
CSE396 Lecture Thu. 2/4: Deterministic Finite AutomataCSE396 Lecture Thu. 2/4: Deterministic Finite Automata

We will give the dry formal definition before trying to liven it up in a few ways. Note I will have a fewWe will give the dry formal definition before trying to liven it up in a few ways. Note I will have a few
cosmetic differences from the text.cosmetic differences from the text.

A A deterministic finite automatondeterministic finite automaton ((DFADFA) is a 5-tuple) is a 5-tuple where: where:M M == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(())

• • is a finite set of is a finite set of statesstates..QQ

• • is a finite alphabet. is a finite alphabet.𝛴𝛴

• • , a member of , a member of , is the , is the start statestart state. [Text says . [Text says .].]ss QQ qq00

• • , a subset of , a subset of , is the set of , is the set of desired desired finalfinal states states, also called , also called accepting statesaccepting states..FF QQ

• • is a function from is a function from to to ..𝛿𝛿 Q Q ×× 𝛴 𝛴 QQ

This "tuple" style of definition was introduced in the 1930s by French mathematicians writing under theThis "tuple" style of definition was introduced in the 1930s by French mathematicians writing under the
fictional name Nicolas Bourbaki. A textbook by John Martin which we used before Mike Sipser's textfictional name Nicolas Bourbaki. A textbook by John Martin which we used before Mike Sipser's text
came out made a joke that if you readily understand definitions like that, you muct be a mathematician.came out made a joke that if you readily understand definitions like that, you muct be a mathematician.
What I think it means, however, is that the Bourbakists were trying to do object-oriented programmingWhat I think it means, however, is that the Bourbakists were trying to do object-oriented programming
before computers were invented. We can render the definition as:before computers were invented. We can render the definition as:

class DFA {class DFA {

 set<State> Q; set<State> Q;

 set<char> Sigma; set<char> Sigma;

 State s; //start state State s; //start state

 set<State> F; //accepting states set<State> F; //accepting states

 State delta(State p, char c); //is this sensible? State delta(State p, char c); //is this sensible?

}}

Indeed, in the Indeed, in the Turing KitTuring Kit software---written in Java by Mark Grimaldi while a student in this course in software---written in Java by Mark Grimaldi while a student in this course in
1997---there is such a class. One change needed in "delta", however, motivates ways in which C# and1997---there is such a class. One change needed in "delta", however, motivates ways in which C# and
Scala (among others) veered off from the original Java. As Scala (among others) veered off from the original Java. As deltadelta, it is a , it is a class methodclass method which makes it which makes it
the same function for every DFA instance. It needs to be an the same function for every DFA instance. It needs to be an instance methodinstance method. In C++, one could do. In C++, one could do
this "primitively" by making a pointer-to-member function field:this "primitively" by making a pointer-to-member function field:

 State (*delta)(State p, char c); State (*delta)(State p, char c);

Or, more cleanly (but also more fussily), one can define a separate Or, more cleanly (but also more fussily), one can define a separate function-objectfunction-object class, say class, say DeltaDelta,,
with a method with a method apply(State p, char c)apply(State p, char c), and have , and have Delta deltaDelta delta; be the class field. However, I; be the class field. However, I
will favor a third way that will harmonize better with next week's definition of NFAs and that reflects thewill favor a third way that will harmonize better with next week's definition of NFAs and that reflects the
idea of a program being a set of idea of a program being a set of instructions. instructions. The abstract fact is that every function The abstract fact is that every function can be identified can be identified ff

with the set of ordered pairs with the set of ordered pairs such that such that . The . The deltadelta function in this case has two function in this case has two aa,, bb(()) ff aa == b b(())

arguments, so we get ordered triples instead of pairs. We can just treat these triples as instance dataarguments, so we get ordered triples instead of pairs. We can just treat these triples as instance data
by writing:by writing:

 set<triple<State, char, State> > delta; set<triple<State, char, State> > delta;

Every DFA instance will then automatically have its own set. Thus I prefer the definition of DFA toEvery DFA instance will then automatically have its own set. Thus I prefer the definition of DFA to
specify:specify:

• • , the set of , the set of instructionsinstructions, aka. , aka. tuplestuples, is a subset of , is a subset of .. 𝛿𝛿 Q Q ×× 𝛴 𝛴 ×× Q Q(())

• • In a DFA, for every In a DFA, for every and and , there is a unique , there is a unique such that such that ..p p ∈∈ Q Q c c ∈∈ 𝛴 𝛴 q q ∈∈ Q Q pp,, cc,, qq ∈∈ 𝛿 𝛿(())

Relaxing the last clause will define an NFA ("without Relaxing the last clause will define an NFA ("without -arcs"). Another reason to think of instructions is-arcs"). Another reason to think of instructions is 𝜖𝜖

how the machines look graphically:how the machines look graphically:

There is a nice web applet for drawing DFAs, There is a nice web applet for drawing DFAs, http://madebyevan.com/fsm/http://madebyevan.com/fsm/ by Evan Wallace, but it does by Evan Wallace, but it does
not execute the machines you draw. That's where the not execute the machines you draw. That's where the Turing KitTuring Kit comes in. comes in.

