
CSE396 Lecture Thu. 2/18: From NFA to DFACSE396 Lecture Thu. 2/18: From NFA to DFA
  
  
ExampleExample: : ..r r ==   abab ++ bbbb aaaa ++ bbbb bb aa ++ 𝜖𝜖 aa(( ))**(( ))(( (( ))))**

  

  
  
How can we track this machine on an input such as How can we track this machine on an input such as ?  We can try individual?  We can try individual  x x ==  bbaabbaa bbaabbaa
computations by trial-and-error:computations by trial-and-error:
  

 ---? Crash! ---? Crash!ss,, bb,, qq ,, bb,, qq ,, aa,, ff,, aa,,(( 33 55

 ---?  Crash! ---?  Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,,(( 11 11

 --- Crash! --- Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,,(( 11 22 55 44

 --- Cannot process the final  --- Cannot process the final , so Crash!, so Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,, qq ,, aa,, ff,, aa,,(( 11 22 55 55 55 aa

: end of string, and state is : end of string, and state is , so , so acceptaccept..ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,, qq ,, aa,, qq ,, aa,, ff(( 11 22 55 55 44 55 )) ff
  
The idea of the DFA is to keep track of all the possibilities in-parallel:The idea of the DFA is to keep track of all the possibilities in-parallel:
  

..    ss ,, bb,, qq ,, qq ,, bb,, ss,, qq ,, aa,, ff,, qq ,, qq ,, aa,, qq ,, bb,, qq ,, qq ,, bb,, qq ,, qq ,, aa,, ff,, qq ,, aa,, ff(({{ }} {{ 11 33 }} {{ 55 }} {{ 11 22 }} {{ 55 }} {{ 44 55 }} {{ 44 55 }} {{ 55 }} {{ }}))

  
  
TheoremTheorem (part two of Kleene's Theorem): Given any NFA  (part two of Kleene's Theorem): Given any NFA  we can build a DFA we can build a DFA  N N ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( ))

 such that  such that ..M M ==   QQ,,𝛴𝛴,,𝛥𝛥,, SS,,FF(( )) LL MM   ==  L L NN(( )) (( ))

  
Notice that Notice that  got capitalized to  got capitalized to , which hints that , which hints that  is a  is a setset rather than a single element. And  rather than a single element. And  got got  ss SS SS 𝛿𝛿

capitalized to capitalized to .  .   and  and  were already sets, but they got...curlier.  What does that mean?  Well, that were already sets, but they got...curlier.  What does that mean?  Well, that  𝛥𝛥 QQ FF
they are "of an even higher order"---sets of sets, for instance.  An important set of sets is:they are "of an even higher order"---sets of sets, for instance.  An important set of sets is:
  

 also written  also written , called the , called the power setpower set of  of  and defined as  and defined as ..PP QQ ,,(( )) 22QQ QQ RR ::  R  R ⊆⊆  Q Q{{ }}

  
Unlike what textbooks tend to say, we will not necessarily make Unlike what textbooks tend to say, we will not necessarily make  be all of  be all of , just those subsets , just those subsets   QQ PP QQ(( )) RR

that are that are reachablereachable from  from .  What this means is that the states of the DFA will be sets of states of the.  What this means is that the states of the DFA will be sets of states of the  SS

NFA---the states that are NFA---the states that are possiblepossible upon  upon processingprocessing a given part of the input string  a given part of the input string ..xx
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note: note: bb aa ++ 𝜖𝜖   ==  b b ++ baba(( ))



This suggests the question, which states (of This suggests the question, which states (of ) are possible ) are possible beforebefore we process any chars in  we process any chars in ??    NN xx

Obviously the start state Obviously the start state  of  of  is possible, but are there any others?  Yes, if there are  is possible, but are there any others?  Yes, if there are -transitions out-transitions out  ss NN 𝜖𝜖

of of .  Define .  Define  to be the set of states of  to be the set of states of  that are reachable this way.  If  that are reachable this way.  If  has no  has no -arcs (out of -arcs (out of  or or  ss EE ss(( )) NN NN 𝜖𝜖 ss

overall), then overall), then  is just  is just .  Thus we begin building .  Thus we begin building  by taking by taking  EE ss(( )) ss{{ }} MM
  

