This is at worst cubic in the length  of  and  together, so this counts as n ⋅ k ⋅ k n + kO( ) x 𝛼

a polynomial-time algorithm.  It is in fact the algorithm actually used by the grep command in 
Linux/UNIX. 
 
 
Kleene's Equivalence Theorem
 
Stephen Kleene (pronounced clay-nee) proved most of the following in the mid-1950s:  
 
Theorem.  For any language  over any alphabet , the following statements are equivalent:A 𝛴

1. There is a regular expression  such that .r L r = A( )

2. There is an NFA  (allowing -transitions) such that .N 𝜖 L N = A( )

3. There is a DFA  such that .M L M = A( )

 
We proved  simultaneously with formally defining regular expressions last Thursday, and we've 1 ⟹ 2

exemplified   Kleene actually did  and  directly, though with a neural-net 2 ⟹ 3. 1 ⟹ 3 3 ⟹ 1

version of DFAs that carried a whiff of NFAs.  The full definition of NFA and the NFA-to-DFA step came 
in a 1959 paper by Michael Rabin and Dana Scott (who are both still living in 2/26).  Since a DFA "Is-A" 
NFA, we can complete the cycle by showing  just as well.  Actually, we will start from an even 2 ⟹ 1

more general kind of finite "machine".
 
 
[Lecture ended here. This where the Week 4 Tuesday lecture ended in 2021, anyway.]∼

 
 

 

 


