
CSE396 Lecture Thu. 2/25: FA-to-Regexp Proof and Algorithm; Regular LanguagesCSE396 Lecture Thu. 2/25: FA-to-Regexp Proof and Algorithm; Regular Languages

Three possibilities for the base-case two-state GNFAs:Three possibilities for the base-case two-state GNFAs:

Example HW has something like this (but with accept and reject states and 0 and 1 both switched):Example HW has something like this (but with accept and reject states and 0 and 1 both switched):

Let's instead do:Let's instead do:

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG11

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 ⋅⋅ 𝛼𝛼 𝛽𝛾𝛽𝛾 ((11)) sfsf
**

**
** **

 Equivalently Equivalently,, it it == 𝛼 𝛼 𝛽𝛾𝛽𝛾 𝛾 𝛾 ++ 𝜂𝛼 𝜂𝛼 𝛽𝛽** ** **
**

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ttGG22

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂((22)) ssss
**

**

 is pronounced "ate-a" in the US, "eat-a" in the UK. is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂𝜂

𝛽𝛽

𝜂𝜂

ss ff
GG33

𝛼𝛼 𝛾𝛾

LL GG == L L ∪∪ L L((33)) ssss sfsf

LL == 𝛼 𝛼 ∪∪ 𝛽𝛾 𝛽𝛾 𝜂𝜂ssss
**

**

LL == 𝛾 𝛾 ∪∪ 𝜂𝛼 𝜂𝛼 𝛽𝛽ffff
**

**

LL == L L ⋅⋅ "s to f once" "s to f once" == "s to f once" "s to f once" ⋅⋅ LLsfsf ssss ffff

𝛼𝛼

ss
𝛽𝛾𝛽𝛾 𝜂𝜂**

even0seven0s odd 0sodd 0s
RR𝜖𝜖 RR00

00

11 00 11

ss ff
$$

00,, $$

DD

x x == $DD $DD

 but but is not in is not in x x ∈∈ L Ls,deads,dead deaddead FF

so so is not in the language. is not in the language.xx

Without the dead state and arc to it, the NFA Without the dead state and arc to it, the NFA on input on input would "crash" in state would "crash" in state N N x x == $DD $DD ss..

Even though Even though is an accepting state (and even though this would count as legal termination by is an accepting state (and even though this would count as legal termination byss

a Turing machine), not all of a Turing machine), not all of would be processed, so it does not count in the FA's language. would be processed, so it does not count in the FA's language. xx

With the dead state present, With the dead state present, gets processed to gets processed to , but , but so so still. still.xx deaddead dead dead ∉∉ F F x x ∉∉ L L NN(())

NN :: 00

LL NN == L L ∪∪ L L == 0 0 ++ $ $ 00 ++ $$ DD 𝜖 𝜖 ++ $ $ 00 ++ $$(()) s.ss.s s,fs,f (())**
**

(())**

LL == 0 0 ∪∪ $ $ 00∪∪ $$ DDssss (())**
**

𝛾 𝛾 == 0 0 ∪∪ $ $(())

LL == L L ⋅⋅ ways to go from s to f withoutways to go from s to f withoutsfsf ssss ((

going back to sgoing back to s == L L ⋅⋅ $$ 00∪∪ $$)) ssss (())**

LL NN == L L ∪∪ L L == L L ++ L L ⋅⋅ $$ 00 ++ $$ == L L ⋅⋅ 𝜖 𝜖 ++ $ $ 00 ++ $$(()) ssss sfsf ssss ssss (())**
ssss (())**

Note that in Note that in , we called the second state , we called the second state rather than rather than because it is not accepting. No accepting because it is not accepting. No accepting GG22 tt ff

computation can begin or end at a non-final state computation can begin or end at a non-final state that is different from the start state. Hence, if the that is different from the start state. Hence, if the qq

computation enters computation enters from some state from some state , then it must exit at some state , then it must exit at some state (which can be the same as (which can be the same as).). qq pp rr pp

 Considering multiple such states Considering multiple such states gives us the following diagram: gives us the following diagram:rr,, r'r',, r''r''

General GNFA State Elimination Case:General GNFA State Elimination Case:

If we are programming this with a If we are programming this with a RegExpRegExp package, then we can represent a given package, then we can represent a given -state finite-state finite nn

automaton (DFA, NFA, or GNFA, all the same to start with) by an automaton (DFA, NFA, or GNFA, all the same to start with) by an matrix matrix of of RegExpRegExp. We can. We can n n ×× n n TT

number the non-accepting states different from the start state by number the non-accepting states different from the start state by for whatever for whatever applies. (If applies. (If mm,, …… ,, nn mm

start is the only accepting state then we could take start is the only accepting state then we could take as low as as low as , but it saves "mess" to take , but it saves "mess" to take mm 22 m m == 3 3

in this case too so that execution will end with in this case too so that execution will end with above, at which point the answer can be shortcutted above, at which point the answer can be shortcutted GG22

by saying what by saying what are and citing the abstract formula. Most sources say to add a new start state are and citing the abstract formula. Most sources say to add a new start state 𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
and make all original final states go to a new one, but while doing this makes the proof look neater, it isand make all original final states go to a new one, but while doing this makes the proof look neater, it is
more work that is highly typo-prone.) Then let one loop variable more work that is highly typo-prone.) Then let one loop variable run over the nodes run over the nodes to be to be kk qq

eliminated, let eliminated, let run over all states up to run over all states up to which are treated as possible entry states which are treated as possible entry states , and let , and let run run ii kk -- 11 pp jj

over potential exist states over potential exist states . Then the main code is simply:. Then the main code is simply:rr

for k = n downto m:for k = n downto m:

for i = 1 to k-1:for i = 1 to k-1:
for j = 1 to k-1:for j = 1 to k-1:

T(i,j) = T(i,j) + T(i,k)T(i,j) = T(i,j) + T(i,k) T(k,k)T(k,k) T(k,j).T(k,j).⋅⋅ ⋅⋅
**

pp qq

rr

r'r'

r''r''

𝛽𝛽 𝛾𝛾

𝜂𝜂

𝜂''𝜂''

𝜂'𝜂'

𝛼𝛼

𝛼'𝛼'

𝛼''𝛼''

𝛼𝛼 == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂newnew old old
**

𝛼'𝛼' == 𝛼' 𝛼' ++ 𝛽𝛾 𝛽𝛾 𝜂'𝜂'newnew old old
**

𝛼''𝛼'' == 𝛼'' 𝛼'' ++ 𝛽𝛾 𝛽𝛾 𝜂''𝜂''newnew old old
**

The last works if The last works if when when p p == r'' r''

 is a self-loop at is a self-loop at . If the self-. If the self-𝛼''𝛼'' pp
loop is absent, it turns out not toloop is absent, it turns out not to
matter whether you take it to givematter whether you take it to give

 or or . The reason is that it will. The reason is that it will∅∅ 𝜖𝜖
ultimately be inside a Kleene star,ultimately be inside a Kleene star,
and and ∅∅((++ 𝜁 𝜁 == 𝜖 𝜖 ++ 𝜁 𝜁 == 𝜁 𝜁))** (())** **

for any regular expression for any regular expression (zeta). (zeta). 𝜁𝜁

If the arc with If the arc with is absent, that is is absent, that is𝛼𝛼

the same as its having the same as its having . . 𝛼 𝛼 == ∅ ∅

Once we have Once we have bypassedbypassed every every
edge into edge into , we can , we can deletedelete ..qq qq

The GNFA The GNFA obtained after obtained after G'G'

updating updating is is𝛼𝛼,,𝛼'𝛼',,𝛼''𝛼'',, ……

equivalent to the original equivalent to the original ..GG

(The convenience of writing "+=" here is one reason I like using (The convenience of writing "+=" here is one reason I like using rather than rather than for union.) Note that for union.) Note that ++ ∪∪

even if there is no self-loop at even if there is no self-loop at , so that , so that (or (or ; it doesn't matter), the update is not killed; it doesn't matter), the update is not killed qq TT kk,, kk == ∅ ∅(()) 𝜖𝜖

because because . But if there is no arc from . But if there is no arc from into into , that is, if , that is, if , then the right-hand, then the right-hand TT kk,, kk == 𝜖 𝜖 (())** ii kk TT ii,, kk == ∅ ∅(())

side does get nulled and the update is simply a no-op. Likewise if no arc from side does get nulled and the update is simply a no-op. Likewise if no arc from out to out to , whereupon, whereupon kk jj

.. TT kk,, jj == ∅ ∅(())

The result of executing the code is a GNFA The result of executing the code is a GNFA with all states accepting except possibly the start state. with all states accepting except possibly the start state. G'G'