..    S S ==  E E ss(( ))

  
We could have said "We could have said " " in place of "" in place of " " to begin with, but the " to begin with, but the  notation in the textbook is useful notation in the textbook is useful  SS EE ss(( )) EE

because we can use it to define the following for any set because we can use it to define the following for any set  of states of  of states of ::R R ⊆⊆  Q Q NN
  

EE RR   ==   rr ::  for some q  for some q ∈∈  R R,,  N can process 𝜖 from q to r N can process 𝜖 from q to r(( )) {{ }}

  
This is called the This is called the epsilon-closureepsilon-closure of  of .  If .  If  then  then  is already  is already epsilon-closedepsilon-closed. It sounds. It sounds  RR EE RR   ==  R R(( )) RR

"weeny" technical, but we will only need to use subsets that are "weeny" technical, but we will only need to use subsets that are -closed. The insights are-closed. The insights are  𝜖𝜖

  
• • The states of the DFA need only be the The states of the DFA need only be the possiblepossible subsets of states of the NFA subsets of states of the NFA..  
• • A subset A subset  is good if it contains at least one accepting state, i..e, if  is good if it contains at least one accepting state, i..e, if , because that, because that  RR R R ∩∩  F  F ≠≠  ∅ ∅

will mean it is possible for the NFA to accept the string.will mean it is possible for the NFA to accept the string.
  
 We are thus ready to specify this much of the DFA: We are thus ready to specify this much of the DFA:
  

• • QQ  ==   possible R possible R ⊆⊆  Q Q ;;{{ }}

• •  is the same; is the same;𝛴𝛴

• • ;;S S ==  E E ss(( ))

• • FF  ==   R R ∈∈   QQ ::  R  R ∩∩  F  F ≠≠  ∅ ∅ ..{{ }}

  
The only component of The only component of  left to define is  left to define is .  For any .  For any  and  and definedefineMM 𝛥𝛥 PP ∈∈ QQ cc ∈∈ 𝛴 𝛴 

  
..𝛥𝛥 PP,, cc   ==   rr ::  for some p  for some p ∈∈ PP,,  N can process c from p to r N can process c from p to r(( )) {{ }}

  
This means that This means that  can be a virtual instruction, but it might not be a literal instruction in  can be a virtual instruction, but it might not be a literal instruction in  because because  pp,, cc,, rr(( )) 𝛿𝛿

we might have to process we might have to process 's before and after the character 's before and after the character .  We can save half the trouble by.  We can save half the trouble by  𝜖𝜖 cc

realizing that any "realizing that any " 's before" are taken care of by the possible set-states 's before" are taken care of by the possible set-states  already being  already being -closed.-closed.    𝜖𝜖 PP 𝜖𝜖

The text doesn't say this, but when solving these problems, it is IMHO a help to use the followingThe text doesn't say this, but when solving these problems, it is IMHO a help to use the following  
definition first to build a table from the given NFA:definition first to build a table from the given NFA:
  

you can get from you can get from  to  to  by first processing  by first processing  at  at , then doing any , then doing any -arcs-arcs ..pp,, cc   ==   rr ::   𝛿𝛿(( )) {{ pp rr cc pp 𝜖𝜖 }}

  
More formally, More formally, .  Then for .  Then for possiblepossible   and  and ,,  pp,, cc   ==   rr ::   ∃∃qq pp,, cc,, qq ∈∈ 𝛿 𝛿 ∧∧  r  r ∈∈  E E qq𝛿𝛿(( )) {{ (( ))[[(( )) (( ))}} PP ∈∈ QQ cc ∈∈ 𝛴𝛴

we get the equivalent definitionwe get the equivalent definition

..𝛥𝛥 PP,, cc   ==   pp,, cc(( )) ⋃⋃
  

p∈Pp∈P

𝛿𝛿(( ))

