
CSE396 Lecture Thu. 2/18: From NFA to DFACSE396 Lecture Thu. 2/18: From NFA to DFA

ExampleExample: : ..r r == abab ++ bbbb aaaa ++ bbbb bb aa ++ 𝜖𝜖 aa(())**(())(((())))**

How can we track this machine on an input such as How can we track this machine on an input such as ? We can try individual? We can try individual x x == bbaabbaa bbaabbaa
computations by trial-and-error:computations by trial-and-error:

 ---? Crash! ---? Crash!ss,, bb,, qq ,, bb,, qq ,, aa,, ff,, aa,,((33 55

 ---? Crash! ---? Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,,((11 11

 --- Crash! --- Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,,((11 22 55 44

 --- Cannot process the final --- Cannot process the final , so Crash!, so Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,, qq ,, aa,, ff,, aa,,((11 22 55 55 55 aa

: end of string, and state is : end of string, and state is , so , so acceptaccept..ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,, qq ,, aa,, qq ,, aa,, ff((11 22 55 55 44 55)) ff

The idea of the DFA is to keep track of all the possibilities in-parallel:The idea of the DFA is to keep track of all the possibilities in-parallel:

.. ss ,, bb,, qq ,, qq ,, bb,, ss,, qq ,, aa,, ff,, qq ,, qq ,, aa,, qq ,, bb,, qq ,, qq ,, bb,, qq ,, qq ,, aa,, ff,, qq ,, aa,, ff(({{ }} {{ 11 33 }} {{ 55 }} {{ 11 22 }} {{ 55 }} {{ 44 55 }} {{ 44 55 }} {{ 55 }} {{ }}))

TheoremTheorem (part two of Kleene's Theorem): Given any NFA (part two of Kleene's Theorem): Given any NFA we can build a DFA we can build a DFA N N == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(())

 such that such that ..M M == QQ,,𝛴𝛴,,𝛥𝛥,, SS,,FF(()) LL MM == L L NN(()) (())

Notice that Notice that got capitalized to got capitalized to , which hints that , which hints that is a is a setset rather than a single element. And rather than a single element. And got got ss SS SS 𝛿𝛿

capitalized to capitalized to . . and and were already sets, but they got...curlier. What does that mean? Well, that were already sets, but they got...curlier. What does that mean? Well, that 𝛥𝛥 QQ FF
they are "of an even higher order"---sets of sets, for instance. An important set of sets is:they are "of an even higher order"---sets of sets, for instance. An important set of sets is:

 also written also written , called the , called the power setpower set of of and defined as and defined as ..PP QQ ,,(()) 22QQ QQ RR :: R R ⊆⊆ Q Q{{ }}

Unlike what textbooks tend to say, we will not necessarily make Unlike what textbooks tend to say, we will not necessarily make be all of be all of , just those subsets , just those subsets QQ PP QQ(()) RR

that are that are reachablereachable from from . What this means is that the states of the DFA will be sets of states of the. What this means is that the states of the DFA will be sets of states of the SS

NFA---the states that are NFA---the states that are possiblepossible upon upon processingprocessing a given part of the input string a given part of the input string ..xx

ff

ss

qq11

aa,, bbbb

aa

bb==

qq22

qq33

qq44

qq55

StartStart bb

aa

aa
aa

bb

bb

"Transcribing""Transcribing"
the regularthe regular
expression expression
"is" the strategy."is" the strategy.

note: note: bb aa ++ 𝜖𝜖 == b b ++ baba(())

This suggests the question, which states (of This suggests the question, which states (of) are possible) are possible beforebefore we process any chars in we process any chars in ?? NN xx

Obviously the start state Obviously the start state of of is possible, but are there any others? Yes, if there are is possible, but are there any others? Yes, if there are -transitions out-transitions out ss NN 𝜖𝜖

of of . Define . Define to be the set of states of to be the set of states of that are reachable this way. If that are reachable this way. If has no has no -arcs (out of -arcs (out of or or ss EE ss(()) NN NN 𝜖𝜖 ss

overall), then overall), then is just is just . Thus we begin building . Thus we begin building by taking by taking EE ss(()) ss{{ }} MM

