
CSE396 Spring 2026 Week 4 Tue.: NFA-to-DFA Examples

[Lecture will first finish the example begun on Thu. 2/5.]

More examples:
The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.

NFA N =
1

23

𝜖

a DFA M =

"Whenever 1
then also 2."b

a

b

a

𝛿 a𝜖* b𝜖*

1 1, 2{ } 3{ }

2 3{ } ∅

3 1, 2{ } 2{ }

S = E 1 = 1, 2({ }) { }

We could have made
state 1 accepting too.

"first do then any 's."p, c = 𝛿() c 𝜖

𝛥 S, a = 1, a ∪() 𝛿() 2, a = 1, 2 ∪ 3 = 1, 2, 3𝛿() { } { } { }

𝛥 S, b = 1, b ∪() 𝛿() 2, b = 3 ∪ = 3𝛿() { } { } { }

State counts as "new" state even though has it.3{ } N

𝛥 1, 2, 3 , a = 1, 2 ∪ 3 ∪ 1, 2 = 1, 2, 3({ }) { } { } { } { }

Must be since we got to the "omni" state on .1, 2, 3{ } a

𝛥 1, 2, 3 , b = 3 ∪∅∪ 2 = 2, 3({ }) { } { } { }

Not "omni" but is new. Doing state {3} next:
. Not new, back to .𝛥 3 , a = 3, a = 1, 2({ }) 𝛿() { } S

. Is new. (And is trouble)𝛥 3 , b = 3, b = 2({ }) 𝛿() { }

𝛥 2, 3 , a = 3 ∪ 1, 2 = 1, 2, 3({ }) { } { } { }

𝛥 2, 3 , b = ∅∪ 2 = 2({ }) { } { } Just {2} left now.
 Not new.𝛥 2 , a = 2, a = 3({ }) 𝛿() { }

 So has a dead state.𝛥 2 , b = 2, b = ∅({ }) 𝛿() M

, . BFS has closed: done.𝛥 ∅, a = ∅() 𝛥 ∅, b = ∅()

States and 1{ } 1, 3{ }

are not possible in .M

"anythingF =

with 2" = 1, 2, 3 ,{{ }

1, 2 , 2, 3 , 2{ } { } { }}

This is an accepting state of M

More on how the states of the DFA tell what the NFA can and cannot process:

• The NFA cannot process the string from its start state at all. However you try, you come to bbb

the NFA state 2 being unable to process a . Nor can it process from any other state.b bbb

• However, can process from start to any one of its three states:N a

– 1, a, 1()

– 1, a, 1 1, 𝜖, 2()()

– .1, 𝜖, 2 2, a, 3()()

This is shown in the DFA by the single arc .S, a, 1, 2, 3({ })

• But in the string , even though the initial "turns on all three lightbulbs of ", the final x = abbb a N

 still cannot be processed by . The DFA does process it via the computation bbb N M

, but that computation ends at , S, a, 1, 2, 3 1, 2, 3 , b, 2, 3 2, 3 , b, 2 2 , b, ∅({ })({ } { })({ } { })({ }) ∅

which---when present at all---is always a dead state.

[*** I will skim/skip this big example in lecture, but it is good to work it out for study. ***]

.𝛥 P, c = p, c() ⋃

p∈P

𝛿()

Since there are no 's out of the start state (or at all), is just .𝜖 S s{ }

 (new set-state)𝛥 S, a = 𝛥 s , a = 1, 2() ({ }) { }

 (new set-state). Expand first:𝛥 S, b = 1, 3() { } 1, 2{ }

1, 2{ }

3{ }

b
a

b

a

1, 2, 3{ }
a

a

2
2, 3{ }

b

a

b

∅

a, b
b

DFA M =

Start

Note that the original NFA canN

process from to any one of itsa s

three states. But can't processN

 from any of its three states.bbb

This DFA has a dead state butM
does not have any eternally
accepting (cluster of) states.

f

s

1

a, bb

a

b

N =

2

3

4

5

Start b

a

a
a

b

b

𝛿 a b

s 1, 2{ } 1, 3{ }

1 ∅ s{ }

2 5{ } ∅

3 ∅ 5{ }

4 5{ } ∅

5 f{ } 4, 5{ }

f ∅ ∅

 (new set-state, append to expansion queue)𝛥 1, 2 , a = 𝛿 1, a ∪ 𝛿 2, a = ∅ ∪ 5 = 5({ }) () () { } { }

