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Three possibilities for the base-case two-state GNFAs:Three possibilities for the base-case two-state GNFAs:

  
Example HW has something like this (but with accept and reject states and 0 and 1 both switched):Example HW has something like this (but with accept and reject states and 0 and 1 both switched):

  
Let's instead do:Let's instead do:

  

  

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG11

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 ⋅⋅ 𝛼𝛼 𝛽𝛾𝛽𝛾   (( 11)) sfsf
**

**
** **

 Equivalently Equivalently,,  it  it ==  𝛼 𝛼 𝛽𝛾𝛽𝛾 𝛾 𝛾 ++  𝜂𝛼 𝜂𝛼 𝛽𝛽** ** **
**

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ttGG22

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂(( 22)) ssss
**

**

 is pronounced "ate-a" in the US, "eat-a" in the UK. is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂𝜂

𝛽𝛽

𝜂𝜂

ss ff
GG33

𝛼𝛼 𝛾𝛾

LL GG   ==  L L   ∪∪  L L(( 33)) ssss sfsf

LL   ==   𝛼 𝛼 ∪∪  𝛽𝛾 𝛽𝛾 𝜂𝜂ssss
**

**

LL   ==   𝛾 𝛾 ∪∪  𝜂𝛼 𝜂𝛼 𝛽𝛽ffff
**

**

LL   ==  L L ⋅⋅ "s to f once" "s to f once" ==  "s to f once" "s to f once" ⋅⋅ LLsfsf ssss ffff

𝛼𝛼

ss
𝛽𝛾𝛽𝛾 𝜂𝜂**

even0seven0s odd 0sodd 0s
RR𝜖𝜖 RR00

00

11 00 11

ss ff
$$

00,, $$

DD

x x ==  $DD $DD

 but  but  is not in  is not in x x ∈∈  L Ls,deads,dead deaddead FF

so so  is not in the language. is not in the language.xx

Without the dead state and arc to it, the NFA Without the dead state and arc to it, the NFA on input on input  would "crash" in state  would "crash" in state     N N x x ==  $DD $DD ss..

Even though Even though  is an accepting state (and even though this would count as legal termination by is an accepting state (and even though this would count as legal termination byss

a Turing machine), not all of a Turing machine), not all of  would be processed, so it does not count in the FA's language.  would be processed, so it does not count in the FA's language. xx

With the dead state present, With the dead state present,  gets processed to  gets processed to , but , but  so  so  still. still.xx deaddead dead dead ∉∉  F F x x ∉∉  L L NN(( ))

NN :: 00

LL NN   ==  L L   ∪∪  L L   ==   0 0 ++  $ $ 00 ++ $$ DD 𝜖 𝜖 ++  $ $ 00 ++ $$(( )) s.ss.s s,fs,f (( ))**
**

(( ))**

LL   ==   0 0 ∪∪  $ $ 00∪∪ $$ DDssss (( ))**
**

𝛾 𝛾 ==   0 0 ∪∪  $ $(( ))

LL   ==  L L ⋅⋅ ways to go from s to f withoutways to go from s to f withoutsfsf ssss ((

going back to sgoing back to s   ==  L L ⋅⋅ $$ 00∪∪ $$)) ssss (( ))**

LL NN   ==  L L   ∪∪  L L   ==  L L   ++  L L ⋅⋅ $$ 00 ++ $$   ==  L L ⋅⋅ 𝜖 𝜖 ++  $ $ 00 ++ $$(( )) ssss sfsf ssss ssss (( ))**
ssss (( ))**



  
Note that in Note that in , we called the second state , we called the second state  rather than  rather than  because it is not accepting.  No accepting because it is not accepting.  No accepting  GG22 tt ff

computation can begin or end at a non-final state computation can begin or end at a non-final state  that is different from the start state.  Hence, if the that is different from the start state.  Hence, if the  qq

computation enters computation enters  from some state  from some state , then it must exit at some state , then it must exit at some state  (which can be the same as  (which can be the same as ).).  qq pp rr pp

 Considering multiple such states  Considering multiple such states  gives us the following diagram: gives us the following diagram:rr,, r'r',, r''r''
  
General GNFA State Elimination Case:General GNFA State Elimination Case:

  
If we are programming this with a If we are programming this with a RegExpRegExp package, then we can represent a given  package, then we can represent a given -state finite-state finite  nn

automaton (DFA, NFA, or GNFA, all the same to start with) by an automaton (DFA, NFA, or GNFA, all the same to start with) by an  matrix  matrix  of  of RegExpRegExp.  We can.  We can  n n ××  n n TT

number the non-accepting states different from the start state by number the non-accepting states different from the start state by  for whatever  for whatever  applies.  (If applies.  (If  mm,, …… ,, nn mm

start is the only accepting state then we could take start is the only accepting state then we could take  as low as  as low as , but it saves "mess" to take , but it saves "mess" to take   mm 22 m m ==  3 3

in this case too so that execution will end with in this case too so that execution will end with  above, at which point the answer can be shortcutted above, at which point the answer can be shortcutted  GG22

by saying what by saying what  are and citing the abstract formula.  Most sources say to add a new start state are and citing the abstract formula.  Most sources say to add a new start state  𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
and make all original final states go to a new one, but while doing this makes the proof look neater, it isand make all original final states go to a new one, but while doing this makes the proof look neater, it is  
more work that is highly typo-prone.)  Then let one loop variable more work that is highly typo-prone.)  Then let one loop variable  run over the nodes  run over the nodes  to be to be  kk qq

eliminated, let eliminated, let  run over all states up to  run over all states up to  which are treated as possible entry states  which are treated as possible entry states , and let , and let  run run  ii kk -- 11 pp jj

over potential exist states over potential exist states .  Then the main code is simply:.  Then the main code is simply:rr
  
for k = n downto m:for k = n downto m:

for i = 1 to k-1:for i = 1 to k-1:
for j = 1 to k-1:for j = 1 to k-1:

T(i,j) = T(i,j) + T(i,k)T(i,j) = T(i,j) + T(i,k) T(k,k)T(k,k) T(k,j).T(k,j).⋅⋅ ⋅⋅
**

  

  

  

pp qq

rr

r'r'

r''r''

𝛽𝛽 𝛾𝛾

𝜂𝜂

𝜂''𝜂''

𝜂'𝜂'

𝛼𝛼

𝛼'𝛼'

𝛼''𝛼''

𝛼𝛼   ==  𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂newnew old old 
**

𝛼'𝛼'   ==  𝛼' 𝛼' ++  𝛽𝛾 𝛽𝛾 𝜂'𝜂'newnew old old 
**

𝛼''𝛼''   ==  𝛼'' 𝛼'' ++  𝛽𝛾 𝛽𝛾 𝜂''𝜂''newnew old old 
**

The last works if The last works if  when  when p p ==  r'' r''

 is a self-loop at  is a self-loop at .  If the self-.  If the self-𝛼''𝛼'' pp
loop is absent, it turns out not toloop is absent, it turns out not to
matter whether you take it to givematter whether you take it to give

 or  or .  The reason is that it will.  The reason is that it will∅∅ 𝜖𝜖
ultimately be inside a Kleene star,ultimately be inside a Kleene star,
and and ∅∅((   ++ 𝜁 𝜁   ==   𝜖 𝜖 ++  𝜁 𝜁   ==  𝜁 𝜁))** (( ))** **

for any regular expression for any regular expression  (zeta).  (zeta). 𝜁𝜁

If the arc with If the arc with  is absent, that is is absent, that is𝛼𝛼

the same as its having the same as its having .  .  𝛼 𝛼 ==  ∅ ∅

Once we have Once we have bypassedbypassed every every
edge into edge into , we can , we can deletedelete  ..qq qq

The GNFA The GNFA  obtained after  obtained after G'G'

updating updating  is is𝛼𝛼,,𝛼'𝛼',,𝛼''𝛼'',, ……

equivalent to the original equivalent to the original ..GG



(The convenience of writing "+=" here is one reason I like using (The convenience of writing "+=" here is one reason I like using  rather than  rather than  for union.)  Note that for union.)  Note that  ++ ∪∪

even if there is no self-loop at even if there is no self-loop at , so that , so that  (or  (or ; it doesn't matter), the update is not killed; it doesn't matter), the update is not killed  qq TT kk,, kk   ==  ∅ ∅(( )) 𝜖𝜖

because because .  But if there is no arc from .  But if there is no arc from  into  into , that is, if , that is, if , then the right-hand, then the right-hand  TT kk,, kk   == 𝜖 𝜖 (( ))** ii kk TT ii,, kk   ==  ∅ ∅(( ))

side does get nulled and the update is simply a no-op.  Likewise if no arc from side does get nulled and the update is simply a no-op.  Likewise if no arc from  out to  out to , whereupon, whereupon  kk jj

..    TT kk,, jj   ==  ∅ ∅(( ))

  
The result of executing the code is a GNFA The result of executing the code is a GNFA  with all states accepting except possibly the start state. with all states accepting except possibly the start state.    G'G'