.. S S == E E ss(())

We could have said "We could have said " " in place of "" in place of " " to begin with, but the " to begin with, but the notation in the textbook is useful notation in the textbook is useful SS EE ss(()) EE

because we can use it to define the following for any set because we can use it to define the following for any set of states of of states of ::R R ⊆⊆ Q Q NN

EE RR == rr :: for some q for some q ∈∈ R R,, N can process 𝜖 from q to r N can process 𝜖 from q to r(()) {{ }}

This is called the This is called the epsilon-closureepsilon-closure of of . If . If then then is already is already epsilon-closedepsilon-closed. It sounds. It sounds RR EE RR == R R(()) RR

"weeny" technical, but we will only need to use subsets that are "weeny" technical, but we will only need to use subsets that are -closed. The insights are-closed. The insights are 𝜖𝜖

• • The states of the DFA need only be the The states of the DFA need only be the possiblepossible subsets of states of the NFA subsets of states of the NFA..
• • A subset A subset is good if it contains at least one accepting state, i..e, if is good if it contains at least one accepting state, i..e, if , because that, because that RR R R ∩∩ F F ≠≠ ∅ ∅

will mean it is possible for the NFA to accept the string.will mean it is possible for the NFA to accept the string.

 We are thus ready to specify this much of the DFA: We are thus ready to specify this much of the DFA:

• • QQ == possible R possible R ⊆⊆ Q Q ;;{{ }}

• • is the same; is the same;𝛴𝛴

• • ;;S S == E E ss(())

• • FF == R R ∈∈ QQ :: R R ∩∩ F F ≠≠ ∅ ∅ ..{{ }}

The only component of The only component of left to define is left to define is . For any . For any and and definedefineMM 𝛥𝛥 PP ∈∈ QQ cc ∈∈ 𝛴 𝛴

..𝛥𝛥 PP,, cc == rr :: for some p for some p ∈∈ PP,, N can process c from p to r N can process c from p to r(()) {{ }}

This means that This means that can be a virtual instruction, but it might not be a literal instruction in can be a virtual instruction, but it might not be a literal instruction in because because pp,, cc,, rr(()) 𝛿𝛿

we might have to process we might have to process 's before and after the character 's before and after the character . We can save half the trouble by. We can save half the trouble by 𝜖𝜖 cc

realizing that any "realizing that any " 's before" are taken care of by the possible set-states 's before" are taken care of by the possible set-states already being already being -closed.-closed. 𝜖𝜖 PP 𝜖𝜖

The text doesn't say this, but when solving these problems, it is IMHO a help to use the followingThe text doesn't say this, but when solving these problems, it is IMHO a help to use the following
definition first to build a table from the given NFA:definition first to build a table from the given NFA:

you can get from you can get from to to by first processing by first processing at at , then doing any , then doing any -arcs-arcs ..pp,, cc == rr :: 𝛿𝛿(()) {{ pp rr cc pp 𝜖𝜖 }}

More formally, More formally, . Then for . Then for possiblepossible and and ,, pp,, cc == rr :: ∃∃qq pp,, cc,, qq ∈∈ 𝛿 𝛿 ∧∧ r r ∈∈ E E qq𝛿𝛿(()) {{ (())[[(()) (())}} PP ∈∈ QQ cc ∈∈ 𝛴𝛴

we get the equivalent definitionwe get the equivalent definition

..𝛥𝛥 PP,, cc == pp,, cc(()) ⋃⋃

p∈Pp∈P

𝛿𝛿(())

