CSE396 Thursday, March 4: Myhill-Nerode Examples and Implications

Once you pick up the pattern that was scripted in "fill-in-the-blank" fashion, the proofs become really
quick---and even redundant. In fact, sometimes you can re-use a proof that was done for a different
language. [The actual lecture did a lot more change-arounds than these notes represent, some
ad-libbed from excellent questions, but at least these notes give some flavor of that. I'm not
sure I've put them all the way back the way they were.]

Example 2’: Prove that L, = {0”10’1 n 2> O} is nonregular

Proof: literally copied-and-pasted from last lecture's posted notes on the PAL language:

Take S = (00)*1 . "Clearly S is infinite."
Letany x,y € S (such that x # y) be given. Then we can helpfully write x = ___ (00)"1 ___
andy = ___ (00)"1 where m#n___ . foptional-where——————"wlog-"]
Take z = (00)™ . Then L,(xz) # L,(yz) because

xz = (00)"1(00)" whichis in L,, but yz = (00)" - 1(00)™ which is notin L, since m # n

Since x and y are an arbitrary pair from S, S is PD for L, and since S is infinite, L, is nonregular by the
Myhill-Nerode Theorem. XI.

Actually, on the chalkboard | took S = 0*1. The proof worked the same except that it used:
given any general x = 0”1 and y = 0"1, taking z = 0™,

Then xz = 0"10™ € L, butyz = 0"10™ ¢ L, since m # n. | could also have just taken S = 0*. Then
we would have:

given any general x = 0" and y = 0", taking z = 10™,

with the same outcomes for xz and yz. Including the "1' in the definition of S was merely being
"proactive", insofar as the 1 being the only possible dividing point is the key point of the logical
reasoning. Here is the proof compactly:

Take S = 0"1. Clearly S is infinite. Letany x,y € S (x # y) be given. Then we can generally
write x = 0™1, y = 0"1 where m # n. Takez = 0™. Then xz = 0"10™ € L,, whereas

yz = 0"10™ ¢ L, since m # n. Thus L,(xz) # L,(yz), and since x, y € S are arbitrary, S is PD
for L,. And since S is infinite, L, is non-regular by the Myhill-Nerode Theorem.



Exactly the same proof worked for the PAL language. But suppose we defined the language

EPAL = {xIR cx 10,1 }'} instead. This requires palindromes to have even length. Then

xz = 0"10"™ would be no good. But taking z = 10™ to make xz = 0™110™ belongs to EPAL as well.

The proof in the notes doing S = (00)"1, so x = (00)™1 and y = (00)"1, with z = 1(00)"™, was
harmless overkill for all these languages-—-but might be useful for something else. In general, the more
restricted you can make S while keeping it infinite, the better.

The other kind of re-use is exemplified by taking L, = {Om10” :m < n} instead. Now to avoid
another possible confusion about what "m" and "n" stand for and which side of the middle 1 they apply

to. We can rewrite the definition of the language to read L;, = {Oile 11 < ]} Now we roll:

Take S = 0*1. Clearly S is infinite. Letany x,y € S (x # y) be given. Then we can generally
write x = 01, y = 0"1 where wlog. m < n. Take z = 0". Then xz = 0"10™ € L, since

m < m, whereas yz = 0"10" ¢ L, since n > m. Thus L,(xz) # L,(yz), and since x, y € S are
arbitrary, S is PD for L;. And since S is infinite, L; is non-regular by MNT.

Example 5: BAL = {x € {(,)}": xis a balanced string of parentheses}.

[Side example: If you have ((())), then this is string is actually ~ p4; equivalent to the empty string. If
you follow it by ()()() then the whole thing ((()))()()() is balanced just like ()()() is by itself.

And if you have (((())), then this is string is actually ~ pa; equivalent to the string "(" If you follow it by
00() then the whole thing (((()))()()() has an excess of one ( just like (()()() is by itself.]

MNT proof:

Take S = (*. Clearly S is infinite. Letany x,y € S, x # y, be given. Then we can write x = (™,

y = ("wherem,n > 0andm > nwlog. Takez = )". Thenxz = (™)™ isin BAL’, but

yz = (")™is notin BAL’ since m > n makes have too many right parens to close. So

BAL'(xz) # BA’L(yz). Since x,y € S are arbitrary, S is PD for BAL’, and since S is infinite, BAL is
nonregular by MNT. XI.