  

  



  
Even if there are no Even if there are no 's, the idea of limiting to "possible" 's, the idea of limiting to "possible"  often helps in a second way: we avoid often helps in a second way: we avoid  𝜖𝜖 PP
having to define instructions for set-states that are never actually encountered.  At the beginning, wehaving to define instructions for set-states that are never actually encountered.  At the beginning, we  
encounterencounter  .  Then "expanding" .  Then "expanding"  means computing  means computing  for each char  for each char .  Thus, if .  Thus, if  then then  SS SS 𝛥𝛥 SS,, cc(( )) cc 𝛴 𝛴 ==   00,, 11{{ }}

the "first generation" are the states the "first generation" are the states  and  and .  One  (or both) of these might.  One  (or both) of these might  PP   ==  𝛥 𝛥 SS,, 0000 (( )) PP   ==  𝛥 𝛥 SS,, 1111 (( ))

equal equal  again, in which case we have nothing more to do with it.  But whichever one(s) are new need to again, in which case we have nothing more to do with it.  But whichever one(s) are new need to  SS
be expanded again to fill out the "second generation."  We keep on expanding new set-states---"new"be expanded again to fill out the "second generation."  We keep on expanding new set-states---"new"  
meaning we have not encountered that exact set before---until a generation turns up no new state.meaning we have not encountered that exact set before---until a generation turns up no new state.    
Then we say "the DFA has closed" and we're done.Then we say "the DFA has closed" and we're done.
  
[FYI: It is really a [FYI: It is really a breadth-first searchbreadth-first search that has closed.  If you've seen breadth-first search executed on that has closed.  If you've seen breadth-first search executed on  
graphs, this one is scaled up in a big way.  It is not done on the graph graphs, this one is scaled up in a big way.  It is not done on the graph  of  of  but rather on the but rather on the  GGNN NN

potentially exponentially bigger graph potentially exponentially bigger graph  whose nodes are the sets of states.  The graph  whose nodes are the sets of states.  The graph  is given is given  GG GG

implicitlyimplicitly via the table  via the table  and the rule for  and the rule for .  Just don't think you necessarily have to write out all.  Just don't think you necessarily have to write out all  𝛿𝛿 𝛥𝛥

 set-states when given a  set-states when given a -state NFA like some sources show in diagrams.-state NFA like some sources show in diagrams.22   ==  16 1644 44

  
If there are no If there are no 's, then 's, then  is just the same as the text's set-valued  is just the same as the text's set-valued  function.  But when there are  function.  But when there are 's,'s,  𝜖𝜖 𝛿𝛿 𝛿𝛿 𝜖𝜖

writing out the writing out the  table (which cuts out the  table (which cuts out the 's) is a much better use of your time, IMPO, than just's) is a much better use of your time, IMPO, than just  𝛿𝛿 𝜖𝜖

copying out the text's copying out the text's  table with the  table with the  column.  Why just recopy information that is already explicitly column.  Why just recopy information that is already explicitly  𝛿𝛿 𝜖𝜖

present in the diagram?  Whereas, IMHO, the step from present in the diagram?  Whereas, IMHO, the step from  to  to  is not typo-prone when done on-the-fly is not typo-prone when done on-the-fly  NN 𝛿𝛿

and most usefully breaks your work in half.]and most usefully breaks your work in half.]
  