Even if there are no Even if there are no 's, the idea of limiting to "possible" 's, the idea of limiting to "possible" often helps in a second way: we avoid often helps in a second way: we avoid 𝜖𝜖 PP
having to define instructions for set-states that are never actually encountered. At the beginning, wehaving to define instructions for set-states that are never actually encountered. At the beginning, we
encounterencounter . Then "expanding" . Then "expanding" means computing means computing for each char for each char . Thus, if . Thus, if then then SS SS 𝛥𝛥 SS,, cc(()) cc 𝛴 𝛴 == 00,, 11{{ }}

the "first generation" are the states the "first generation" are the states and and . One (or both) of these might. One (or both) of these might PP == 𝛥 𝛥 SS,, 0000 (()) PP == 𝛥 𝛥 SS,, 1111 (())

equal equal again, in which case we have nothing more to do with it. But whichever one(s) are new need to again, in which case we have nothing more to do with it. But whichever one(s) are new need to SS
be expanded again to fill out the "second generation." We keep on expanding new set-states---"new"be expanded again to fill out the "second generation." We keep on expanding new set-states---"new"
meaning we have not encountered that exact set before---until a generation turns up no new state.meaning we have not encountered that exact set before---until a generation turns up no new state.
Then we say "the DFA has closed" and we're done.Then we say "the DFA has closed" and we're done.

[FYI: It is really a [FYI: It is really a breadth-first searchbreadth-first search that has closed. If you've seen breadth-first search executed on that has closed. If you've seen breadth-first search executed on
graphs, this one is scaled up in a big way. It is not done on the graph graphs, this one is scaled up in a big way. It is not done on the graph of of but rather on the but rather on the GGNN NN

potentially exponentially bigger graph potentially exponentially bigger graph whose nodes are the sets of states. The graph whose nodes are the sets of states. The graph is given is given GG GG

implicitlyimplicitly via the table via the table and the rule for and the rule for . Just don't think you necessarily have to write out all. Just don't think you necessarily have to write out all 𝛿𝛿 𝛥𝛥

 set-states when given a set-states when given a -state NFA like some sources show in diagrams.-state NFA like some sources show in diagrams.22 == 16 1644 44

If there are no If there are no 's, then 's, then is just the same as the text's set-valued is just the same as the text's set-valued function. But when there are function. But when there are 's,'s, 𝜖𝜖 𝛿𝛿 𝛿𝛿 𝜖𝜖

writing out the writing out the table (which cuts out the table (which cuts out the 's) is a much better use of your time, IMPO, than just's) is a much better use of your time, IMPO, than just 𝛿𝛿 𝜖𝜖

copying out the text's copying out the text's table with the table with the column. Why just recopy information that is already explicitly column. Why just recopy information that is already explicitly 𝛿𝛿 𝜖𝜖

present in the diagram? Whereas, IMHO, the step from present in the diagram? Whereas, IMHO, the step from to to is not typo-prone when done on-the-fly is not typo-prone when done on-the-fly NN 𝛿𝛿

and most usefully breaks your work in half.]and most usefully breaks your work in half.]

ExampleExample (first without any (first without any 's)---a large example, in fact:'s)---a large example, in fact: 𝜖𝜖

Since there are no Since there are no 's out of the start state (or at all), 's out of the start state (or at all), is just is just ..𝜖𝜖 SS ss{{ }}

 (new set-state) (new set-state)𝛥𝛥 SS,, aa == 11,, 22(()) {{ }}

 (new set-state). Expand (new set-state). Expand first: first:𝛥𝛥 SS,, bb == 11,, 33(()) {{ }} 11,, 22{{ }}

 (new set-state, append to expansion queue) (new set-state, append to expansion queue)𝛥𝛥 11,, 22 ,, aa == 𝛿 𝛿 11,, aa ∪∪ 𝛿 𝛿 22,, aa == ∅ ∅ ∪∪ 55 == 55(({{ }})) (()) (()) {{ }} {{ }}