Example 6: How about BAL” = {x € {(,)}": x can be closed to make a balanced string of
parentheses}? This is the same as saying (du € {)}*)xu € BAL. The above proof doesn't work since
we could have m < mnsothatyz = ()" can be closed by appending u = )"™. Butifn < m
(which you can alternatively assert "wlog.") that wouldn't work. In fact, | prefer to keepm < nto
mimic alphabetical order and change the choice of z in the proof instead.



Take S = (*. Clearly Sisinfinite. Letany x,y € S, x # y, be given. Then we can write x = (",

y = ("wherem,n > 0andwlog.m <n. Takez = )". Thenxz = (™)" is notin BAL’ since the
excess of right parens cannot be fixed, but yz = ()" isin BAL’, so BAL'(xz) # BAL’(yz). Since
X,y € S are arbitrary, S is an infinite PD set for BAL’, so BAL is nonregular by MNT. XI.

In fact, BAL'’ is really the same as the language of "spears and dragons with unlimited spears", reading
'(" as a spear, ')’ as a dragon, and ignoring empty rooms.

Example 7: To come back to an example in the text, try A = {ww: w e X |wl|is odd} where

again X = {0,1}. Over any alphabet of size 2 or more, this language is often called DOUBLEWORD.
When we cover the "CFL Pumping Lemma" in ch. 2 we will see that it is not even a "CFL" (which
includes all regular languages), but for now we'll just prove it's nonregular. We can essentially plagiarize
re-use the proof for the palindrome language (but by the way: PAL is a CFL).

Take S = 0* . "Clearly S is infinite."
Letany x,y € S (such that x # y) be given. Then we can helpfully writex = ___ 0" ____and
y = 0" where = m#n_
Take z = 10™1 . Then A(xz) # A(yz)because _____xz = 0™10™1

which is in A, but yz = 0"10™1 which is not in A since m # n and the only possible way to
make a double word is to break after the first 1.
Since x and y are an arbitrary pair from S, S is PD for A, and since S is infinite, A is nonregular by the
Myhill-Nerode Theorem. [XI.

While cutting the mouse-copied fill-in-the-blank format, we can make the proof a little more elegant by
defining S slightly differently:

Take S = (00)*1. Clearly S is infinite. Letany x,yy € S (x # y) be given. Then we can write

x =(00)"1andy = (00)"1 where m # n. Takez = (00)"1. Then A(xz) # A(yz) because

xz = (00)™1(00)™1 € Aand |(00)™1]| = 2m + 1 which is always odd, but

yz = (00)"1(00)"1 ¢ Asince m # n and the only possible way to make a double word is to break
after the first 1. Since x,y € S are arbitrary, S is PD for A, and since S is infinite, we're done.

What on earth is REG? The curly font means it is a set of languages, which we call a class. So REG
stands for the class of regular languages. Beware: the language

A” = {x-y: #0(x) = #1(y)}is in REG.
One help is to rewrite sets so they have only one named object to the left of the : (or |)
A” = {w: wcan be broken as w =: xy such that #0(x) = #1(y)}

Similarly, you can avoid confusing A? with {xx: x € A} by remembering the definition of



A-B = {w: wcan be brokenasw =: x-ywithx € Aandy € B}. So
A% = {w: wcan be brokenasw =: x-ywithx € Aandy € A}.

[Example 8 got covered a different way, in response to a question about the original
DOUBLEWORD language. The gist was the same; | used the numbers 5 and 7 in lecture.]

Example 8: What about DOUBLEWORD over a single-letter alphabet, say X = {a}? Itis still defined
viaA = {ww W € Z*}. Let's try the same kind of strategy:

"Poof": Take S = a”. Clearlty S is infinite. Letany x,y € S (x # y) be given. Then we can write

x =a"andy = a" wherem # n. Takez = a™. Thenxz = a™a"™ which is clearly a double-word,
butyz = a"a™ whichis notsincen # m. So A(xz) # A(yz),so Sis PD for A, and since S is
infinite, A ¢ REG by the Myhill-Nerode Theorem.

