CSE396 Spring 2026 Week 4 Tue.: NFA-to-DFA Examples

[Lecture will first finish the example begun on Thu. 2/5.]

o(La)=1F S(y)=$2 3¢
532 D0 S(z)=3) ¢
S04 =1F S(34) =2 37

More examples:
The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.

a DFAM = S = E({1}) = {1, 2} This is an accepting state of M
S H=Ho A RC o R e RO BT o S
A(S,b) = 6(1,b)Uo(2,b) = {3} U {} = {3}

State {3} counts as "new" state even though N has it.
A B =2 e P =R IR S
Must be {1, 2, 3} since we got to the "omni" state on a.
A2 = SR = 2P 5

We could have made ~ States {1} and {1, 3} Not "omni" but is new. Doing state {3} next:
stato}1:apoepling tag. .| are not possiblelin M: A({3},a) = 6(3,a) = {1,2}. Not new, back to S.

{
{

NFAN =

& "Whenever 1
then also 2."

4
4

5(p,c) = "firstdo c then any €'s.” A({3},b) = 6(3,b) = {2}. Isnew. (And is trouble)
A =t D O kO = 2 O
[6] ae” be] Af2,3),0) = 2U{2) = (2] Just{2}leftnow.
T EEEREY § = "anything A({2},a) = 8(2,4) = {3} Not new.
lZ {3t @ with 2 = {{1, 2, 3}, A({2},b) = 6(2,b) = @ So M has a dead state.
3H1,-2}-4{2) {1,2},{2,3}, {2}} A(@,a) = @,A(@,b) = @. BFS has closed: done.

Note that the original NFA N can

process a from s to any one of its
three states. But N can't process
bbb from any of its three states.

This DFA M has a dead state but
does not have any eternally
accepting (cluster of) states.

More on how the states of the DFA tell what the NFA can and cannot process:

« The NFA cannot process the string bbb from its start state at all. However you try, you come to
the NFA state 2 being unable to process a b. Nor can it process bbb from any other state.

« However, N can process a from start to any one of its three states:

-(1,a,1)
- (1,a,1)(1,€,2)
- (1,¢,2)(2,a,3).
This is shown in the DFA by the single arc (S, a, {1, 2, 3}).

+ Butinthe string x = abbb, even though the initial 2 "turns on all three lightbulbs of N", the final
bbb still cannot be processed by N. The DFA M does process it via the computation
(S,a,{1,2,3H({1,2,3},b,{2,3)({2,3},b,{2})({2}, b, @), but that computation ends at &,
which---when present at all---is always a dead state.

[*** 1 will skim/skip this big example in lecture, but it is good to work it out for study. ***]

(6| a b
s (1,2} {1,3}
1| @ {s}
2 {5} @
3| @ {5}
4 [{5} @
5 [1f) 14,5)
Lf | @ @

AP0 = s, o)

peP

Since there are no €'s out of the start state (or at all), S is just {s}.
A(S,a) = A({s},a) = {1,2} (new set-state)
A(S,b) = {1,3} (new set-state). Expand {1, 2} first:

A({1,2},a) = 6(1,a) U 6(2,a) = @ U {5} = {5} (new set-state, append to expansion queue)
A({1,2},b) = o(1,b) U 6(2,b) = {s} U @ = {s}. Not new--back to the start state of the DFA.
A({1,3},a) = 6(1,a) U 6(3,a) = @ U @ = @. This means that the DFA has a reachable dead
state. We cansay A(@,a) = A(@,b) = @r

{s

right off the bat, no need to expand further.
b=

A({1,3},b) = 6(1,b) U 6(3,b) } U {5 {s,5}. New state. But expand {5} next.

A({5},a) = {f} (new)

A({5},b) = {4,5} (new). Now we come to expand {s, 5} but we have more stuff in the queue.

(5| a b
s [{1,2} {1,3}
1| @ {s}
2| {5} %)
3| @ {5}
41 {5} %)
50 (f} {4,5)
L f| @ %)

A({s,5},a) = {1,2}U{f} = (1,2, f}. New again---this might worry us about blowup.
A({s,5},b) = {1,3}U{4,5} = {1,3,4,5}. Even more uh-oh...