. Not new--back to the start state of the DFA.𝛥 1, 2 , b = 𝛿 1, b ∪ 𝛿 2, b = s ∪ ∅ = s({ }) () () { } { }

. This means that the DFA has a reachable dead 𝛥 1, 3 , a = 𝛿 1, a ∪ 𝛿 3, a = ∅ ∪ ∅ = ∅({ }) () ()

state. We can say right off the bat, no need to expand further.𝛥 ∅, a = 𝛥 ∅, b = ∅() ()

. New state. But expand next.𝛥 1, 3 , b = 𝛿 1, b ∪ 𝛿 3, b = s ∪ 5 = s, 5({ }) () () { } { } { } 5{ }

 (new)𝛥 5 , a = f({ }) { }

 (new). Now we come to expand but we have more stuff in the queue.𝛥 5 , b = 4, 5({ }) { } s, 5{ }

. New again---this might worry us about blowup.𝛥 s, 5 , a = 1, 2 ∪ f = 1, 2, f({ }) { } { } { }

. Even more uh-oh...𝛥 s, 5 , b = 1, 3 ∪ 4, 5 = 1, 3, 4, 5({ }) { } { } { }

What this means is that the string can be processed from to four different states! Keep going:bbb s

. OK, that one was quick.𝛥 f , a = 𝛥 f , b = ∅({ }) ({ })

. New, but adding to is no biggie.𝛥 4, 5 , a = 𝛿 4, a ∪ 𝛿 5, a = 5 ∪ f = 5, f({ }) () () { } { } { } f 5{ }

. Not new---we just looped back.𝛥 4, 5 , b = 𝛿 4, b ∪ 𝛿 5, b = ∅ ∪ 4, 5 = 4, 5({ }) () () { } { }

. Old, .𝛥 1, 2, f , a = 𝛿 1, a ∪ 𝛿 2, a ∪ 𝛿 f, a = ∅∪ 5 ∪∅ = 5({ }) () () () { } { } = 𝛥 1, 2 , a({ })

. Of course, .𝛥 1, 2, f , b = 𝛿 1, b ∪ 𝛿 2, b ∪ 𝛿 f, b = s ∪∅∪∅ = s({ }) () () () { } { } = 𝛥 1, 2 , b({ })

Drumroll: because will work out the same as we really have just the one big state to go.5, f{ } 5{ }

eyeball rows 1,3,4,5 in column of the table . Almost home...𝛥 1, 3, 4, 5 , a = ({ }) a = 5, f{ }

eyeball column , we see . Thunderation!---this is another new state.𝛥 1, 3, 4, 5 , b = ({ }) b s, 4, 5{ }

 since nothing comes out of , so it .𝛥 5, f , a = 𝛥 5 , a({ }) ({ }) f = f{ }

 which is now old, so all eyes now on expanding .𝛥 5, f , b = 𝛥 5 , b = 4, 5({ }) ({ }) { } s, 4, 5{ }

f

s

1

a, bb

a

b

N =

2

3

4

5

Start b

a

a
a

b

b

𝛿 a b

s 1, 2{ } 1, 3{ }

1 ∅ s{ }

2 5{ } ∅

3 ∅ 5{ }

4 5{ } ∅

5 f{ } 4, 5{ }

f ∅ ∅

. New 𝛥 s, 4, 5 , a = 1, 2 ∪ 5 ∪ f = 1, 2, 5, f({ }) { } { } { } { }

. Not New. Keep Going...𝛥 s, 4, 5 , b = 1, 3 ∪ ∅ ∪ 4, 5 = 1, 3, 4, 5({ }) { } { } { }

. Not new.𝛥(1, 2, 5, f , a = 5, f{ }) { }

. Also not new. Just like that, the DFA has closed! 𝛥(1, 2, 5, f , b = s, 4, 5{ }) { }

Once you get used to inspecting the or table, you can draw the DFA as you go without writing out 𝛿 𝛿

so many sets. Here it is after the first two generations:

The whole DFA:

f

s

1

a, bb

a

b

N =

2

3

4

5

Start b

a

a
a

b

b

𝛿 a b

s 1, 2{ } 1, 3{ }

1 ∅ s{ }

2 5{ } ∅

3 ∅ 5{ }

4 5{ } ∅

5 f{ } 4, 5{ }

f ∅ ∅

S 1, 2{ }

1, 3{ }

5{ }

s, 5{ }

f{ }

∅

4, 5{ }

1, 2, f{ }1, 2, 5, f{ }

1, 2, 4, 5{ }

5, f{ }

s, 4, 5{ }

1, 3, 4, 5{ }

b

a

b

a

a
b

a, b

b

For any string , the set-state of the DFA after processing equals the set of states that can process x x N

 to. Thus, for instance:x

• can process the string to any of its states , 2, and all the way across to .N bba 1 f

• can process , however, only back to its start state .N bbab s

• accepts but cannot process .N aaa aaaa

• The shortest string that can process to four different states is .N bbb

• The shortest string that goes to 4 states, one of which is , however, is .f bbbba

• There is no string that can process to more than four different state---in particular, there is no N

string that "lights up" every state, because the "omni" set-state was s, 1, 2, 3, 4, 5, f = Q{ }

never encountered in the breadth-first search.
• There is no state that guarantees acceptance: every state can reach a rejecting state with more

chars. In fact, every state has a path to the dead state.

In other cases, the DFA may never reach a dead state. It might (also) have an "eternal state", M
meaning an accepting state that loops to itself. The "omni" state, even when reached, need not be
eternal (though if has any eternal state, "omni" is eternal). can even have a cluster of accepting M M
states that cycle amongst themselves without ever going to a rejecting state---though such a cluster
can then be "condensed" into a single eternal state. This last possibility also tells you that the DFA
cranked out by the algorithm is not necessarily optimal in size.

S = s{ } 1, 2{ }

1, 3{ }

5{ }

s, 5{ }

f{ }

∅

4, 5{ }1, 2, f{ }

1, 2, 5, f{ }

5, f{ }

s, 4, 5{ }

1, 3, 4, 5{ }

b

a

b

a

a
b

a, b

a
a, b

To ∅

b

a

a
b

b

a

b

a

b

a

b

a a

b
b

Since the NFA had onlyN

one final state , the finalf

states of the DFA areM

just those sets that have .f

Proof of the Theorem [In 2026, I may skip this too.]

First recall these definitions and notations:

Epsilon closure: E R = r : for some q ∈ R, N can process 𝜖 from q to r() { }

• Q = possible R ⊆ Q ;{ }

• is the same;𝛴

• ;S = E s()

• F = R ∈ Q : R ∩ F ≠ ∅ .{ }

you can get from to by first processing at , then doing any -arcs .p, c = r : 𝛿() { p r c p 𝜖 }

• For any (i.e., and is possible) and defineP ∈ Q P ⊆ Q P c ∈ 𝛴

 .𝛥 P, c = p, c() ⋃

p∈P

𝛿()

How do we prove ? What we want to prove is that for every string , the state that L M = L N() () x Rx

 is in equals the set of states such that can process from to . Then the definition of the final M r N x s r

states of kicks in to say that the languages are equal.F M

• Define to be the statement that this holds for all strings of length . G i() x i

• Then says that the start state of should equal the set of states such that can G 0() M r N

process from to . Since this is exactly the meaning of , which is made the start state 𝜖 s r E s() S

of , the base case holds.M G 0()

• To prove , then, we only need to show for each .L M = L N() () G i - 1 ⟹ G i() () i

In the step , the fact that is -closed sets up the assumption that in is -closed. The i = 1 S 𝜖 P 𝛥 P, c() 𝜖

value is automatically -closed, since so any trailing -arcs can count as part of 𝛥 P, c() 𝜖 c ⋅ 𝜖 = c*
𝜖

processing . If we---c

• assume as our induction hypothesis, G i - 1()

• take the set which the property refers to, and Ri-1 G i - 1()

• define , R = 𝛥 R , xi (i-1 i)

