CSE396 Lecture Thu. 2/25: FA-to-Regexp Proof and Algorithm; Regular Languages

Three possibilities for the base-case two-state GNFAs:
Ly = Lg-"sto f once" = "sto f once"-Ly¢

L(Gy) = Ly = (a + By'n) -a’fy”
Equivalently, it = a*ﬁy*(y + na*ﬁ)*

1 is pronounced "ate-a" in the US, "eat-a" in the UK.

+ 04
Ly = (0‘ U 57*77)

Lff = (7/ U Wa*ﬁ)* ~au ﬁy*n
L(Gy) = Ly = (0(+ ,57/*77)*

L(G3) = Lg U Lsf

OU$) »-¢pD
X € Lggeqq butdead is notin F
so x is not in the language.

/$

Lgs = Lg - (ways to go from s to f without
going back tos) = Lg-$(0U$)"

L(N) = Ly U Lsf = Ly + Lss-$(0+$)" = Ly (6 + $(O+$)*)

LN) = Lys U Lyy = (0 + $0+$)'D) (e + $(0+9)")
Without the dead state and arc to it, the NFA N on input x = $DD would "crash" in state s.
Even though s is an accepting state (and even though this would count as legal termination by
a Turing machine), not all of x would be processed, so it does not count in the FA's language.
With the dead state present, x gets processed to dead, butdead ¢ F sox ¢ L(N) still.

Note that in G,, we called the second state f rather than f because it is not accepting. No accepting
computation can begin or end at a non-final state g that is different from the start state. Hence, if the
computation enters g from some state p, then it must exit at some state r (which can be the same as p).
Considering multiple such states r, 7", "’ gives us the following diagram:

General GNFA State Elimination Case:

If the arc with « is absent, that is » 1 + g
the same as its havinga = 2. - Gnew = Qold + PY1]

-7 n a;ww = aéld + ﬁV*T}'

’/// new = Qold + n”’
F——t—— 7 T

G The last works if p = 7”7 when
, a” is a self-loop at p. If the self-
N I loop is absent, it turns out not to
The GNFA G’ obtained after a’ T 1 matter whether you take it to give
updating a, a’, a”’, ... is R | @ or €. The reason is that it will
equivalent to the original G. @ ultimately be inside a Kleene star,
Once we have bypassed every and (@+0)" = (e+ Q)" =C
edge into g, we can delete q. for any regular expression C (zeta).

If we are programming this with a RegExp package, then we can represent a given n-state finite
automaton (DFA, NFA, or GNFA, all the same to start with) by an n X 7 matrix T of RegExp. We can
number the non-accepting states different from the start state by m, ..., n for whatever m applies. (If
start is the only accepting state then we could take m as low as 2, but it saves "mess" to take m = 3
in this case too so that execution will end with G, above, at which point the answer can be shortcutted
by saying what &, 3, v, 11 are and citing the abstract formula. Most sources say to add a new start state
and make all original final states go to a new one, but while doing this makes the proof look neater, it is
more work that is highly typo-prone.) Then let one loop variable k run over the nodes 4 to be
eliminated, let i run over all states up to k — 1 which are treated as possible entry states p, and let j run
over potential exist states r. Then the main code is simply:

for k = n downto m:
fori=1to k-1:
forj=1to k-1:
T(i,j) = T(i,j) + T(i,k) - T(k,k)" - T(k,j).

(The convenience of writing "+=" here is one reason | like using + rather than U for union.) Note that
even if there is no self-loop at g, so that T(k, k) = @ (or €; it doesn't matter), the update is not killed
because T(k,k)* = e . Butif there is no arc from i into k, that is, if T(i, k) = @, then the right-hand
side does get nulled and the update is simply a no-op. Likewise if no arc from k out to j, whereupon
Tk, j) = 2.