ExampleExample (first without any  (first without any 's)---a large example, in fact:'s)---a large example, in fact:  𝜖𝜖

  

  
Since there are no Since there are no 's out of the start state (or at all), 's out of the start state (or at all),  is just  is just ..𝜖𝜖 SS ss{{ }}

    (new set-state)    (new set-state)𝛥𝛥 SS,, aa   ==   11,, 22(( )) {{ }}

    (new set-state).  Expand     (new set-state).  Expand  first: first:𝛥𝛥 SS,, bb   ==   11,, 33(( )) {{ }} 11,, 22{{ }}

 (new set-state, append to expansion queue) (new set-state, append to expansion queue)𝛥𝛥 11,, 22 ,, aa   ==  𝛿 𝛿 11,, aa   ∪∪  𝛿 𝛿 22,, aa   ==  ∅  ∅ ∪∪   55   ==   55(({{ }} )) (( )) (( )) {{ }} {{ }}

. Not new---back to the start stateof the DFA.. Not new---back to the start stateof the DFA.𝛥𝛥 11,, 22 ,, bb   ==  𝛿 𝛿 11,, bb   ∪∪  𝛿 𝛿 22,, bb   ==   ss   ∪∪  ∅  ∅ ==   ss(({{ }} )) (( )) (( )) {{ }} {{ }}

.  This means that the DFA has a reachable dead.  This means that the DFA has a reachable dead  𝛥𝛥 11,, 33 ,, aa   ==  𝛿 𝛿 11,, aa   ∪∪  𝛿 𝛿 33,, aa   ==  ∅  ∅ ∪∪  ∅  ∅ ==  ∅ ∅(({{ }} )) (( )) (( ))

state.  We can say state.  We can say  right off the bat, no need to expand further. right off the bat, no need to expand further.𝛥𝛥 ∅∅,, aa   ==  𝛥 𝛥 ∅∅,, bb   ==  ∅ ∅(( )) (( ))

.  New state.  But expand .  New state.  But expand  next. next.𝛥𝛥 11,, 33 ,, bb   ==  𝛿 𝛿 11,, bb   ∪∪  𝛿 𝛿 33,, bb   ==   ss   ∪∪   55   ==   ss,, 55(({{ }} )) (( )) (( )) {{ }} {{ }} {{ }} 55{{ }}

    (new)    (new)𝛥𝛥 55 ,, aa   ==   ff(({{ }} )) {{ }}
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    (new).  Now we come to expand     (new).  Now we come to expand  but we have more stuff in the queue. but we have more stuff in the queue.𝛥𝛥 55 ,, bb   ==   44,, 55(({{ }} )) {{ }} ss,, 55{{ }}

.  New again---this might worry us about blowup..  New again---this might worry us about blowup.𝛥𝛥 ss,, 55 ,, aa   ==   11,, 22 ∪∪ ff   ==   11,, 22,, ff(({{ }} )) {{ }} {{ }} {{ }}

.  Even more uh-oh....  Even more uh-oh...𝛥𝛥 ss,, 55 ,, bb   ==   11,, 33 ∪∪ 44,, 55   ==   11,, 22,, 44,, 55(({{ }} )) {{ }} {{ }} {{ }}

What this means is that the string What this means is that the string  can be processed from  can be processed from  to four different states!  Keep going: to four different states!  Keep going:bbbbbb ss

.  OK, that one was quick..  OK, that one was quick.𝛥𝛥 ff ,, aa   ==  𝛥 𝛥 ff ,, bb   ==  ∅ ∅(({{ }} )) (({{ }} ))

.  New, but adding .  New, but adding  to  to  is no biggie. is no biggie.𝛥𝛥 44,, 55 ,, aa   ==  𝛿 𝛿 44,, aa   ∪∪  𝛿 𝛿 55,, aa   ==   55   ∪∪   ff   ==   55,, ff(({{ }} )) (( )) (( )) {{ }} {{ }} {{ }} ff 55{{ }}

.  Not new---we just looped back..  Not new---we just looped back.𝛥𝛥 44,, 55 ,, bb   ==  𝛿 𝛿 44,, bb   ∪∪  𝛿 𝛿 55,, bb   ==  ∅  ∅ ∪∪   44,, 55   ==   44,, 55(({{ }} )) (( )) (( )) {{ }} {{ }}