. Not new---back to the start stateof the DFA.. Not new---back to the start stateof the DFA.𝛥𝛥 11,, 22 ,, bb == 𝛿 𝛿 11,, bb ∪∪ 𝛿 𝛿 22,, bb == ss ∪∪ ∅ ∅ == ss(({{ }})) (()) (()) {{ }} {{ }}

. This means that the DFA has a reachable dead. This means that the DFA has a reachable dead 𝛥𝛥 11,, 33 ,, aa == 𝛿 𝛿 11,, aa ∪∪ 𝛿 𝛿 33,, aa == ∅ ∅ ∪∪ ∅ ∅ == ∅ ∅(({{ }})) (()) (())

state. We can say state. We can say right off the bat, no need to expand further. right off the bat, no need to expand further.𝛥𝛥 ∅∅,, aa == 𝛥 𝛥 ∅∅,, bb == ∅ ∅(()) (())

. New state. But expand . New state. But expand next. next.𝛥𝛥 11,, 33 ,, bb == 𝛿 𝛿 11,, bb ∪∪ 𝛿 𝛿 33,, bb == ss ∪∪ 55 == ss,, 55(({{ }})) (()) (()) {{ }} {{ }} {{ }} 55{{ }}

 (new) (new)𝛥𝛥 55 ,, aa == ff(({{ }})) {{ }}

ff

ss

11

aa,, bbbb

aa

bb

NN ==

22

33

44

55

StartStart bb

aa

aa
aa

bb

bb

𝛿𝛿 aa bb
ss 11,, 22{{ }} 11,, 33{{ }}

11 ∅∅ ss{{ }}

22 55{{ }} ∅∅

33 ∅∅ 55{{ }}

44 55{{ }} ∅∅

55 ff{{ }} 44,, 55{{ }}

ff ∅∅ ∅∅

 (new). Now we come to expand (new). Now we come to expand but we have more stuff in the queue. but we have more stuff in the queue.𝛥𝛥 55 ,, bb == 44,, 55(({{ }})) {{ }} ss,, 55{{ }}

. New again---this might worry us about blowup.. New again---this might worry us about blowup.𝛥𝛥 ss,, 55 ,, aa == 11,, 22 ∪∪ ff == 11,, 22,, ff(({{ }})) {{ }} {{ }} {{ }}

. Even more uh-oh.... Even more uh-oh...𝛥𝛥 ss,, 55 ,, bb == 11,, 33 ∪∪ 44,, 55 == 11,, 22,, 44,, 55(({{ }})) {{ }} {{ }} {{ }}

What this means is that the string What this means is that the string can be processed from can be processed from to four different states! Keep going: to four different states! Keep going:bbbbbb ss

. OK, that one was quick.. OK, that one was quick.𝛥𝛥 ff ,, aa == 𝛥 𝛥 ff ,, bb == ∅ ∅(({{ }})) (({{ }}))

. New, but adding . New, but adding to to is no biggie. is no biggie.𝛥𝛥 44,, 55 ,, aa == 𝛿 𝛿 44,, aa ∪∪ 𝛿 𝛿 55,, aa == 55 ∪∪ ff == 55,, ff(({{ }})) (()) (()) {{ }} {{ }} {{ }} ff 55{{ }}

. Not new---we just looped back.. Not new---we just looped back.𝛥𝛥 44,, 55 ,, bb == 𝛿 𝛿 44,, bb ∪∪ 𝛿 𝛿 55,, bb == ∅ ∅ ∪∪ 44,, 55 == 44,, 55(({{ }})) (()) (()) {{ }} {{ }}

. Old, . Old, ..𝛥𝛥 11,, 22,, ff ,, aa == 𝛿 𝛿 11,, aa ∪∪ 𝛿𝛿 22,, aa ∪∪ 𝛿𝛿 ff,, aa == ∅ ∅∪∪ 55 ∪∪∅ ∅ == 55(({{ }})) (()) (()) (()) {{ }} {{ }} == 𝛥𝛥 11,, 22 ,, aa(({{ }}))

