CSE396 Lecture Tue. Feb. 17: Regular and Non-Regular Languages, Myhill-Nerode Theorem

John Myhill, UB Math Department: 1966 until his death in 1987.
Anil Nerode, Cornell Mathematics and MSI. My postdoc overseer 1986--89. Still active!
Theorem proved while both were at U.Chicago in 1958.

The intuition is that a language L is non-regular exactly when there are infinitely many status
possibilities you have to "juggle in your mind" as you process a string x left-to-right. [The "Pumping
Lemma" has a different idea and doesn't apply "exactly"---another reason | prefer MNT.]

For example, suppose we liberalized the rules of the "spears and dragons" game to the ridiculous
extent that you could carry as many spears as you find. Then you would have a status of "1 spears" for
every natural number 7. Strings of the form $"D" are now "survivable" for every . But the language
L that allows these strings is not regular.

Well, we have to prove that. The idea of the proof is that the reason different numbers of spears, say
x =$" and y = $" where m < n, are different statuses is that if n rooms with dragons come next

(symbolized by the string z = D), then the x status gets you killed whereas the ¥ status survives.
Thatis, xz ¢ L, butyz € L. Put another way, L, (xz) # L. (yz), where we've taken the liberty of
regarding a language as a Boolean function that returns t rue on strings that belong to it and false on
strings that don't.

Let's build up this idea from the point of view of a language A that is regular, using a DFA M such that
L(M) = A and seeing what states it needs in order to process various strings correctly.

Myhill-Nerode Technique -- Quick Version

1. Suppose you are trying to build a DFA M to recognize a language A and you find three strings x, v, z
such that xz € A but yz ¢ A or vice-versa. Then your M must process x and y to different states. The
reason is that if you had M process them to the same state g, then upon following up with processing z
from state g, both xz and yz would end up in the same state, call it 7. But 7 can't be both an accepting
and a rejecting state.

2. Let us abbreviate "xz € A but yz ¢ A or vice-versa" as A(xz) # A(yz). Thenwrite x + 4 yif
there exists a z such that A(xz) # A(yz). Call x and y pairwise distinguishable (PD) for A when
that happens. Merely re-phrasing what we showed in step 1, if x and y are PD for A then any DFA M
that attempts to make L(M) = A must process x and y to different states.

3. Therefore, if we have a set S of k strings, any two of which are PD for A, then any such M needs to
process them to k different states. We call S a PD set for A.

4. Therefore, if we have a set S of co-many strings, any two of which are PD for A, then any such M
needs to process them to oo different states.

5. But having infinitely many states contradicts the definition of M being a deterministic finite
automaton. Hence, a DFA M such that L(M) = A cannot exist. So A is not a regular language.

This yields a technique for proving a language A to be non-regular (when it's true): find an appropriate
infinite set S and prove that S is PD for A. The "proof script" for applying the technique will be even
shorter than this.

But first, let us go over the steps more carefully. For step 1, here is a picture:
9 9 _. i cAIhe
Ohsewath - I¢ 4 PF/ M PrOLC Wo el
Y,r ?,{_2:0 /Q W §ap 54'()“2(‘: :///{/ '}/)TM X /\'1(/;4) y

NS0 |
f’d/l!/k [

l

Whaker 2 (mes redh, X2 anl Y2 ger
I0sid A e st S T

o] :
Y i# 2001, 9 ax ;f/((‘///?qf 77 }#{;ﬁ 4

!

X ol g b iphent st

Catiaile: 57 Y+, vt M st prcas

OK, we wrote x ~ (1) Y, and saying what this means takes us into step 2. For a general language A,
we define:

Definition: Two strings x, v are A-equivalent, written x = 4 y,ifforallz € X7,
xz € A &= yz € A

We can abbreviate this to: x ~ 4 v if (Vz)A(xz) = A(yz). The negated relation is just:
x # Ayif(JAz)A(xz) # Ayz).

An example of equivalent strings for a regular language is E = {x € {0,1}: #1(x) is even}. Then

x = 100 andy = 10101 are equivalent, because they have the same parity (odd) of number of 1's.
Butx = 100 andy’ = 1001 are not equivalent: x + ¢ y’. This is why the DFA we saw for E must go
from its "odd 1s" state back to its "even 1s" start state on the final 1 in y". A simple example of
equivalent strings for a nonregular language is that if we are interested in prime numbers that begin
with the digit 7, the prefixes x = "7" and y = "007" are equivalent, because leading zeroes don't
change the number whatever comes after the 7.

Although we don't need to employ this since "PD" uses only the negated relation x + 4 y, it helps to
observe that for any language A, regular or not, ~ 4 is an equivalence relation.

