CSE396  Structural Induction on CFGs Spring 2018

A context-free grammar G is sound for a language T if L(G) C T. The original
meaning of sound in logic is actually very similar: in place of G we have more-general notion
of a formal system F that uses rules of logical proof to generate theorems and T is the set of
statements that are true. So F'is sound if everything it proves is really true. With grammars
the meaning is that everything it derives really belongs to the language.

Put another way, soundness means the grammar avoids “false positives.” In many
situations this is more important than G' being comprehensive, which would mean T' C L(G).
Comprehensiveness is also harder to prove—indeed, we will see that related problems are
undecidable in general. And in the wider realm of logic there’s a flat “no” answer: no F' with
verifiable proof rules can be both sound and comprehensive for mathematical truth. The word
used for the latter in logic is “complete,” which in our course would be confusing so I prefer
saying “comprehensive.” But if you use the logic word in the negative then you can restate this
as saying that any F' that is sound and has verifiable proof rules must be “incomplete” —there
must be true statements that it can formulate but it cannot prove. In case you’ve wondered
what Gadel’s Incompleteness Theorem is, that’s pretty much it. We will not cover it per se,
but it inspired Alan Turing to prove undecidability which is the upshot of chapter 5 of the
text.

Back to grammars and soundness. There is a proof technique for showing soundness
called Structural Induction (SI) which has various forms but is (IMHO) most naturally asso-
ciated with grammars. The point is to think inductively directly on the rules of the grammar
rather than on “n going to n+1" in the natural numbers. This kind of thinking extends readily
to rules that arise in object-oriented design, where making a subclass is a kind of “derivation”
from the parent class. You want to verify that the subclass objects obey the properties and
behaviors mandated by the parent class and any other classes or interfaces that got “mixed
in.” You usually don’t need your subclass to be “comprehensive” in any way—what you need
is the new objects to be sound. The goal is a logically organic feel to your class hierarchy.
Well, here we are taking an organically logical approach to the grammars.

You actually have already seen a long proof by SI in the course already. It was by
induction on the following context-free grammar G,.:

E—=0Q|le|0]1|(FUE)|(E-E)| (E").

Here (0, ¢,0,1 as well as the operators U, -, x are being treated as terminal symbols along with
the parentheses. You may remember I originally wrote the first four with squiggles underneath
to say that they were special regular-expression characters. Now let T" denote the set of regular
expressions r such that there is an NFA N giving L(N) = L(r). What the lecture proved
was L(Grey) C T, namely, every regular expression has a corresponding NFA. There is a
‘vice-versa’ insofar as every NFA has an equivalent regular expression, but that came later.
Just for the proof in which I made an electrical-circuit analogy, the point is that it (a) used

induction but (b) never mentioned a natural number “n.” What it inducted on was how
regular expressions are built up as formulas—which are precisely the rules of the grammar

Greg-

When the grammar has more than one variable, then what we are technically doing
is a multi-threaded induction. In numerical terms like in CSE191 that could seem wickedly



complicated. But when done on grammars, here is my “scripted” way to make it come
naturally. I actually encourage “personifying” each variable as if it is some kind of agent.
Here is the “proof script” in general given a grammar G = (V, X, R, S) and target language
T:

1. Assign to each variable A a property P4 of strings it can derive. You can think of P4
as the “meaning” you give to A—though it need not be a comprehensive meaning, just
enough to work with the other variables. You can personify it in the form, “P4: Every
x I derive is such that...”

2. The meaning Ps of the start symbol should imply x € T. Often you can simply take
Pg to be the assertion, “Every x I derive belongs to T',” but sometimes you need to use
a sharper property. Technically this is called “strengthing” or “loading” the “induction
hypothesis” (IH), but what I call “SI style” tries to make it more transparent.

3. For each variable A and each rule A — X where X € (X U V)*, begin the body of the
script by writing, “Suppose A =* x using this rule first” (you can abbreviate the last
four words to “utrf” or to “utpf” for “using this production first”).

4. If X is already an all-terminal string x, you immediately need to check that x obeys
what P4 says. This is a base case.

5. Otherwise, X has one or more occurrences of variables. Note that the variable A itself
can occur on the right-hand side of the rule. This may seem like circular logic but
it’s not. It or some other variable(s) can occur more than once. Regardless, for each
occurrence—call it B;—Tlet u; (or any letter you like) stand for a corresponding substring
that it derives. You have to be general and you have to include any terminals in the rule
in the right order. If there are k occurrences of variables on the right-hand side (RHS)
of the rule A — X, then the script says to enuncuiate it by saying:

“Then x =: ... uy...u;...Uu... where By =—* u; and ... and B; =—* u;
and ... By = u.”

6. Now we apply the corresponding properties Py, ..., P, ..., Py of the variables on the
RHS. Again, two of those occurrences may be the same variable, so you will use the
same property twice, but you will generally be using the property on different substrings.
Here is the scripted way to enunciate this:

“By IH P, on RHS, the substring u; satisfies ..., and by IH P, on RHS,
us satisfies ...”7 And so on through all the substrings.

7. Finally, you need to argue that the fact of each substring obeying its property ensures
that the resulting string = (whatever it is—it is general) obeys the original property P,
of the variable A on the left-hand side (LHS) of the rule. You can then summarize by
saying, “This upholds P4 on LHS.”

8. When you show that every rule upholds the stated property of its left-hand variable,
then you uphold Pg in particular, which is what entitles you to conclude “L(G) C T by
structural induction.”