.  Old, .  Old, ..𝛥𝛥 11,, 22,, ff ,, aa   ==  𝛿 𝛿 11,, aa ∪∪ 𝛿𝛿 22,, aa ∪∪ 𝛿𝛿 ff,, aa   ==  ∅ ∅∪∪ 55 ∪∪∅ ∅ ==   55(({{ }} )) (( )) (( )) (( )) {{ }} {{ }} == 𝛥𝛥 11,, 22 ,, aa(({{ }} ))

.  Of course,.  Of course, ..𝛥𝛥 11,, 22,, ff ,, bb   ==  𝛿 𝛿 11,, bb ∪∪ 𝛿𝛿 22,, bb ∪∪ 𝛿𝛿 ff,, bb   ==   ss ∪∪∅∅∪∪∅ ∅ ==   ss(({{ }} )) (( )) (( )) (( )) {{ }} {{ }} == 𝛥𝛥 11,, 22 ,, bb(({{ }} ))

Drumroll: because Drumroll: because  will work out the same as  will work out the same as  we really have just the one big state to go. we really have just the one big state to go.55,, ff{{ }} 55{{ }}

eyeball rows 1,2,4,5 in column eyeball rows 1,2,4,5 in column  of the table  of the table .  Almost home....  Almost home...𝛥𝛥 11,, 22,, 44,, 55 ,, aa   ==   (({{ }} )) aa ==   55,, ff{{ }}

eyeball column eyeball column , we see , we see .  .  Thunderation!Thunderation!---this is another new state.---this is another new state.𝛥𝛥 11,, 22,, 44,, 55 ,, bb   ==   (({{ }} )) bb ss,, 44,, 55{{ }}

 since nothing comes out of  since nothing comes out of , so it , so it ..𝛥𝛥 55,, ff ,, aa   ==  𝛥 𝛥 55 ,, aa(({{ }} )) (({{ }} )) ff ==   ff{{ }}

 which is now old, so all eyes now on expanding  which is now old, so all eyes now on expanding ..𝛥𝛥 55,, ff ,, bb   ==  𝛥 𝛥 55 ,, bb   ==   44,, 55(({{ }} )) (({{ }} )) {{ }} ss,, 44,, 55{{ }}

.  New ÷(.  New ÷(𝛥𝛥 ss,, 44,, 55 ,, aa   ==   11,, 22   ∪∪   55   ∪∪   ff   ==   11,, 22,, 55,, ff(({{ }} )) {{ }} {{ }} {{ }} {{ }}

.  New but not unexpected.  Keep Going....  New but not unexpected.  Keep Going...𝛥𝛥 ss,, 44,, 55 ,, bb   ==   11,, 33   ∪∪  ∅  ∅ ∪∪   44,, 55   ==   11,, 33,, 44,, 55(({{ }} )) {{ }} {{ }} {{ }}

.  Not new..  Not new.𝛥𝛥(( 11,, 22,, 55,, ff ,, aa   ==   55,, ff{{ }} )) {{ }}

.  Also not new..  Also not new.𝛥𝛥(( 11,, 22,, 55,, ff ,, bb   ==   ss,, 44,, 55{{ }} )) {{ }}

.  The same..  The same.𝛥𝛥(( 11,, 33,, 44,, 55 ,, aa   ==   55,, ff{{ }} )) {{ }}

.  Not new..  Not new.    𝛥𝛥(( 11,, 33,, 44,, 55 ,, bb   ==   ss ∪∪ 55 ∪∪∅∅∪∪ 44,, 55   == ss,, 44,, 55{{ }} )) {{ }} {{ }} {{ }} {{ }}

Just like that, the DFA has closed!Just like that, the DFA has closed!    
  
