
CSE396 Lecture Tue. 2/9/21: Finite Automata and LanguagesCSE396 Lecture Tue. 2/9/21: Finite Automata and Languages

Suppose we want to accept only those binary strings Suppose we want to accept only those binary strings that end in that end in . We have . We have ..xx 11 𝛴 𝛴 == 00,, 11{{ }}

Is that the same as saying Is that the same as saying does not end in does not end in ? No: the empty string ? No: the empty string does not end in does not end in but that but that xx 00 𝜖𝜖 00

doesn't mean it ends in doesn't mean it ends in .. 11

Designing a finite automaton is sometimes like playing "Musical Chairs". Any char that we read mightDesigning a finite automaton is sometimes like playing "Musical Chairs". Any char that we read might
be the end of the string. If the char is a be the end of the string. If the char is a , we have to be at the accepting "chair". So we make two, we have to be at the accepting "chair". So we make two 11

states, one saying the previous char read was a states, one saying the previous char read was a , the other a , the other a . We will also tentatively make the start. We will also tentatively make the start 11 00

state separate, saying no char has been read yet.state separate, saying no char has been read yet.

By popular demand, the table for By popular demand, the table for : : where where ,, MM11 MM == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF11 (()) Q Q == ss,, Last0Last0,, Last1Last1{{ }}

, the start state is literally called , the start state is literally called , , , and , and is defined by is defined by𝛴 𝛴 == 00,, 11{{ }} ss F F == Last1Last1{{ }} 𝛿𝛿 :: Q Q ×× 𝛴 𝛴 Q Q→→

, and, and 𝛿𝛿 ss,, 00 == Last0Last0,, 𝛿𝛿 ss,, 11 == Last1Last1,, 𝛿𝛿 Last0Last0,, 00 == Last0Last0,, 𝛿 𝛿 Last0Last0,, 11 == Last1Last1,, 𝛿 𝛿 Last1Last1,, 00 == Last0Last0(()) (()) (()) (()) (())

.. 𝛿𝛿 Last1Last1,, 11 == Last1Last1(())

Or in my own preferred style as a set of instructions,Or in my own preferred style as a set of instructions,
𝛿𝛿 == ss,, 00,, Last0Last0 ,, ss,, 11,, Last1Last1 ,, Last0Last0,, 00,, Last0Last0 ,, Last0Last0,, 11,, Last1Last1 ,, Last1Last1,, 00,, Last0Last0 ,, Last1Last1,, 11,, Last1Last1{{(()) (()) (()) (()) (()) (())}}

But on homeworks, it is much more important to give a But on homeworks, it is much more important to give a well-commented arc-node diagramwell-commented arc-node diagram than to than to
give the tables like the text does (without comments!). One thing that also helps is to re-state the targetgive the tables like the text does (without comments!). One thing that also helps is to re-state the target
language in various ways. So how else can we express "strings that end in 1"?language in various ways. So how else can we express "strings that end in 1"?

..LL == w1w1 :: w w ∈∈ 00,, 1111 {{ }}**

What does "What does " mean? The superscript star mean? The superscript star means "zero or more". Zero or more of what? means "zero or more". Zero or more of what? 00,, 11 ""{{ }}** **

Chars. What does "zero chars" mean? It means the empty string Chars. What does "zero chars" mean? It means the empty string . So what this says is that . So what this says is that can be can be 𝜖𝜖 ww

any binary string whatever, which makes any binary string whatever, which makes stand for any binary string that ends in a stand for any binary string that ends in a ..w1w1 11

We could also just write directly We could also just write directly . The comma is then read "or". But more often in. The comma is then read "or". But more often in LL == 00,, 11 ⋅⋅ 1111 {{ }}**

programming, especially scripting, we write a vertical bar (or two) to mean "or": programming, especially scripting, we write a vertical bar (or two) to mean "or": . Well,. Well, LL == 00||11 1111 (())**

the text writes the text writes , which corresponds to "OR" the way , which corresponds to "OR" the way is a way of expressing AND logic in sets. Sois a way of expressing AND logic in sets. So ∪∪ ∩∩

ss

Last0Last0

Last1Last1

00

11

StartStart

11

11

00

00

NotNot
Last1Last1

Last1Last1

11

11

00
StartStart

00

In fact, the startIn fact, the start
state and Last0state and Last0
are equivalent inare equivalent in
that both are notthat both are not
in in and both go and both goFF
to the same stateto the same state
on the same char.on the same char.
Fusing them gives:Fusing them gives:

MM == 11

M'M' == 11

State label saysState label says
last char read.last char read.

the text would write the text would write . That looks fine when typed, but in handwriting the . That looks fine when typed, but in handwriting the tends totends to LL == 00∪∪ 11 ⋅⋅ 1111 (())**
∪∪

close up and look like close up and look like , while , while always looks like always looks like . So I will use a third style one can find online and. So I will use a third style one can find online and 00 || 11

write write for "or", so for "or", so . (But a superscript . (But a superscript instead of instead of will mean "one or more.") Once will mean "one or more.") Once ++ LL == 00 ++ 11 1111 (())** ++ **

the choice and understanding are settled, all of these are visually clear: it must end in the choice and understanding are settled, all of these are visually clear: it must end in and what and what 11

comes beforehand can be anything.comes beforehand can be anything.