. Of course,. Of course, ..𝛥𝛥 11,, 22,, ff ,, bb == 𝛿 𝛿 11,, bb ∪∪ 𝛿𝛿 22,, bb ∪∪ 𝛿𝛿 ff,, bb == ss ∪∪∅∅∪∪∅ ∅ == ss(({{ }})) (()) (()) (()) {{ }} {{ }} == 𝛥𝛥 11,, 22 ,, bb(({{ }}))

Drumroll: because Drumroll: because will work out the same as will work out the same as we really have just the one big state to go. we really have just the one big state to go.55,, ff{{ }} 55{{ }}

eyeball rows 1,2,4,5 in column eyeball rows 1,2,4,5 in column of the table of the table . Almost home.... Almost home...𝛥𝛥 11,, 22,, 44,, 55 ,, aa == (({{ }})) aa == 55,, ff{{ }}

eyeball column eyeball column , we see , we see . . Thunderation!Thunderation!---this is another new state.---this is another new state.𝛥𝛥 11,, 22,, 44,, 55 ,, bb == (({{ }})) bb ss,, 44,, 55{{ }}

 since nothing comes out of since nothing comes out of , so it , so it ..𝛥𝛥 55,, ff ,, aa == 𝛥 𝛥 55 ,, aa(({{ }})) (({{ }})) ff == ff{{ }}

 which is now old, so all eyes now on expanding which is now old, so all eyes now on expanding ..𝛥𝛥 55,, ff ,, bb == 𝛥 𝛥 55 ,, bb == 44,, 55(({{ }})) (({{ }})) {{ }} ss,, 44,, 55{{ }}

. New ÷(. New ÷(𝛥𝛥 ss,, 44,, 55 ,, aa == 11,, 22 ∪∪ 55 ∪∪ ff == 11,, 22,, 55,, ff(({{ }})) {{ }} {{ }} {{ }} {{ }}

. New but not unexpected. Keep Going.... New but not unexpected. Keep Going...𝛥𝛥 ss,, 44,, 55 ,, bb == 11,, 33 ∪∪ ∅ ∅ ∪∪ 44,, 55 == 11,, 33,, 44,, 55(({{ }})) {{ }} {{ }} {{ }}

. Not new.. Not new.𝛥𝛥((11,, 22,, 55,, ff ,, aa == 55,, ff{{ }})) {{ }}

. Also not new.. Also not new.𝛥𝛥((11,, 22,, 55,, ff ,, bb == ss,, 44,, 55{{ }})) {{ }}

. The same.. The same.𝛥𝛥((11,, 33,, 44,, 55 ,, aa == 55,, ff{{ }})) {{ }}

. Not new.. Not new. 𝛥𝛥((11,, 33,, 44,, 55 ,, bb == ss ∪∪ 55 ∪∪∅∅∪∪ 44,, 55 == ss,, 44,, 55{{ }})) {{ }} {{ }} {{ }} {{ }}

Just like that, the DFA has closed!Just like that, the DFA has closed!

Once you get used to inspecting the Once you get used to inspecting the or or table, you can draw the DFA as you go without writing out table, you can draw the DFA as you go without writing out 𝛿𝛿 𝛿𝛿

so many sets. Here it is after the first two generations [lecture will piece more together]:so many sets. Here it is after the first two generations [lecture will piece more together]:

The whole DFA:The whole DFA:

SS 11,, 22{{ }}

11,, 33{{ }}

55{{ }}

ss,, 55{{ }}

ff{{ }}

∅∅

44,, 55{{ }}

11,, 22,, ff{{ }}11,, 22,, 55,, ff{{ }}

11,, 22,, 44,, 55{{ }}

55,, ff{{ }}

ss,, 44,, 55{{ }}

11,, 33,, 44,, 55{{ }}

bb

aa

bb

aa

aa
bb

aa,, bb

For any string For any string , the set-state of the DFA after processing , the set-state of the DFA after processing equals the set of states that equals the set of states that can process can process xx xx NN

 to. Thus, for instance: to. Thus, for instance:xx

• • can process the string can process the string to any of its states to any of its states , 2, and all the way across to , 2, and all the way across to ..NN bbabba 11 ff