Once you get used to inspecting the Once you get used to inspecting the  or  or  table, you can draw the DFA as you go without writing out table, you can draw the DFA as you go without writing out  𝛿𝛿 𝛿𝛿

so many sets.  Here it is after the first two generations [lecture will piece more together]:so many sets.  Here it is after the first two generations [lecture will piece more together]:
  

  

  



  
The whole DFA:The whole DFA:
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For any string For any string , the set-state of the DFA after processing , the set-state of the DFA after processing  equals the set of states that  equals the set of states that  can process can process  xx xx NN

 to.  Thus, for instance: to.  Thus, for instance:xx

• •  can process the string  can process the string  to any of its states  to any of its states , 2, and all the way across to , 2, and all the way across to ..NN bbabba 11 ff

• •  can process  can process , however, only back to its start state , however, only back to its start state ..NN bbabbbab ss

• •  accepts  accepts  but cannot process  but cannot process ..NN aaaaaa aaaaaaaa

• • The shortest string that The shortest string that  can process to four different states is  can process to four different states is ..NN bbbbbb

• • The shortest string that goes to 4 states, one of which is The shortest string that goes to 4 states, one of which is , however, is , however, is ..ff bbbbabbbba

• • There is no string that There is no string that  can process to more than four different state---in particular, there is no can process to more than four different state---in particular, there is no  NN

string that "lights up" every state, because the "omni" set-state string that "lights up" every state, because the "omni" set-state  was was  ss,, 11,, 22,, 33,, 44,, 55,, ff   ==  Q Q{{ }}

never encountered in the breadth-first search.never encountered in the breadth-first search.  
• • There is no state that guarantees acceptance: every state can reach a rejecting state with moreThere is no state that guarantees acceptance: every state can reach a rejecting state with more  

chars.  In fact, every state has a path to the dead state.chars.  In fact, every state has a path to the dead state.
  
In other cases, the DFA In other cases, the DFA  may never reach a dead state.  It might (also) have an "eternal state", may never reach a dead state.  It might (also) have an "eternal state",  MM
meaning an accepting state that loops to itself.  The "omni" state, even when reached, need not bemeaning an accepting state that loops to itself.  The "omni" state, even when reached, need not be  
eternal (though if eternal (though if  has any eternal state, "omni" is eternal).   has any eternal state, "omni" is eternal).   can even have a cluster of accepting can even have a cluster of accepting  MM MM
states that cycle amongst themselves without ever going to a rejecting state---though such a clusterstates that cycle amongst themselves without ever going to a rejecting state---though such a cluster  
can then be "condensed" into a single eternal state.  This last possibility also tells you that the DFAcan then be "condensed" into a single eternal state.  This last possibility also tells you that the DFA  
cranked out by the algorithm is not necessarily optimal in size.cranked out by the algorithm is not necessarily optimal in size.    
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Proof of the TheoremProof of the Theorem
  
How do we prove How do we prove ?  What we want to prove is that for every string ?  What we want to prove is that for every string , the state , the state  that that  LL MM   ==  L L NN(( )) (( )) xx RRxx

 is in equals the set of states  is in equals the set of states  such that  such that  can process  can process  from  from  to  to .  Then the definition of the final.  Then the definition of the final  MM rr NN xx ss rr

states states  of  of  kicks in to say that the languages are equal. kicks in to say that the languages are equal.FF MM
  

• • Define Define  to be the statement that this holds for all strings  to be the statement that this holds for all strings  of length  of length ..    GG ii(( )) xx ii

• • Then Then  says that the start state of  says that the start state of  should equal the set of states  should equal the set of states  such that  such that  can can  GG 00(( )) MM rr NN

process process  from  from  to  to .  Since this is exactly the meaning of .  Since this is exactly the meaning of , which is made the start state , which is made the start state   𝜖𝜖 ss rr EE ss(( )) SS

of of , the base case , the base case  holds. holds.MM GG 00(( ))

• • To prove To prove , then, we only need to show , then, we only need to show  for each  for each ..LL MM   ==  L L NN(( )) (( )) GG ii -- 11   ⟹⟹  G G ii(( )) (( )) ii
  