A Second LanguageA Second Language

Now, how about Now, how about the second from last char in the second from last char in is a is a ? How can we express this more? How can we express this more LL == xx ::22 {{ xx 11}}

compactly and visually? We could say compactly and visually? We could say . But that leaves out strings that end in . But that leaves out strings that end in , which are, which are 00,, 11 1010{{ }}** 1111

good too. Now, by the way, the string "good too. Now, by the way, the string " " is no longer good: it needs at least 2 chars. So we can write" is no longer good: it needs at least 2 chars. So we can write 11

(using the text's (using the text's style):style):∪∪

. Or we can group it as. Or we can group it asLL == 00,, 11 10 10 ∪∪ 00,, 11 111122 {{ }}** {{ }}**

..LL == 00,, 11 10 10 ∪∪ 11 1122 {{ }}**(())

We can even group it as We can even group it as but maybe that is "too cute". If we don't want to mix braces but maybe that is "too cute". If we don't want to mix braces 00,, 11 11 0 0 ∪∪ 1 1{{ }}** (())

and parens, we can write it as and parens, we can write it as . "My way": . "My way": .. LL == 0 0 ∪∪ 1 1 ⋅⋅ 10 10 ∪∪ 11 1122 (())** (()) 00 ++ 11 1010 ++ 1111(())**(())

How about a DFA now? Can we do it with a 2-state machine, since after all the language isHow about a DFA now? Can we do it with a 2-state machine, since after all the language is
conceptually almost as simple as conceptually almost as simple as is? Ummm...no. We have to track the last 2 chars read. We can is? Ummm...no. We have to track the last 2 chars read. We can LL11

say something up-front about the starting condition: If the last two chars read were both say something up-front about the starting condition: If the last two chars read were both , they give us, they give us 00

no help toward a no help toward a (if the "music stops" now or after the next char, we lose). Hence, that is really the (if the "music stops" now or after the next char, we lose). Hence, that is really the 11

same condition as starting from scratch. Starting with a same condition as starting from scratch. Starting with a gives no help, while starting with gives no help, while starting with is just like is just like 00 11

the last two chars being the last two chars being . Thus we can make "Last00" the start state and proceed accordingly. Let's. Thus we can make "Last00" the start state and proceed accordingly. Let's 0101

abbreviate that to abbreviate that to where where means "read" and label the other states means "read" and label the other states , , , and , and . The latter. The latter r00r00 rr r01r01 r10r10 r11r11

two are our accepting states. Once we lay down the states and the starting and final conditions, thetwo are our accepting states. Once we lay down the states and the starting and final conditions, the
arcs should be easy to fill in:arcs should be easy to fill in:

In lecture I did so:In lecture I did so:

Moral: The left-hand side is well-commented enough that it would be Moral: The left-hand side is well-commented enough that it would be full creditfull credit. Whereas, I've seen. Whereas, I've seen
people write down a table like the following without even saying what the states in people write down a table like the following without even saying what the states in are: are:FF

State \ charState \ char 00 11

11 11 22

22 33 44

33 11 22

44 33 44

Just from that, I have no idea what is going on. Just from that, I have no idea what is going on.

Third From Last CharThird From Last Char

Now how about Now how about ? Among many ways? Among many ways LL == x x ∈∈ 00,, 11 :: the third char from the right end is a 1 the third char from the right end is a 133 {{ }}**

to write this more symbolically but visually we can give:to write this more symbolically but visually we can give:

, which equals , which equals ..LL == 00∪∪ 11 100100∪∪ 101101∪∪ 110110∪∪ 11111133 (())**(()) 00∪∪ 11 11 00∪∪ 11(())** (())22

The superscript The superscript doesn't mean squaring. It means doesn't mean squaring. It means exactly twoexactly two occurrences of 0 or 1. If I wrote it as occurrences of 0 or 1. If I wrote it as 22

, the , the and and still wouldn't be numerical. There is, however, a symbolic still wouldn't be numerical. There is, however, a symbolic LL == 00 ++ 11 11 00 ++ 1133 (())** (())22 ++ 22

resemblance to the numerical operations. For one, we can imitate how resemblance to the numerical operations. For one, we can imitate how multiplies out: multiplies out:00 ++ 11(())22

..00 ++ 11 == 0 0 ⋅⋅ 0 0 ++ 0 0 ⋅⋅ 1 1 ++ 1 1 ⋅⋅ 0 0 ++ 1 1 ⋅⋅ 1 1 == 00 00 ++ 0101 ++ 1010 ++ 1111(())22

r00r00 r01r01

r10r10 r11r11

StartStart

State label gives last two chars read.State label gives last two chars read.