If the start state, too, is accepting, it is tempting to think If the start state, too, is accepting, it is tempting to think , i.e., that , i.e., that  accepts all strings, but accepts all strings, but  LL G'G'   ==  𝛴 𝛴(( )) G'G'

that is not true because GNFA arcs can have "holes" that prevent matching and hence processing allthat is not true because GNFA arcs can have "holes" that prevent matching and hence processing all  
strings.  For example, consider the simple one-state GNFAstrings.  For example, consider the simple one-state GNFA
  

  
So if you get a So if you get a  with two or more accepting states different from the start state, then you do have with two or more accepting states different from the start state, then you do haveG'G'

to add a new final state to add a new final state  with arcs from all the old final states, declare  with arcs from all the old final states, declare  to be the only final state, and to be the only final state, and  ff ff

eliminate all of the previous accepting states apart from eliminate all of the previous accepting states apart from .  If you also make .  If you also make  a new, non-accepting a new, non-accepting  ss ss

state, then you do get the final answer state, then you do get the final answer  "on a silver platter": "on a silver platter":𝜌 𝜌 ==  L L GG(( ))

  

  
But the final expression But the final expression  you get is often quite long, and the steps for the last one or two states you you get is often quite long, and the steps for the last one or two states you  𝜌𝜌

eliminated often amount to hand-copying long subexpressions corresponding to eliminated often amount to hand-copying long subexpressions corresponding to  in the above in the above  𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
formulas for the 2-state GNFAs anyway.  The ground rules are hence that once you get down to twoformulas for the 2-state GNFAs anyway.  The ground rules are hence that once you get down to two  
states, you can just cite the abstract formula to say what the final regular expression will be.  And if thestates, you can just cite the abstract formula to say what the final regular expression will be.  And if the  
originally given GNFA has at most one accpeting state besides the start state, then the above codeoriginally given GNFA has at most one accpeting state besides the start state, then the above code  
body will give your final answer without needing to add a new final state.  Why add one or two iterationsbody will give your final answer without needing to add a new final state.  Why add one or two iterations  
to the outside of a triply-nested loop if you can avoid it?to the outside of a triply-nested loop if you can avoid it?
  
Anyway, what we have proved is:Anyway, what we have proved is:
  
Theorem.Theorem.  Given any DFA, NFA, or GNFA   Given any DFA, NFA, or GNFA , we can calculate a regular expression , we can calculate a regular expression  (Greek rho) (Greek rho)  
suchsuch  

GG 𝜌𝜌

that that ..LL 𝜌𝜌   ==  L L GG(( )) (( ))

  

  

  

0101

GG00
ss

Then Then  but this is not all strings.  The reason is  but this is not all strings.  The reason is LL GG   ==   0101(( 00)) (( ))**

that that  was really abbreviating the NFA shown below, which was really abbreviating the NFA shown below, whichGG00

can "crash" on can "crash" on  at its start state and on  at its start state and on  at state  at state ::11 00 tt

G'G'00
ss tt

00

11

𝜌𝜌
ss ff



This also completes the proof of the final part of Kleene's Theorem. This also completes the proof of the final part of Kleene's Theorem.   
  
  
Example---revisiting a previous NFA:Example---revisiting a previous NFA:

We want to eliminate state 2.  If we were using the code approach, we could re-number it as state 3.We want to eliminate state 2.  If we were using the code approach, we could re-number it as state 3.    
But we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinationsBut we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations  
of them.  Here we have:of them.  Here we have:
  
In: 1 (on In: 1 (on ) and ) and  (on  (on ).).𝜖𝜖 33 bb

Out: only to Out: only to  (on  (on ).).33 aa

Update: Update:  and  and TT 11,, 33(( )) TT 33,, 33 ..(( ))

  
TT 11,, 33   ==  T T 11,, 33   ++  T T 11,, 22 TT 22,, 22 TT 22,, 33(( ))newnew (( ))oldold (( )) (( ))** (( ))

                                  ==  b  b ++  𝜖 𝜖 ⋅⋅∅∅ ⋅⋅ a a ==  b  b ++  𝜖 𝜖 ⋅⋅ 𝜖𝜖 ⋅⋅ a a ==  b  b ++  a a..**

TT 33,, 33   ==  T T 33,, 33   ++  T T 33,, 22 TT 22,, 22 TT 22,, 33(( ))newnew (( ))oldold (( )) (( ))** (( ))

                                  ==  ∅  ∅ ++  b b ⋅⋅ 𝜖𝜖 ⋅⋅ a a ==  ba ba..