In the step In the step , the fact that , the fact that  is  is -closed sets up the assumption that -closed sets up the assumption that  in  in  is  is -closed.  The-closed.  The  i i ==  1 1 SS 𝜖𝜖 PP 𝛥𝛥 PP,, cc(( )) 𝜖𝜖

value value  is automatically  is automatically -closed, since -closed, since  so any trailing  so any trailing -arcs can count as part of-arcs can count as part of  𝛥𝛥 PP,, cc(( )) 𝜖𝜖 cc ⋅⋅ 𝜖𝜖   ==  c c**
𝜖𝜖

processing processing .  If we---.  If we---cc
  

• • assume assume  as our induction hypothesis, as our induction hypothesis,  GG ii -- 11(( ))

• • take the set take the set  which the property  which the property  refers to, and refers to, and  RRi-1i-1 GG ii -- 11(( ))

• • define define ,,  RR   ==  𝛥 𝛥 RR ,, xxii (( i-1i-1 ii))

  
---then we only need to show that ---then we only need to show that  has the property required for the conclusion  has the property required for the conclusion .  This is that .  This is that   RRii GG ii(( )) RRii

equals the set of states that equals the set of states that  can process the bits  can process the bits  to.  The core of the proof is finally to to.  The core of the proof is finally to  NN xx ⋯⋯ xx11 ii

observe that:observe that:
  

 can process  can process  if and only if there is a state  if and only if there is a state  such that  such that  can process can process  NN xx xx ⋯⋯ xx xx  from s to r from s to r11 22 i-1i-1 ii pp NN

 from  from  to  to  (which by IH  (which by IH   includes includes  into  into ) and such that ) and such that  can process can process  xx xx ⋯⋯ xx11 22 i-1i-1 ss pp GG ii -- 11(( )) pp RRi-1i-1 NN

the char the char  from  from  to  to ..    xxii pp rr
  
Then by the inductive hypothesis Then by the inductive hypothesis , ,  equals the set of states  equals the set of states  such that  such that  can process can process  GG ii -- 11(( )) RRi-1i-1 qq NN

 from  from  to  to .  Now put .  Now put ..    xx ⋯⋯  x x11 i-1i-1 ss qq RR   ==  𝛥 𝛥ii ((RR ,, xxi-1i-1 ii))

• • Let Let .  Then .  Then for some for some .  By IH .  By IH , ,  can process  can process   r r ∈∈  R Rii r r ∈∈ qq,, xx   𝛿𝛿(( ii)) q q ∈∈ RRi-1i-1 GG ii -- 11(( )) NN xx ⋯⋯  x x11 i-1i-1

from from  to  to .  And .  And  can process  can process  from  from  to  to  by definition of  by definition of .  So .  So  can process can process  ss qq NN xxii qq rr r r ∈∈ qq,, xx   𝛿𝛿(( ii)) NN

 from  from  to  to ..xx ⋯⋯ xx11 ii ss rr

• • Suppose Suppose  can process  can process  from  from  to  to .  Then---and this is the key point---the processing.  Then---and this is the key point---the processing  NN xx ⋯⋯ xx11 ii ss rr

goes to some state goes to some state  just before the char  just before the char  is processed.  By IH  is processed.  By IH , ,  belongs to  belongs to ..    qq xxii GG ii -- 11(( )) qq RRi-1i-1

Moreover, Moreover,  because we first do the step that processed the char  because we first do the step that processed the char  at  at , then any, then any  r r ∈∈   qq,, xx𝛿𝛿(( ii)) xxii qq

trailing trailing -arcs.  Thus -arcs.  Thus , which means , which means ..𝜖𝜖 r r ∈∈  𝛥 𝛥 RR ,, xx(( i-1i-1 ii)) r r ∈∈  R Rii

Thus we have established that Thus we have established that  equals the set of states  equals the set of states  such that  such that  can process  can process  from  from  to to  RRii rr NN xx ⋯⋯ xx11 ii ss

.  This is the statement .  This is the statement , which is what we had to prove to make the induction go through.  This, which is what we had to prove to make the induction go through.  This  rr GG ii(( ))

finally proves the NFA-to-DFA part of Kleene's Theorem. finally proves the NFA-to-DFA part of Kleene's Theorem. ☒☒

  

  



  
[More examples as-and-if time allows][More examples as-and-if time allows]