00

11

00

11

11

11

00

00

MM :: 22

So long as you realize that the concatenation So long as you realize that the concatenation is not commutative, and that is not commutative, and that doesn't equal zero, doesn't equal zero, ⋅⋅ 00 ⋅⋅ 11

you can use analogies with rules of ordinary algebra. Chief among them is the distributive law. That'syou can use analogies with rules of ordinary algebra. Chief among them is the distributive law. That's
what allows one to write, e.g.,what allows one to write, e.g.,

..11 ⋅⋅ 0000 ++ 11 ⋅⋅ 0101 ++ 11 ⋅⋅ 1010 ++ 11 ⋅⋅ 1111 == 1 1 ⋅⋅ 0000 ++ 0101 ++ 1010 ++ 1111 == 1 1 00 ++ 11(()) (()) (())22

Now for the machine. Alas, we will prove in a few weeks that it cannot be built with fewer than 8 states--Now for the machine. Alas, we will prove in a few weeks that it cannot be built with fewer than 8 states--
-that one really needs to track the -that one really needs to track the possibilities for the last 3 chars read. So: possibilities for the last 3 chars read. So:22 == 8 833

The arcs filled in may make you think this is going to be a nice cube, but after these it gets prettyThe arcs filled in may make you think this is going to be a nice cube, but after these it gets pretty
messy. The fact that this is not a nice cube also hints that this is not really a Cartesian productmessy. The fact that this is not a nice cube also hints that this is not really a Cartesian product
situation. It is also somehow lacking the clean visual impact of the expression situation. It is also somehow lacking the clean visual impact of the expression , or in, or in 00∪∪ 11 11 00∪∪ 11(())** (())22

my terms, my terms, . Is there a kind of machine to reflect this?. Is there a kind of machine to reflect this?00 ++ 11 11 00 ++ 11(())** (())22

The NFA IdeaThe NFA Idea

Note that if you are in state Note that if you are in state and the music doesn't stop---that is, you get another char---then you and the music doesn't stop---that is, you get another char---then you qq33

r000r000 r001r001

r010r010 r011r011

StartStart

State label gives last three chars read, with leading 0s ignorable.State label gives last three chars read, with leading 0s ignorable.

r100r100 r101r101

r110r110 r111r111

00

11

11

11

00

11

00

00

MM == 33

x x == 00111000 00111000

00,, 11

00,, 11 00,, 1111StartStart
qq00 qq11 qq22 qq33

NN ==

can't go anywhere. The computation "crashes" and you lose---even though can't go anywhere. The computation "crashes" and you lose---even though is an accepting state. is an accepting state. qq33

The major story is what goes down at the start state if you get a The major story is what goes down at the start state if you get a . You have the option to stay at start. You have the option to stay at start 11

or make a "leap of faith" by going to or make a "leap of faith" by going to : banking on there being exactly 2 more chars. This is: banking on there being exactly 2 more chars. This is qq11

nondeterminismnondeterminism atat state state onon char char . We have . We have where: where:qq00 11 N N == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(())

• • Q Q == qq ,, qq ,, qq ,, qq{{ 00 11 22 33 }}

• • ,,s s == q q00

• • , and, andF F == qq{{ 33 }}

• • ..𝛿 𝛿 == qq ,, 00,, qq ,, qq ,, 11,, qq ,, qq ,, 11,, qq ,, qq ,, 00,, qq ,, qq ,, 11,, qq ,, qq ,, 00,, qq ,, qq ,, 11,, qq{{((00 00)) ((00 00)) ((00 11)) ((11 22)) ((11 22)) ((22 33)) ((22 33))}}

The two highlighted tuples have the same source state and char but different destination states. ThusThe two highlighted tuples have the same source state and char but different destination states. Thus
the the relation does relation does notnot define a function from define a function from to to . For this reason, we cannot unambiguously. For this reason, we cannot unambiguously 𝛿𝛿 Q Q ×× 𝛴 𝛴 QQ
execute the machine like we could before. But as a specification, it makes visual sense of what theexecute the machine like we could before. But as a specification, it makes visual sense of what the
language is---maybe more sense than the crazy twisty half-finished cube language is---maybe more sense than the crazy twisty half-finished cube .. MM33

[If time allows, define NFAs formally, but otherwise, this sets up the reading of sections 1.2 and 1.3 for[If time allows, define NFAs formally, but otherwise, this sets up the reading of sections 1.2 and 1.3 for
Thursday.]Thursday.]