• • can process can process , however, only back to its start state , however, only back to its start state ..NN bbabbbab ss

• • accepts accepts but cannot process but cannot process ..NN aaaaaa aaaaaaaa

• • The shortest string that The shortest string that can process to four different states is can process to four different states is ..NN bbbbbb

• • The shortest string that goes to 4 states, one of which is The shortest string that goes to 4 states, one of which is , however, is , however, is ..ff bbbbabbbba

• • There is no string that There is no string that can process to more than four different state---in particular, there is no can process to more than four different state---in particular, there is no NN

string that "lights up" every state, because the "omni" set-state string that "lights up" every state, because the "omni" set-state was was ss,, 11,, 22,, 33,, 44,, 55,, ff == Q Q{{ }}

never encountered in the breadth-first search.never encountered in the breadth-first search.
• • There is no state that guarantees acceptance: every state can reach a rejecting state with moreThere is no state that guarantees acceptance: every state can reach a rejecting state with more

chars. In fact, every state has a path to the dead state.chars. In fact, every state has a path to the dead state.

In other cases, the DFA In other cases, the DFA may never reach a dead state. It might (also) have an "eternal state", may never reach a dead state. It might (also) have an "eternal state", MM
meaning an accepting state that loops to itself. The "omni" state, even when reached, need not bemeaning an accepting state that loops to itself. The "omni" state, even when reached, need not be
eternal (though if eternal (though if has any eternal state, "omni" is eternal). has any eternal state, "omni" is eternal). can even have a cluster of accepting can even have a cluster of accepting MM MM
states that cycle amongst themselves without ever going to a rejecting state---though such a clusterstates that cycle amongst themselves without ever going to a rejecting state---though such a cluster
can then be "condensed" into a single eternal state. This last possibility also tells you that the DFAcan then be "condensed" into a single eternal state. This last possibility also tells you that the DFA
cranked out by the algorithm is not necessarily optimal in size.cranked out by the algorithm is not necessarily optimal in size.

SS == ss{{ }} 11,, 22{{ }}

11,, 33{{ }}

55{{ }}

ss,, 55{{ }}

ff{{ }}

∅∅

44,, 55{{ }}11,, 22,, ff{{ }}

11,, 22,, 55,, ff{{ }}

11,, 22,, 44,, 55{{ }}

55,, ff{{ }}

ss,, 44,, 55{{ }}

11,, 33,, 44,, 55{{ }}

bb

aa

bb

aa

aa
bb

aa,, bb

aa
aa,, bb

To To ∅∅

bb

aa

aa
bb

bb

aa

bb

aa

bb

aa

bb

aa

bb

aa aa

bb
bb

Since the NFA Since the NFA had only had onlyNN

one final state one final state , the final, the finalff

states of the DFA states of the DFA are areMM

just those sets that have just those sets that have ..ff

Proof of the TheoremProof of the Theorem

How do we prove How do we prove ? What we want to prove is that for every string ? What we want to prove is that for every string , the state , the state that that LL MM == L L NN(()) (()) xx RRxx

 is in equals the set of states is in equals the set of states such that such that can process can process from from to to . Then the definition of the final. Then the definition of the final MM rr NN xx ss rr

states states of of kicks in to say that the languages are equal. kicks in to say that the languages are equal.FF MM

• • Define Define to be the statement that this holds for all strings to be the statement that this holds for all strings of length of length .. GG ii(()) xx ii

• • Then Then says that the start state of says that the start state of should equal the set of states should equal the set of states such that such that can can GG 00(()) MM rr NN

process process from from to to . Since this is exactly the meaning of . Since this is exactly the meaning of , which is made the start state , which is made the start state 𝜖𝜖 ss rr EE ss(()) SS

of of , the base case , the base case holds. holds.MM GG 00(())