More on how the states of the DFA tell what the NFA can and cannot process:More on how the states of the DFA tell what the NFA can and cannot process:
• • The NFA cannot process the string The NFA cannot process the string  from its start state at all.  However you try, you come to from its start state at all.  However you try, you come to  bbbbbb

the NFA state 2 being unable to process a the NFA state 2 being unable to process a .  Nor can it process .  Nor can it process  from any other state. from any other state.bb bbbbbb

• • However, However,  can process  can process  from start to any one of its three states: from start to any one of its three states:NN aa

– – 11,, aa,, 11(( ))

– – 11,, aa,, 11 11,, 𝜖𝜖,, 22(( ))(( ))

– – ..11,, 𝜖𝜖,, 22 22,, aa,, 33(( ))(( ))

This is shown in the DFA by the single arc This is shown in the DFA by the single arc ..SS,, aa,, 11,, 22,, 33(( {{ }}))

  

  



• • But in the string But in the string , even though the initial , even though the initial  "turns on all three lightbulbs of  "turns on all three lightbulbs of ", the final", the final  x x ==  abbb abbb aa NN

 still cannot be processed by  still cannot be processed by .  The DFA .  The DFA  does process it via the computation does process it via the computation  bbbbbb NN MM

, but that computation ends at , but that computation ends at ,,  SS,, aa,, 11,, 22,, 33 11,, 22,, 33 ,, bb,, 22,, 33 22,, 33 ,, bb,, 22 22 ,, bb,,∅∅(( {{ }}))(({{ }} {{ }}))(({{ }} {{ }}))(({{ }} )) ∅∅

which---when present at all---is always a dead state.which---when present at all---is always a dead state.
  
Another example: The "Leap of Faith" NFAs Another example: The "Leap of Faith" NFAs  for any  for any ::NNkk k k >>  1 1

  
Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string   matchesmatches a given regexp  a given regexp ::xx 𝛼𝛼

  
1. 1. Convert Convert  into an equivalent NFA  into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert  into an equivalent DFA  into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run  on  on .  If it accepts, say ".  If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx

  
This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient.  The reason is that step 2 can blow up.  An intuitive.  The reason is that step 2 can blow up.  An intuitive  
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" thatreason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that  
would ever be used on all possible strings would ever be used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular  that that  xx xx
was given.was given.    
  
There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states  that are actually that are actually  RR ,, …… ,, RR ,, …… ,, RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular .  We have .  We have  to begin with. to begin with.  xx RR   ==  S  S ==  E E ss00 (( ))

 To build each  To build each  from the previous  from the previous , iterate through every , iterate through every  and union together all the sets and union together all the sets  RRii RRi-1i-1 q q ∈∈ RRi-1i-1

.  If .  If  has  has  states---which roughly equals the number of operations in  states---which roughly equals the number of operations in ---then that takes---then that takes  qq,, xx𝛿𝛿(( ii)) NN𝛼𝛼 kk 𝛼𝛼

order order  steps.  This is at worst cubic in the length  steps.  This is at worst cubic in the length  of  of  and  and  together, so this counts as together, so this counts as  nn ⋅⋅ kk ⋅⋅ kk nn ++ kkOO(( )) xx 𝛼𝛼

a a polynomial-time algorithmpolynomial-time algorithm.  It is in fact the algorithm actually used by the .  It is in fact the algorithm actually used by the grepgrep command in command in  
Linux/UNIX.Linux/UNIX.    
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LL NN   ==   00 ++ 11 11 00 ++ 11(( kk)) (( ))** (( ))k-1k-1

..==   x x ∈∈   00,, 11 ::  the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved the week after next): Whereas the NFA  (will be proved the week after next): Whereas the NFA  has only  has only   NNkk kk ++ 11

states, the smallest DFA states, the smallest DFA  such that  such that  requires  requires  states.   states.  MMkk LL MM   ==  L L NN(( kk)) (( kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm.  in the NFA-to-DFA algorithm. 