But wait: a string over {a} is a double-word if and only if it is an even number of a's, so it matches (aa)”,
so A is regular after all. What is wrong with the proof? Note thatm = 3,n = 5is a possible pair
from S, thatis, x = a®,y = a° which makes z = a>. Clearly xz = a°a® is a double-word, but it
looks like yz = a a® isn't. At least that's the intent of writing a®a, and (here comes a jargon word) the
intension by which we may read it. But the extension is that a°a® is the string of eight a's, which
without the power abbreviations is aaaaaaaa. This can be broken a different way as aaaa - aaaa, whose
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intension is a* - a*. Thus the string a°a® is a double-word after all, so the conclusions yz ¢ A and thus

A(xz) # A(yz) were wrong. Poof!

And since the language A is regular after all the proof can't be fixed. Another common mistake is to
"fudge" by restricing pairs from S in ways that do lose generality. For instance, if you asserted "Then
we can write x = a™ and y = a" where one of m and 7 is even and the other is odd," then the
conclusions xz € A and yz ¢ A giving A(xz) # A(yz) would work---but you wouldn't have
represented all the possibilities in the (Yx,y € S, x # y) requirement fairly.

[The next example got skipped and will reappear next Tuesday.]

Does that mean all languages over a single-letter alphabet are regular? Our last lecture example
shows not. The "wlog. m < n" part isn't strictly necessary, but it is convenient.
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Example 9: Define A = {aN: N is a perfect square}, which equals {a” in € ]N}.

Take S = a*. Clearlty S is infinite. Letany x,y € S (x # y) be given. Then we can write x = a"" and

y = a”" where wlog. m < n. Put k = n—m. The key numerical fact about perfect squares is that
the gaps between successive squares grow bigger and bigger. So we can find r such that

(r+1)2 — 72 > k,and for good measure, such that 12 > m. Takez = a” ™. Then



a = 4", which belongs to A. But

yz = anarz—m — uk+mar2—m — ar2+k
which is not long enough to get up to a(r“)z, which is the next member of A. Soyz ¢ A, giving
A(xz) # A(yz) legitimately this time. So S is PD for A, and since S is infinite, A ¢ REG by the

Myhill-Nerode Theorem.

By the way, one can state the MNT as "if A has an infinite PD set S then A is not regular." This is,
however, "Has-A" in the OOP sense, not in the sense of S being a subset of A. In example 9, S is
actually a superset of A.

Consequences of MNT for Languages that Are Regular and Their DFAs

[The first part of this will also reappear in the next lecture. |jumped straight to the "L ;"
example and called it "example 9."]

The full Myhill-Nerode Theorem---including the converse direction---says that every regular language A
has a DFA M 4, whose states are the equivalence classes of the relation ~ 4. No DFA can have any
fewer states than the number k of those classes---that follows from the original forward direction.
Moreover, the components of M 4 are all completely dictated by the relation. Let us write [x] to denote
the equivalence class of a string x (with the language A understood); note that when x ~ 4 i we have
[x] = [y] eventhoughx # y. Thenwe haves, = [e] as the start state of M 4 and

F, = {[x]: x € A} for the final states. The part | didn't say before is the rule

0a([x], ) = [xc],

which is valid because using y in place of x when [y] = [x] doesn't change the value, because then
[yc] = [xc] anyway, since x ~ 4 y implies xc ~ 4 yc for any char c. Anyway, the point is that 6 4 too
is completely dictated. The upshot is the following statement:

Corollary (to the MNT): Every regular language A has a minimum-size DFA M 4 that is unique.

Unfortunately, the MNT does not do much to help you build an efficient algorithm to find M 4. The one
thing we do know is that once you have a DFAM = (Q, X, 9, s, F) such that L(M) = A, no matter
how wasteful, you can always efficiently refine it down to the unique optimal M 4. The key definition
uses the auxiliary notation 0*(g, z) to mean the state that M (being a DFA) uniquely ends at upon
processing the string z from state 4. Inductively, 6*(g,€) = q for any g, and further for any string w

and charc, 6%(q, wc) = 6(6*(q,w),c).

Definition: Two states p and g in a DFA M are distinguishable if there exists a string z such that one
of 6%(p, z) and 67(g, z) belongs to F and the other does not. Otherwise they are equivalent.



Two equivalent states must either be both accepting or both rejecting, because if they are one of each
then they are immediately distinguished by the case z = €. There is a simple sufficient condition: If p
and g are bopth accepting or both rejecting, and if they go to the same states on the same chars (that
is, if 6(p, c) = 0(g, ¢) for all c € X), then they are equivalent. But otherwise, it can be hard to tell
equivalence. There is an algorithm for determining this that is covered in some texts, and also appears
in some Algorithms texts as an example of "dynamic programming."