Before we go to the demo, one further remark about design principles. The definition says Before we go to the demo, one further remark about design principles. The definition says is a set of is a set of QQ
"states" without saying what those are, and my Java/C++ mockup code left "states" without saying what those are, and my Java/C++ mockup code left StateState undefined. The text undefined. The text
first exemplifies states as being observable conditions of a machine (an automatic door), but we willfirst exemplifies states as being observable conditions of a machine (an automatic door), but we will
often want to think in terms of internal "states of mind" while processing a stream of data. Much moreoften want to think in terms of internal "states of mind" while processing a stream of data. Much more
than any text I know, I want every "state" to have a comment or name signifying its purpose, much likethan any text I know, I want every "state" to have a comment or name signifying its purpose, much like
commenting a line of code. The student who programmed the commenting a line of code. The student who programmed the Turing KitTuring Kit agreed wholeheartedly---its agreed wholeheartedly---its
most overt difference from other machine apps one can find is the rich naming and tagging facility.most overt difference from other machine apps one can find is the rich naming and tagging facility.

[Much of the rest of the lecture will be a demo of the [Much of the rest of the lecture will be a demo of the Turing KitTuring Kit software. On a Windows PC it now software. On a Windows PC it now
seems that no setup is required at all: just unzip the .jar file linked from the course webpage (no needseems that no setup is required at all: just unzip the .jar file linked from the course webpage (no need
to bother with the setup instructions link now), navigate your comamnd line to it, and enter the oneto bother with the setup instructions link now), navigate your comamnd line to it, and enter the one
command command java -cp TKIT70.jar Mainjava -cp TKIT70.jar Main (then load (then load DragonSL.tmtDragonSL.tmt to see the first demo machine to see the first demo machine
and do and do View→Auto ResizeView→Auto Resize to work around a window-sizing bug). Its use will be optional; it even to work around a window-sizing bug). Its use will be optional; it even
supports printing but its Postscript job handling has been wonky in the past.]supports printing but its Postscript job handling has been wonky in the past.]

(Light bulbs and switches from http://clipart-library.com/free/light-bulb-clipart-transparent.html)(Light bulbs and switches from http://clipart-library.com/free/light-bulb-clipart-transparent.html)

pp qqcc Self-loops are possible:Self-loops are possible: pp cc

pp,, cc,, pp(())pp,, cc,, qq(())

http://madebyevan.com/fsm/

The DFA The DFA is the "Cartesian Product for AND" of the DFA is the "Cartesian Product for AND" of the DFA tracking light bulb 1 and the DFA tracking light bulb 1 and the DFA MM1212 MM11 MM22

tracking light bulb 2. The set of ordered pairs {(1off,2off), (1off,2on),(1on,2off),(1on,2on)} is the ordinarytracking light bulb 2. The set of ordered pairs {(1off,2off), (1off,2on),(1on,2off),(1on,2on)} is the ordinary
Cartesian product of the set {1off,1on} of states of bulb 1 and the set {2off,2on} for bulb 2.Cartesian product of the set {1off,1on} of states of bulb 1 and the set {2off,2on} for bulb 2.

AA BB CC

11 22

We want We want to be the set of streams of actions over the day that, assuming both lights were to be the set of streams of actions over the day that, assuming both lights wereLL
initially off, leave them both off. What should be the alphabet for these actions?initially off, leave them both off. What should be the alphabet for these actions?

Each switch is a toggle;Each switch is a toggle;
switch B flips both bulbs.switch B flips both bulbs.

What should the states of the system be? Include 8 switch combos or just the lights?What should the states of the system be? Include 8 switch combos or just the lights?

1 off,1 off,
2 off2 off

1 off,1 off,
2 on2 on

1 on,1 on,
2 off2 off

1 on,1 on,
2 on2 on

AAAA AAAA

CC

CC

CC

CC

BB

BB

BB

BB

StartStart

1 off1 off

1 on1 on

A,BA,B

StartStart

A,BA,B

CC

CC 2 off2 off 2 on2 on

B,CB,C

B,CB,CStartStart
AA AA

MM ==1,21,2

MM ==11

MM ==22