What this means is that the string bbb can be processed from s to four different states! Keep going:
A({f},a) = A({f},b) = @. OK, that one was quick.

A({4,5}),a) = 6(4,a) U 6(5,a) = {5} U {f} = {5, f}. New, butadding f to {5} is no biggie.
A({4,5},b) = 6(4,b) U 6(5,b) = @ U {4,5} = {4,5}. Not new---we just looped back.

oU{bluU® {5}. Old, = A({1, 2}, a).
{sfUouU@ = {s}. Of course, = A({1,2}, D).

A({1,2, f},a) = 6(1,a) UO(2,a)US(f,a)
A({1,2, f},b) = 6(1,b)Ud(2,b)Uo(f,b)

Drumroll: because {5, f} will work out the same as {5} we really have just the one big state to go.

A({1,3,4,5}),a) = eyeball rows 1,3,4,5 in column a of the table = {5, f}. Almost home...
A({1,3,4,5},b) = eyeball column b, we see {s,4,5}. Thunderation!---this is another new state.

A({5, f},a) = A({5}, a) since nothing comes out of f, soit = {f}.
A({5, f1,b) = A({5},b) = {4,5} which is now old, so all eyes now on expanding {s, 4, 5}.

A(1,2,5, f},a)
A(1,2,5,f1,b)

Once you get used to inspecting the 6 or ¢ table, you can draw the DFA as you go without writing out

{5, f}. Not new.

= {1,2} U {5} U {f} = {1,2,5, f}. New
=1{1,3} U @ U {4,5} = {1,3,4,5}. Not New. Keep Going...

U W N R ® o

{s,4,5}. Also not new. Just like that, the DFA has closed!

so many sets. Here it is after the first two generations:

The whole DFA:

a
b

a,b
a
(r (i1 }— ()™
b b a
b a
()
@ U b b O
b a

a

nin

i b Since the NFA N had only
f one final state f, the final b+1b
states of the DFA M are ‘

just those sets that have f.

For any string x, the set-state of the DFA after processing x equals the set of states that N can process
x to. Thus, for instance:

« N can process the string bba to any of its states 1, 2, and all the way across to f.

« N can process bbab, however, only back to its start state s.

« N accepts aaa but cannot process aaaa.

« The shortest string that N can process to four different states is bbb.

+ The shortest string that goes to 4 states, one of which is f, however, is bbbba.

« There is no string that N can process to more than four different state---in particular, there is no
string that "lights up" every state, because the "omni" set-state {s,1,2,3,4,5, f} = Q was
never encountered in the breadth-first search.

* There is no state that guarantees acceptance: every state can reach a rejecting state with more
chars. In fact, every state has a path to the dead state.

In other cases, the DFA M may never reach a dead state. It might (also) have an "eternal state",
meaning an accepting state that loops to itself. The "omni" state, even when reached, need not be
eternal (though if M has any eternal state, "omni" is eternal). M can even have a cluster of accepting
states that cycle amongst themselves without ever going to a rejecting state---though such a cluster
can then be "condensed" into a single eternal state. This last possibility also tells you that the DFA
cranked out by the algorithm is not necessarily optimal in size.

Proof of the Theorem [In 2026, | may skip this too.]
First recall these definitions and notations:
Epsilon closure: E(R) = {r: forsomeq € R, N can process € from q to r}
« Q = {possible R € Q};
« X is the same;
« S = E(s);
+F ={Re€e Q:RNF # o}

O(p,c) = {r: you can get from p to r by first processing c at p, then doing any e-arcs}.

Forany P € Q (i.e., P C Q and P is possible) and ¢ € X define

AP0 = Jow,o.

peP

How do we prove L(M) = L(N)? What we want to prove is that for every string x, the state R, that
M is in equals the set of states 7 such that N can process x from s to 7. Then the definition of the final
states ¥ of M kicks in to say that the languages are equal.

+ Define G(i) to be the statement that this holds for all strings x of length i.

« Then G(0) says that the start state of M should equal the set of states r such that N can
process € from s to . Since this is exactly the meaning of E(s), which is made the start state S
of M, the base case G(0) holds.

 To prove L(M) = L(N), then, we only need to show G(i —1) = G(i) for each i.