• • To prove To prove , then, we only need to show , then, we only need to show for each for each ..LL MM == L L NN(()) (()) GG ii -- 11 ⟹⟹ G G ii(()) (()) ii

In the step In the step , the fact that , the fact that is is -closed sets up the assumption that -closed sets up the assumption that in in is is -closed. The-closed. The i i == 1 1 SS 𝜖𝜖 PP 𝛥𝛥 PP,, cc(()) 𝜖𝜖

value value is automatically is automatically -closed, since -closed, since so any trailing so any trailing -arcs can count as part of-arcs can count as part of 𝛥𝛥 PP,, cc(()) 𝜖𝜖 cc ⋅⋅ 𝜖𝜖 == c c**
𝜖𝜖

processing processing . If we---. If we---cc

• • assume assume as our induction hypothesis, as our induction hypothesis, GG ii -- 11(())

• • take the set take the set which the property which the property refers to, and refers to, and RRi-1i-1 GG ii -- 11(())

• • define define ,, RR == 𝛥 𝛥 RR ,, xxii ((i-1i-1 ii))

---then we only need to show that ---then we only need to show that has the property required for the conclusion has the property required for the conclusion . This is that . This is that RRii GG ii(()) RRii

equals the set of states that equals the set of states that can process the bits can process the bits to. The core of the proof is finally to to. The core of the proof is finally to NN xx ⋯⋯ xx11 ii

observe that:observe that:

 can process can process if and only if there is a state if and only if there is a state such that such that can process can process NN xx xx ⋯⋯ xx xx from s to r from s to r11 22 i-1i-1 ii pp NN

 from from to to (which by IH (which by IH includes includes into into) and such that) and such that can process can process xx xx ⋯⋯ xx11 22 i-1i-1 ss pp GG ii -- 11(()) pp RRi-1i-1 NN

the char the char from from to to .. xxii pp rr

Then by the inductive hypothesis Then by the inductive hypothesis , , equals the set of states equals the set of states such that such that can process can process GG ii -- 11(()) RRi-1i-1 qq NN

 from from to to . Now put . Now put .. xx ⋯⋯ x x11 i-1i-1 ss qq RR == 𝛥 𝛥ii ((RR ,, xxi-1i-1 ii))

• • Let Let . Then . Then for some for some . By IH . By IH , , can process can process r r ∈∈ R Rii r r ∈∈ qq,, xx 𝛿𝛿((ii)) q q ∈∈ RRi-1i-1 GG ii -- 11(()) NN xx ⋯⋯ x x11 i-1i-1

from from to to . And . And can process can process from from to to by definition of by definition of . So . So can process can process ss qq NN xxii qq rr r r ∈∈ qq,, xx 𝛿𝛿((ii)) NN

 from from to to ..xx ⋯⋯ xx11 ii ss rr

• • Suppose Suppose can process can process from from to to . Then---and this is the key point---the processing. Then---and this is the key point---the processing NN xx ⋯⋯ xx11 ii ss rr

goes to some state goes to some state just before the char just before the char is processed. By IH is processed. By IH , , belongs to belongs to .. qq xxii GG ii -- 11(()) qq RRi-1i-1

Moreover, Moreover, because we first do the step that processed the char because we first do the step that processed the char at at , then any, then any r r ∈∈ qq,, xx𝛿𝛿((ii)) xxii qq

trailing trailing -arcs. Thus -arcs. Thus , which means , which means ..𝜖𝜖 r r ∈∈ 𝛥 𝛥 RR ,, xx((i-1i-1 ii)) r r ∈∈ R Rii

Thus we have established that Thus we have established that equals the set of states equals the set of states such that such that can process can process from from to to RRii rr NN xx ⋯⋯ xx11 ii ss

. This is the statement . This is the statement , which is what we had to prove to make the induction go through. This, which is what we had to prove to make the induction go through. This rr GG ii(())

finally proves the NFA-to-DFA part of Kleene's Theorem. finally proves the NFA-to-DFA part of Kleene's Theorem. ☒☒