1. Reflexive: x ~ 4 x since obviously (Vz)A(xz) = A(xz).
2. Symmetric: x ~ 4y <& y ~ 4 xsince (Vz)A(xz) = A(yz) is the same thing as
(V2)A(yz) = A(xz).
3. Transitive: we need toshow (W ~ 4 x A x ~ 4y) = w ~ 4 Y. The left-hand sides say:
- (V2)A(wz) = A(xz)
- (V2')A(xz") = A(yz).
Since the two quantifiers (Vz) and (Vz’) run over the same strings, the equations add up to
- (Y2)A(wz) = A(yz),
which yields w ~ 4 y.

The extra thing this lets us say is that when x + 4 v, this means x and y belong to different
equivalence classes. Maybe this helps us re-state step 3:

3'. If we have a set S of k strings, any two of which are PD for A, then they fall into k different
equivalence classes. Since step 1 says a DFA M giving L(M) = A would need different states for
different equivalence classes, it follows that M needs (at least) k states, one for each equivalence class.

If going from "any 2 are different" to "all k are different" is clear to you, great. My own MNT handout
with horses tries to make this step obvious by saying: If two horses are distinctive, color them different
colors. Hence if every pair of k horses are distinctive, they all have k different colors. Thus a DFA,
needing a different state to process each color to, must have at least k states.

Well, the historical way to reason about it involves pigeons rather than horses:

Suppose M had k — 1 (or fewer) states. Then among the k strings x1, ..., xx in the set S, (at
least) two of them must get processed to the same state. They are like k "pigeons" trying to be
placed into k — 1 "holes" in a pigeon carrying case---you'd have to try to put two of them in the
same slot. Call those two x; and x;. By the definition of S being PD for A, we have x; + 4 Xj.
But then by step 1, x; and X; have to go to different states, a contradiction. So and DFA M such
that L(M) = A must have at least k states.

The key point is called the Pigeonhole Principle. Originally it was stated in the 1830s by the French
mathematician Johann Peter Gustav Lejeune Dirichlet in terms of k pearls going into k — 1 drawers of a
jeweler's carrying case. IMHO the "pigeon" analogy took hold not only in France because pigeon
carriers are similar cases with square slots, but even more in England because the square pass-
through mail slots in the Porter's Lodge of a residential college are called pigeonholes. The college
mail service itself is called the "Pigeon Post." The principle says that if k letters arrive for k — 1
residents of the college, then some lucky fellow will get more than one letter.

[See recent short GLL blog post https://rjlipton.wordpress.com/2021/02/15/pigenhole-principle/]

[In the "Pumping Lemma", the same principle is applied to say while processing the first k characters of
a string x in the language, a machine with k — 1 states must have been in the same state g at least
twice. The substring w that got processed between the two times it was in state g can then be either
erased ("pumping it down") or repeated any number of times ("pump up") so as to leave another string
x’ that also must be in the language...but...contradiction...so no machine.]

Step 4: If we have a set S of infinitely many PD strings for A, then any DFA M such that L(M) = A
would need infinitely many states---but that is a contradiction in terms. For if M had a finite number k
of states, then taking just k + 1 strings from S would already put us in "pigeonhole trouble."

Step 5: Therefore we have proved the following:

Myhill-Nerode Theorem (MNT), first part: If there is an infinite PD set for a language A, then A is not
regular.

[The second part is the converse: if a language A is not regular, then there is an infinite PD set. Thus,
unlike the Pumping Lemma, the MNT gives an exact characterization of (non-)regular languages.
Whereas some languages cannot be proved nonregular directly by the Pumping Lemma, in principle
there is always a proof by MNT. The proof of the second part actually shows the inverse (which is the
contrapositive of the converse): if all PD sets for A are finite, then A *is* regular. Put another way, A is
regular if and only if the relation ~ 4 has only finitely many equivalence classes. The idea of proving
the inverse direction is that the equivalence classes actually become states of a DFA

My = (Qa,X,04,54,Fa). The start state s 4 is the equivalence class of € and the final states F 4
are the equivalence classes of those strings that belong to A. There are co-many strings in X” but (as
with the #1(x)-even and #1(x)-odd example), that doesn't stop the possibility of there being only finitely
many equivalence classes. The 0 4 part is a little trickier to define, but...this is not the part that gets
applied, anyway.]

https://rjlipton.wordpress.com/2021/02/15/pigenhole-principle/

Applying MNT
There are two steps, of which the first is quick once you get the idea.
1. Choose (wisely) an infinite set S. (It need not be a subset of the language A we are trying to

prove non-regular. It is often intuitively a set of "critical initial segments" of strings in A.)
2. Prove that S is PD for A. If we unroll the logic of the definition of PD, we want to prove:

forallx,y € S (x # y), there exists z € X* such that A(xz) # A(yz).