You can’t, however, just uphold the rules for S, because your reasoning might lean on other
variables upholding their own properties. Well, when there are no other variables then not to
worry—here’s a simple example:

G=S5—(9S5](), T ={balanced-parentheses strings}.

This grammar is not comprehensive, but that’s not what we're worrying about. Take Pg =
“Every x I derive is balanced.” Now go through the rules:

e S — (): The terminal string () is balanced, so Ps on LHS is immediately upheld.

e S — (5)S: Suppose S =>* z using this rule first. Then z =: (u)v where S =—* u and
S =*v. By IH Ps on RHS twice, u is balanced and v is balanced. It follows that z
is balanced, because putting parens around the balanced string « is still balanced and
concatenating that to the balanced string v is still balanced. This upholds Ps on LHS.

Since we upheld the meaning of each rule, every string in L(G) is balanced, i.e., L(G) C T. O

Now we could formulate this as an induction on natural numbers n. Define the numer-
ical predicate P(n) to state that every x derivable in n steps is balanced. The basis is P(1)
since () is the only terminal string derivable in one step. Now let n > 1. We had to start with
the rule S — (5)S. Thus z breaks down as (u)v where S =>* u in some number m; of steps
and S =* v in some number my of steps. Adding up steps and remembering that the initial
rule counts as one step, we get 1 4+ m; + msy = n. This in particular means that both m; and
my are strictly less than n. Hence we can apply what is often called “strong induction” or
“course-of-values induction” to allow taking P(m;) and P(ms) as valid induction hypotheses.
These hypotheses say that u and v are balanced. We then flow into the same reasoning as
above, except that what we conclude is “P(n).” We finally conclude that “(Vn)P(n) follows
by induction,” which tells us what we needed to prove.

What SI does is remove the clunkiness of referring explicitly to “n.” It enunciates
only the logic about how v and v combine with two parens to give a balanced z, which the
latter “CSE191-style” proof needed anyway. By homing in on that logic, it helps us see that
it holds also if we change the terminal rule from S — () to S — €: since € counts as balanced,
the grammar remains sound. This helps us visualize what liberating changes are OK (this
particular change happens to make makes this grammar become comprehensive). The savings
and ability to “brainstorm” changes are even better exemplified by a bigger example:

Let G be the grammar with variables A, B, .S, terminals 0, 1, and rules

S — SS|0B|1A]e€
A — 0S]|1AA
B — 1S|0BB

Let T'={x € {0,1}* : #0(x) = #1(x)}. Prove that L(G) C T.

To do so, we have to first think up some appropriate properties. Well, we can bank
on Pg stating “Every x I derive has equal Os and 1s,” but what about P4 and Pg? The rules
A — 0S and B — 15, in order to be sound, suggest the following properties:



e P,: Every y I derive has one more 0 than 1.

e Pp: Every y I derive has an extra 1 instead.

Now we can check the rules in any order we like—we don’t have to consciously think
of S — € as the basis, though it must be since it is the only terminal rule here.

e S — SS: Suppose S =>* x using this rule first. Then z =: uwv where S =" u and
S =*v. By IH Ps on RHS (twice), u and v have equal 0s and 1s. Hence so does their
concatenation x, which upholds Ps on LHS.

e S — 0B: Suppose S =* x utrf. Then x = 0y where B =* y. By IH Py on RHS, y
has one more 1 than 0. The leading 0 in Oy brings the number of Os in x up to equal
the number of 1s in « (which is the same as in y), upholding Ps on LHS.

e S — 1A: Suppose S =* x utrf. Then x = 1y where A =* y. By IH P4 on RHS, y
has one more 0 than 1. The leading 1 in 1y brings the number of 1s in z up to equal the
number of 0s in z (which is the same as in y), upholding Ps on LHS. (I mouse-copied
the previous text and switched 0 with 1 and A with B.)

e S — e #0(e) = 0= #1(e), so Ps is immediately upheld.

e A — 0S: Suppose A =>* y utrf. Then y = 0z where S =* z. By IH Ps on RHS, =
has equal 0s and 1s. So 0z supplies the extra 0 needed to uphold P, on LHS.

e A — 1AA: Suppose A =" y utrf. Then y = luv where A =—=* v and A =" v. By
IH P4 on RHS (twice!), u and v each supply an extra 0. Having two extra 0s offsets the
leading 1 in the rule to give y a net of one extra 0, which upholds P4 on LHS in this
case also.

e B — 15: Similar to the treatment of A — 0S.

e B — 0BB: Likewise with A — 1AA. These are examples of “reasonable shortcuts.”

Since we upheld every rule, L(G) C T follows. [

In this case, we happen to have comprehensiveness too, so actually L(G) = T. Proving
in return that T C L(G)—i.e., that G catches every binary string with equal Os and 1s—is a
separate matter. It is also more painful: it requires general parsing of strings. Put another
way, it requires designing a parsing algorithm dedicated to the grammar. The verification of
the algorithm has to be by induction directly on strings and substrings that are being parsed.
It can’t be induction on derivations—working from derivations—because that would be like
assuming what you are trying to prove. Sometimes this can be done “organically on strings”
but there’s less savings—you often might as well take “n” to refer to the length of a given
string € T and work in terms of the lengths my, ms, ... of substrings you parse = into. The
text doesn’t really cover this (either)—it has a few end-of-chapter problems that presume you
can do it based on background assumed from chapter 0. What it really has is the new section
2.4 with material on particular cases of parsing algorithms. We will not go into this or into
comprehensiveness proofs in general. But these notes and lecture coverage should suffice as
text for the soundness side.