Could also sayCould also say
---which is different!  Will we get this wrong?---which is different!  Will we get this wrong?                                  ==  𝜖  𝜖 ++  b b ⋅⋅ 𝜖𝜖 ⋅⋅ a a ==  𝜖  𝜖 ++  ba ba

  
[Suppose we try to update [Suppose we try to update .  The rule would be.  The rule would beTT 33,, 11(( ))

TT 33,, 11   ==  T T 33,, 11   ++  T T 33,, 22 TT 22,, 22 TT 22,, 11(( ))newnew (( ))oldold (( )) (( ))** (( ))

                                     because there is no arc from 2 to 1.   because there is no arc from 2 to 1.==   a    a  ++   b  b ⋅⋅  𝜖  𝜖 ⋅⋅  ∅ ∅

                                  , which is no change from , which is no change from .].]==   a      a    ++    ∅      ∅   ==    a   a TT 33,, 11(( ))oldold

  
The new GNFA isThe new GNFA is

  

  



 If you add a new final state like the text says to do, you get this: If you add a new final state like the text says to do, you get this:

  
Here is the same example "in code" showing the Here is the same example "in code" showing the -matrix but with the states renumbered.-matrix but with the states renumbered.TT
  

Now we are in the same 2-state case, except with the final state being numbered 2 rather than 3.  ItNow we are in the same 2-state case, except with the final state being numbered 2 rather than 3.  It  
really comes out the same.  The reason having really comes out the same.  The reason having  would not be wrong is that the would not be wrong is that the  TT 11,, 11   ==  a a ++ 𝜖𝜖(( ))

diagonal entries diagonal entries  etc. all get starred, and  etc. all get starred, and ..TT 11,, 11(( )) a a ++  whatever whatever   ==   a a ++  𝜖  𝜖 ++  whatever whatever(( ))** (( ))**

  

  

𝛽 𝛽 ==  b b ++ aa

𝜂 𝜂 ==  a a

𝛼 𝛼 ==  a a 𝛾 𝛾 ==  ba ba

11 33GG11

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾   (( 11)) sfsf
**

**
**

==   a a ++   bb ++ aa baba aa bb ++ aa baba ..(( (( ))(( ))**
**
(( ))(( ))**

𝛽 𝛽 ==  b b ++ aa

𝜂 𝜂 ==  a a

𝛼 𝛼 ==  a a 𝛾 𝛾 ==  𝜖  𝜖 ++  ba ba

11 33GG11

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾   (( 11)) sfsf
**

**
**

==   a a ++   bb ++ aa baba aa bb ++ aa baba ..(( (( ))(( ))**
**
(( ))(( ))**

FactFact ::  𝛾 𝛾   ==   𝛾 𝛾 ++  𝜖 𝜖   ==   𝛾𝛾++ 𝜖𝜖  for any 𝛾 for any 𝛾** (( ))** (( ))++

𝛽 𝛽 ==  b b ++ aa

𝜂 𝜂 ==  a a

𝛼 𝛼 ==  a a 𝛾 𝛾 ==  ba ba

11 33GG11

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾   (( 11)) sfsf
**

**
**

==   a a ++   bb ++ aa baba aa bb ++ aa baba ..(( (( ))(( ))**
**
(( ))(( ))**𝜖𝜖

ff

aa

bb
𝜖𝜖aa

aa

bb

11

22 33

  

TT 11 22 33

11 aa bb 𝜖𝜖
22 aa ∅∅ bb
33 ∅∅ aa ∅∅

Initial Initial -matrix-matrixTT

The green The green  on the main diagonal can on the main diagonal canaa
be be  and the green  and the green  entries can entries canaa++ 𝜖𝜖 ∅∅

be changed to be changed to  too without throwing  too without throwing 𝜖𝜖
off the final answer.  But the red off the final answer.  But the red  off off∅∅

the main diagonal must stay as the main diagonal must stay as ..∅∅

To eliminate state 3:To eliminate state 3:
InIn from 1 and 2,  from 1 and 2, outout to 2 only. to 2 only.
Hence update Hence update  &  & ..TT 11,, 22(( )) TT 22,, 22(( ))

 +=  += , so, soTT 11,, 22(( )) TT 11,, 33 TT 33,, 33 TT 33,, 22(( )) (( ))** (( ))

new new TT 11,, 22   ==  b  b ++  𝜖∅ 𝜖∅ a a ==  b b ++ aa(( )) **

 +=  += , so, soTT 22,, 22(( )) TT 22,, 33 TT 33,, 33 TT 33,, 22(( )) (( ))** (( ))

new new TT 22,, 22   ==  ∅  ∅ ++  b∅ b∅ a a ==  ba ba(( )) **

New New -matrix = -matrix = TT
aa    bb ++ aa
aa    baba