We can lay out what we need to do in any given case in a template for a "proof script":

Take S = . "Clearly S is infinite."
Let any x,y € S (such that x # y) be given. Then we can helpfully write x = and
y = where [optional: where "wlog."]
Take z = . Then A(xz) # A(yz) because

Since x and y are an arbitrary pair from S, S is PD for A, and since S is infinite, A is nonregular by the
Myhill-Nerode Theorem. XI.

Example 1: A = {0”1”: n > 0}.

Take S = 0* . "Clearly S is infinite."
Letany x,y € S (such that x # y) be given. Then we can helpfully writex = ___ 0" ___ and
y = 0" where m#mn_____. [optional: where "wlog."]
Take z = 1" . Then A(xz) # A(yz)because ____ xz = 0™1" whichis in

A, butyz = 0"1" which is notin A since m # n
Since x and y are an arbitrary pair from S, S is PD for A, and since S is infinite, A is nonregular by the
Myhill-Nerode Theorem. XI.

Example 2: A = {xe {0,1}: x = xR}. Here xR means x reversed. For example, 011% = 110.

And eR = €. If x = xR then xis a palindrome. E.g.: 010, 1001, 0000000. Let's focus on the
palindromes 1, 010, 00100, 0001000, 000010000, ...

L, = {xxR}

Take S = (00)*1 . "Clearly S is infinite."

Let any X,y € S (such that x # y) be given. Then we can helpfully write x = __ (00)"1 __
andy = ____ (00)"1 where m#mn_____. [optional: where "wlog."]
Take z = __ 1(00)™ . Then L,(xz) # L,(yz) because
xz = (00)"11(00)™ whichisin L,, butyz = (00)" - 11(00)™ which is not in L, since
m+n

Since x and y are an arbitrary pair from S, S is PD for L,, and since S is infinite, L, is nonregular by the
Myhill-Nerode Theorem. XI.

Notice that the only edits to the previous proof were the three insertions of 0 marked in pink. The
standard name for this language is PAL.

The next example requires using the "without loss of generality" ("wlog.") feature.

Example 3: A = {x e {0,1}": #0(x) < #1(x)}. (Note, incidentally, that if it said ' = ' then we

would be able to re-use the first proof verbatim. Here it is before we change it...)

Take S = 0" . "Clearly S is infinite."
Letany x,y € S (such that x # y) be given. Then we can helpfully writex = ___ 0" ____and
y = 0" where _ m#mn_____. [optional: where "wlog."]
Take z = 1 . Then A(xz) # A(yz)because ____ xz = 0™1" whichis in

A, butyz = 0"1™ which is notin A since m # n
Since x and y are an arbitrary pair from S, S is PD for A, and since S is infinite, A is nonregular by the
Myhill-Nerode Theorem. X.

But for ' < ' we have to fix the proof, because if m > nthenyz = 0"1™ would still be in A. The point
is that given two strings of 0's, which have to be different lengths if they are in S, we can freely suppose
the "m" refers to the shorter one and "n" to the longer one. There is no loss of generality in doing so.
Thus, we can assert "wlog. m < n." That is enough to make the entire rest of the proof work without
changing a thing, since the assertion guarantees that yz = 0"1™ is not in A.

A = {xe {0,1}": #0(x) < #1(x)}

Take S = 0* . "Clearly S is infinite."
Letany x,y € S (such that x # y) be given. Then we can helpfully writex = ___ 0" ____and
y = 0" where m < nwlog.
Take z = 1" . Then A(xz) # A(yz)because _____xz = 0™1" whichis in

A, butyz = 0"1" which is notin A since 7 < n

Since x and y are an arbitrary pair from S, S is PD for A, and since S is infinite, A is nonregular by the
Myhill-Nerode Theorem. X.

[do as many examples as time allows, picking up with more on Thursday]

Example 4: Suppose we "upgrade" the spears-and-dragons game to allow the Player to hold arbitrarily
many spears. The Player still loses a spear for each dragon killed. Recall the alphabet is {0, $, D} with
0 standing for empty room, $ for spear, and D for dragon. We can do the proof that the resulting
language A is nonregular even without specifying exactly what A is, and while ignoring the presence of
0.

Take S = $. "Clearly S is infinite."
Let any x,y € S (such that x # y) be given. Then we can helpfully writex = __ $" __ and
y = $" where _ m < n wlog.
Take z = D" . (Note change from 11 to 1 here.) Then A(xz) # A(yz) because

xz = $" D" which is not in A because m < n so the Player gets killed, but

yz = $"D" which is in A since the Player kills exactly the possible number of dragons and
survives with zero spears left over
Since x and y are an arbitrary pair from S, S is PD for A, and since S is infinite, A is nonregular by the
Myhill-Nerode Theorem. XI.