---then we only need to show that has the property required for the conclusion . This is that Ri G i() Ri

equals the set of states that can process the bits to. The core of the proof observes N x ⋯ x x1 i-1 i

that:

 can process if and only if there is a state such that can process N x x ⋯ x x from s to r1 2 i-1 i p N

 from to (which by IH includes into) and such that can process x x ⋯ x1 2 i-1 s p G i - 1() p Ri-1 N

the char from to . xi p r

Then by the inductive hypothesis , equals the set of states such that can process G i - 1() Ri-1 q N

 from to . Now put . x ⋯ x1 i-1 s q R = 𝛥i (R , xi-1 i)

• Let . Then for some . By IH , can process r ∈ Ri r ∈ q, x 𝛿(i) q ∈ Ri-1 G i - 1() N x ⋯ x1 i-1

from to . And can process from to by definition of . So can process s q N xi q r r ∈ q, x 𝛿(i) N

 from to .x ⋯ x1 i s r

• Suppose can process from to . Then---and this is the key point---the processing N x ⋯ x1 i s r

goes to some state just before the char is processed. By IH , belongs to . q xi G i - 1() q Ri-1

Moreover, because we first do the step that processed the char at , then any r ∈ q, x𝛿(i) xi q

trailing -arcs. Thus , which means .𝜖 r ∈ 𝛥 R , x(i-1 i) r ∈ Ri

Thus we have established that equals the set of states such that can process from to Ri r N x ⋯ x1 i s

. This is the statement , which is what we had to prove to make the induction go through. This r G i()

finally proves the NFA-to-DFA part of Kleene's Theorem. ☒

Another example: The "Leap of Faith" NFAs for any :Nk k > 1

Now here is a simple algorithm for telling whether a given string matches a given regexp :x 𝛼

1. Convert into an equivalent NFA .𝛼 N𝛼

2. Convert into an equivalent DFA .N𝛼 M𝛼

3. Run on . If it accepts, say "yes, it matches", else say "no match".M𝛼 x

. . .

0, 1

1

0 0 0

1 1 1

k - 1 arcs

L N = 0 + 1 1 0 + 1(k) ()* ()k-1

.= x ∈ 0, 1 : the kth bit of x from the end is a 1{ }*

Fact (will be proved the week after next): Whereas the NFA has only Nk k + 1

states, the smallest DFA such that requires states. Mk L M = L N(k) (k) 2k

This is a case of exponential blowup in the NFA-to-DFA algorithm.

This algorithm is correct, but it is not efficient. The reason is that step 2 can blow up. An intuitive
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that
would ever be used on all possible strings , but most of them are unnecessary for the particular that x x
was given.

There is, however, a better way that builds just the set-states that are actually R , … , R , … , R1 i n

encountered in the particular computation on the particular . We have to begin with. x R = S = E s0 ()

 To build each from the previous , iterate through every and union together all the sets Ri Ri-1 q ∈ Ri-1

. If has states---which roughly equals the number of operations in ---then that takes q, x𝛿(i) N𝛼 k 𝛼

order steps. This is at worst cubic in the length of and together, so this counts as n ⋅ k ⋅ k n + kO() x 𝛼

a polynomial-time algorithm. It is in fact the algorithm actually used by the grep command in
Linux/UNIX.

Kleene's Equivalence Theorem

Stephen Kleene (pronounced clay-nee) proved most of the following in the mid-1950s:

Theorem. For any language over any alphabet , the following statements are equivalent:A 𝛴

1. There is a regular expression such that .r L r = A()

2. There is an NFA (allowing -transitions) such that .N 𝜖 L N = A()

3. There is a DFA such that .M L M = A()

We proved simultaneously with formally defining regular expressions last Thursday, and we've 1 ⟹ 2

exemplified Kleene actually did and directly, though with a neural-net 2 ⟹ 3. 1 ⟹ 3 3 ⟹ 1

version of DFAs that carried a whiff of NFAs. The full definition of NFA and the NFA-to-DFA step came
in a 1959 paper by Michael Rabin and Dana Scott (who are both still living in 2/26). Since a DFA "Is-A"
NFA, we can complete the cycle by showing just as well. Actually, we will start from an even 2 ⟹ 1

more general kind of finite "machine".

[Lecture ended here. This where the Week 4 Tuesday lecture ended in 2021, anyway.]∼