The result of executing the code is a GNFA G’ with all states accepting except possibly the start state.
If the start state, too, is accepting, it is tempting to think L(G") = X, i.e., that G” accepts all strings, but
that is not true because GNFA arcs can have "holes" that prevent matching and hence processing all
strings. For example, consider the simple one-state GNFA

01 Then L(Gy) = (01)* but this is not all strings. The reason is
that G was really abbreviating the NFA shown below, which
can "crash" on 1 at its start state and on 0 at state ¢:

So if you get a G” with two or more accepting states different from the start state, then you do have

to add a new final state f with arcs from all the old final states, declare f to be the only final state, and
eliminate all of the previous accepting states apart from s. If you also make s a new, non-accepting
state, then you do get the final answer p = L(G) "on a silver platter":

~O : ©

But the final expression p you get is often quite long, and the steps for the last one or two states you
eliminated often amount to hand-copying long subexpressions corresponding to «, 8, 7/, 1 in the above
formulas for the 2-state GNFAs anyway. The ground rules are hence that once you get down to two
states, you can just cite the abstract formula to say what the final regular expression will be. And if the
originally given GNFA has at most one accpeting state besides the start state, then the above code
body will give your final answer without needing to add a new final state. Why add one or two iterations
to the outside of a triply-nested loop if you can avoid it?

Anyway, what we have proved is:

Theorem. Given any DFA, NFA, or GNFA G, we can calculate a regular expression p (Greek rho)
such
that L(p) = L(G).

This also completes the proof of the final part of Kleene's Theorem.

Example---revisiting a previous NFA:

Brample : -
,\)l a
N=4 t

b 4

. amnl
Y

Yian alye "{/ 3 a

We want to eliminate state 2. If we were using the code approach, we could re-number it as state 3.
But we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations
of them. Here we have:

In: 1 (on €) and 3 (on b).
Out: only to 3 (on a).
Update: T(1, 3) and T(3, 3).

T(1,3)pew = T(,3)0a + T(1,2)T(2,2)*T(2,3)
=b+e@a=Db+e€e€a=">b+a.

T3,3)new = T(3,3)oa + T(3,2)T(2,2)T(2,3)
=@+ b-€ea = ba

Could also say
= € + b-e-a = € + ba--—-which is different! Will we get this wrong?

[Suppose we try to update T(3,1). The rule would be

TG, Duew = T3, Do + T3,2)T(2,2)"T(2,1)
= a + b- € - @ because thereis no arcfrom2to 1.
= a + @ = a,whichisnochangefromT(3,1),.]

The new GNFA is

a =a y = ba
L(Gy) = Ly = (a + By™n) By”

= (@ + ((b+a)(ba)'a) (b+a)(ba)".

Fact: y* = (y + €)" = (y+e)" foranyy
a = a y =€+ ba

L(G) = Ly = (a + gy'n) By’

= (@ + ((b+a)(ba)a) (b+a)(ba)".

If you add a new final state like the text says to do, you get this:

a =a y = ba

L(Gy) = Ly = (a + py'n) By’

= (@ + ((b+a)(ba)*a) (b+a)(ba)".

Here is the same example "in code" showing the T-matrix but with the states renumbered.

Initial T-matrix To eliminate state 3:

—_— TI1 2 3 In from 1 and 2, out to 2 only.
1la b e Hence update T(1,2) & T(2,2).
a € 2|la @ b T(1,2) += T(1,3)T(3,3)"T(3,2), so
b 31 a © newT(1,2) = b + €@*a = b+a
b The green a on the main diagonal can T(Z 2) += T(2 3)T(3 3)*T(3 2) so

be a + € and the green & entries can .
be changed to € too without throwing ~ NEW T2,2) = @ + b2*a = ba
off the final answer. But the red @ off

1T . _la b+a
the main diagonal must stay as &. New T-matrix = b
a a

Now we are in the same 2-state case, except with the final state being numbered 2 rather than 3. It
really comes out the same. The reason having T(1,1) = a+ € would not be wrong is that the

diagonal entries T(1, 1) etc. all get starred, and (@ + whatever)® = (a + € + whatever)”.