M b M’

States 2 and 3 are distinguished by € since 2 is rejecting and 3 is accepting. Ditto 3 and 5.
States 2 and 5 are equivalent, however, because both are rejecting and both goto 5 on a
and to 3 on b. States 2 and 4 are distinguished by z = b because 2 goes to an accepting
satte on b but 4 does not. Ditto states 1 and 2. But states 1 and 2 are equivalent. This is
harder to see immediately, but is because they go to each other on a and go to equivalent
states on b. The unique minimum DFA M’ such that L(M") = M is shown at right.

We will focus on the distinguishing side instead. The following are good self-study points about any
DFA M with language A = L(M):

« Ifx * 4y (inwords, if x and y are distinctive for the language A) then in any DFA M such that
L(M) = A, 6"(s, x) and 6"(s, y) must be distinguishable states---not just different states.

« Ifx ~ 4 y,then 67(s, x) and 07(s, y) must be equivalent states.

« If67(s, x) and 07(s, y) are distinguishable states, then x + 4 v.

« If Sis a PD set for A, then the strings in S must all get processed to different states from s.

The last point leads us to consider PD sets in cases where languages are regular. Let us revisit the

languages L, = (0+1)*1(0+ 1)* ! forallk > 1. Recall that L; always has an NFA N of k + 1
states that mainly guesses when to jump out of its start state when reading a 1.

Proposition: Forall k > 1, the set S, = {0,1}* is a PD set of size 2 for L.



Proof: Clearly |{0, 1}| = 2F. Letany x,Yy € Sk, x # y, be given. Since they are different binary
strings, there must be a bit place i (numbering 1 ... k) in which they differ. Without loss of generality, let
"x" refer to the string that has 0 in posiiton 7 and "y" to the string with a 1 there. Take z = 01, which
is a legal string since i > 1. Then xz ¢ Ly but yz € Ly, per the following picture:

IO T kil fedtio
X 0 0000000
y 1 0000O0O0O
\ J
YA
k

Thus L(xz) # Li(yz), and since x, y € S are arbitrary, Sy is PD for L. Hence the minimum DFA M
such that L(Mj) = L; must have at least 2k states (and in fact, can be designed with that many states,

e.g., since [e] = [Or] for any number 7, we can re-use the start state for 6(s, 0) = s, and so on).

This finally proves there are cases of "exponential blowup" in the NFA-to-DFA construction.

[The Thu. 2/19 lecture ended here. The next section is already set up to segue nicely into the
topic of Context-Free Grammars. Beteen that section and the introduction of CFGs, | will make
some speculative assertions about human brain function and try to convince you of them.]

The Class of Regular Languages: What It means to be Regular

GivenaDFAM = (Q,Z,9,s, F), let us use the notation 6*(p, x) = the state g that M is in after
processing X from state p. (We could have used A* for the DFA in the NFA-to-DFA proof.) Note that
x € L & 06%s,x) € F,
where . = L(M), so
x ¢ L & 0'(s,x) ¢ F,
which is the same as writing
xel = 0*(s,x) € F.

The upshot is that the DFAM’ = (Q, 2,0,s, IN-“) gives L(M’) = L. This trick of complementing
accepting and nonaccepting states does not, however, work for a general NFA. For example, if you try
this on the NFAs N given for the languages L; of binary strings whose kth bit from the end is a 1, then
the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string,
not just those in the complement of L. [l spent some time showing this from the picture of N in the
previous lecture.] But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:

Theorem 1: The complement of a regular language is always regular.

Theorem 2: The class of regular languages is closed under all Boolean operations.



Actually, we already could have said this right after Theorem 1 about complements. This is because
OR is a native regular expression operation. OR and negation (=) form a complete set of logic
operations. Forinstance,a AND b = —((—a) OR (= b)) by DeMorgan's laws.

What kind of machine or formal system can have a non-regular language? Next week in Chapter 2 we
will explore context-free grammars (CFGs). Just for preview, the CFGG = S — 051 | € gives

L(G) = {0”1” cn > O}, andG' = S — €|0S|$S|$SDS generates all strings in the spears-

and-dragons game with unlimited spears in which the "Player" survives.