Inthe stepi = 1, the fact that S is e-closed sets up the assumption that P in A(P, c) is e-closed. The
value A(P, c) is automatically e-closed, since c- €* = c¢ so any trailing e-arcs can count as part of
processing c. If we---

« assume G(i — 1) as our induction hypothesis,
- take the set R;_; which the property G(i — 1) refers to, and
 define Ri = A(Ri_l, xi),

---then we only need to show that R; has the property required for the conclusion G(i). This is that R;
equals the set of states that N can process the bits x; -+ x;_1X; to. The core of the proof observes
that:

N can process x1Xx; -+ X;_1X; from s to r if and only if there is a state p such that N can process
X1Xy -+ X;_1 from s to p (which by IH G(i — 1) includes p into R;_1) and such that N can process
the char x; fromp to r.

Then by the inductive hypothesis G(i — 1), R;_; equals the set of states g such that N can process
x1 -+ Xxj—1 fromstog. NowputR; = A(R;_1, x;).

« Letr € R;. Thenr € 6(g, x;) forsome g € R;_1. By IHG(i —1), N can process x1 -+ Xj_1
from s to 4. And N can process x; from g to r by definition of r € 6(g, x;) . So N can process
X1 -+ Xx; fromstor.

« Suppose N can process x7 -+ Xx; from s to r. Then---and this is the key point---the processing
goes to some state g just before the char x; is processed. By IH G(i — 1), g belongs to R;_;.
Moreover, r € 0(g, x;) because we first do the step that processed the char x; at g, then any
trailing e-arcs. Thusr € A(R,_;, x;), which means v € R;.

Thus we have established that R; equals the set of states r such that N can process x; --- x; from s to
r. This is the statement G(7), which is what we had to prove to make the induction go through. This
finally proves the NFA-to-DFA part of Kleene's Theorem.

Another example: The "Leap of Faith" NFAs N forany k > 1:

k—1arcs
0,1 |
0 0 0
1 \/K/__\/
1 1 1
L(N,) = (0+1)"1(0 + 1)k

= {x € {0,1}": the kth bit of x from the end isal}.

Fact (will be proved the week after next): Whereas the NFA N has only k + 1

states, the smallest DFA M, such that L(M) = L(Ny) requires 2* states.
This is a case of exponential blowup in the NFA-to-DFA algorithm.

Now here is a simple algorithm for telling whether a given string x matches a given regexp «:

1. Convert «r into an equivalent NFAN .
2. Convert N, into an equivalent DFAM,,.
3. Run M, on x. Ifit accepts, say "yes, it matches", else say "no match".

This algorithm is correct, but it is not efficient. The reason is that step 2 can blow up. An intuitive
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that
would ever be used on all possible strings x, but most of them are unnecessary for the particular x that
was given.

There is, however, a better way that builds just the set-states Ry, ..., R;, ..., R, that are actually
encountered in the particular computation on the particular x. We have Ry = S = E(s) to begin with.
To build each R; from the previous R;_1, iterate through every g € R;_; and union together all the sets
0(g, x;). If N, has k states---which roughly equals the number of operations in a---then that takes

order n - k - k steps. This is at worst cubic in the length O(n + k) of x and « together, so this counts as
a polynomial-time algorithm. It is in fact the algorithm actually used by the grep command in
Linux/UNIX.

Kleene's Equivalence Theorem
Stephen Kleene (pronounced clay-nee) proved most of the following in the mid-1950s:

Theorem. For any language A over any alphabet X, the following statements are equivalent:
1. There is a regular expression r such that L(r) = A.
2. There is an NFA N (allowing e-transitions) such that L(N) = A.
3. There is a DFA M such that L(M) = A.

We proved 1 = 2 simultaneously with formally defining regular expressions last Thursday, and we've
exemplified 2 = 3. Kleene actually did 1 = 3 and 3 = 1 directly, though with a neural-net
version of DFAs that carried a whiff of NFAs. The full definition of NFA and the NFA-to-DFA step came
in a 1959 paper by Michael Rabin and Dana Scott (who are both still living in 2/26). Since a DFA "Is-A"
NFA, we can complete the cycle by showing 2 = 1 just as well. Actually, we will start from an even
more general kind of finite "machine".

[Lecture ended here. This ~ where the Week 4 Tuesday lecture ended in 2021, anyway.]