[More examples as-and-if time allows][More examples as-and-if time allows]

More on how the states of the DFA tell what the NFA can and cannot process:More on how the states of the DFA tell what the NFA can and cannot process:
• • The NFA cannot process the string The NFA cannot process the string from its start state at all. However you try, you come to from its start state at all. However you try, you come to bbbbbb

the NFA state 2 being unable to process a the NFA state 2 being unable to process a . Nor can it process . Nor can it process from any other state. from any other state.bb bbbbbb

• • However, However, can process can process from start to any one of its three states: from start to any one of its three states:NN aa

– – 11,, aa,, 11(())

– – 11,, aa,, 11 11,, 𝜖𝜖,, 22(())(())

– – ..11,, 𝜖𝜖,, 22 22,, aa,, 33(())(())

This is shown in the DFA by the single arc This is shown in the DFA by the single arc ..SS,, aa,, 11,, 22,, 33(({{ }}))

• • But in the string But in the string , even though the initial , even though the initial "turns on all three lightbulbs of "turns on all three lightbulbs of ", the final", the final x x == abbb abbb aa NN

 still cannot be processed by still cannot be processed by . The DFA . The DFA does process it via the computation does process it via the computation bbbbbb NN MM

, but that computation ends at , but that computation ends at ,, SS,, aa,, 11,, 22,, 33 11,, 22,, 33 ,, bb,, 22,, 33 22,, 33 ,, bb,, 22 22 ,, bb,,∅∅(({{ }}))(({{ }} {{ }}))(({{ }} {{ }}))(({{ }})) ∅∅

which---when present at all---is always a dead state.which---when present at all---is always a dead state.

Another example: The "Leap of Faith" NFAs Another example: The "Leap of Faith" NFAs for any for any ::NNkk k k >> 1 1

Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string matchesmatches a given regexp a given regexp ::xx 𝛼𝛼

1. 1. Convert Convert into an equivalent NFA into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert into an equivalent DFA into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run on on . If it accepts, say ". If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx

This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient. The reason is that step 2 can blow up. An intuitive. The reason is that step 2 can blow up. An intuitive
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" thatreason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that
would ever be used on all possible strings would ever be used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular that that xx xx
was given.was given.

There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states that are actually that are actually RR ,, …… ,, RR ,, …… ,, RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular . We have . We have to begin with. to begin with. xx RR == S S == E E ss00 (())

 To build each To build each from the previous from the previous , iterate through every , iterate through every and union together all the sets and union together all the sets RRii RRi-1i-1 q q ∈∈ RRi-1i-1

. If . If has has states---which roughly equals the number of operations in states---which roughly equals the number of operations in ---then that takes---then that takes qq,, xx𝛿𝛿((ii)) NN𝛼𝛼 kk 𝛼𝛼

order order steps. This is at worst cubic in the length steps. This is at worst cubic in the length of of and and together, so this counts as together, so this counts as nn ⋅⋅ kk ⋅⋅ kk nn ++ kkOO(()) xx 𝛼𝛼

a a polynomial-time algorithmpolynomial-time algorithm. It is in fact the algorithm actually used by the . It is in fact the algorithm actually used by the grepgrep command in command in
Linux/UNIX.Linux/UNIX.

.

00,, 11

11

00 00 00

11 11 11

kk -- 1 arcs1 arcs

LL NN == 00 ++ 11 11 00 ++ 11((kk)) (())** (())k-1k-1

..== x x ∈∈ 00,, 11 :: the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved the week after next): Whereas the NFA (will be proved the week after next): Whereas the NFA has only has only NNkk kk ++ 11

states, the smallest DFA states, the smallest DFA such that such that requires requires states. states. MMkk LL MM == L L NN((kk)) ((kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm. in the NFA-to-DFA algorithm.