If the start state, too, is accepting, it is tempting to think If the start state, too, is accepting, it is tempting to think , i.e., that , i.e., that accepts all strings, but accepts all strings, but LL G'G' == 𝛴 𝛴(()) G'G'

that is not true because GNFA arcs can have "holes" that prevent matching and hence processing allthat is not true because GNFA arcs can have "holes" that prevent matching and hence processing all
strings. For example, consider the simple one-state GNFAstrings. For example, consider the simple one-state GNFA

So if you get a So if you get a with two or more accepting states different from the start state, then you do have with two or more accepting states different from the start state, then you do haveG'G'

to add a new final state to add a new final state with arcs from all the old final states, declare with arcs from all the old final states, declare to be the only final state, and to be the only final state, and ff ff

eliminate all of the previous accepting states apart from eliminate all of the previous accepting states apart from . If you also make . If you also make a new, non-accepting a new, non-accepting ss ss

state, then you do get the final answer state, then you do get the final answer "on a silver platter": "on a silver platter":𝜌 𝜌 == L L GG(())

But the final expression But the final expression you get is often quite long, and the steps for the last one or two states you you get is often quite long, and the steps for the last one or two states you 𝜌𝜌

eliminated often amount to hand-copying long subexpressions corresponding to eliminated often amount to hand-copying long subexpressions corresponding to in the above in the above 𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
formulas for the 2-state GNFAs anyway. The ground rules are hence that once you get down to twoformulas for the 2-state GNFAs anyway. The ground rules are hence that once you get down to two
states, you can just cite the abstract formula to say what the final regular expression will be. And if thestates, you can just cite the abstract formula to say what the final regular expression will be. And if the
originally given GNFA has at most one accpeting state besides the start state, then the above codeoriginally given GNFA has at most one accpeting state besides the start state, then the above code
body will give your final answer without needing to add a new final state. Why add one or two iterationsbody will give your final answer without needing to add a new final state. Why add one or two iterations
to the outside of a triply-nested loop if you can avoid it?to the outside of a triply-nested loop if you can avoid it?

Anyway, what we have proved is:Anyway, what we have proved is:

Theorem.Theorem. Given any DFA, NFA, or GNFA Given any DFA, NFA, or GNFA , we can calculate a regular expression , we can calculate a regular expression (Greek rho) (Greek rho)
suchsuch

GG 𝜌𝜌

that that ..LL 𝜌𝜌 == L L GG(()) (())

0101

GG00
ss

Then Then but this is not all strings. The reason is but this is not all strings. The reason is LL GG == 0101((00)) (())**

that that was really abbreviating the NFA shown below, which was really abbreviating the NFA shown below, whichGG00

can "crash" on can "crash" on at its start state and on at its start state and on at state at state ::11 00 tt

G'G'00
ss tt

00

11

𝜌𝜌
ss ff

This also completes the proof of the final part of Kleene's Theorem. This also completes the proof of the final part of Kleene's Theorem.

Example---revisiting a previous NFA:Example---revisiting a previous NFA:

We want to eliminate state 2. If we were using the code approach, we could re-number it as state 3.We want to eliminate state 2. If we were using the code approach, we could re-number it as state 3.
But we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinationsBut we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations
of them. Here we have:of them. Here we have:

In: 1 (on In: 1 (on) and) and (on (on).).𝜖𝜖 33 bb

Out: only to Out: only to (on (on).).33 aa

Update: Update: and and TT 11,, 33(()) TT 33,, 33 ..(())

TT 11,, 33 == T T 11,, 33 ++ T T 11,, 22 TT 22,, 22 TT 22,, 33(())newnew (())oldold (()) (())** (())

 == b b ++ 𝜖 𝜖 ⋅⋅∅∅ ⋅⋅ a a == b b ++ 𝜖 𝜖 ⋅⋅ 𝜖𝜖 ⋅⋅ a a == b b ++ a a..**

TT 33,, 33 == T T 33,, 33 ++ T T 33,, 22 TT 22,, 22 TT 22,, 33(())newnew (())oldold (()) (())** (())

 == ∅ ∅ ++ b b ⋅⋅ 𝜖𝜖 ⋅⋅ a a == ba ba..

Could also sayCould also say
---which is different! Will we get this wrong?---which is different! Will we get this wrong? == 𝜖 𝜖 ++ b b ⋅⋅ 𝜖𝜖 ⋅⋅ a a == 𝜖 𝜖 ++ ba ba

[Suppose we try to update [Suppose we try to update . The rule would be. The rule would beTT 33,, 11(())

TT 33,, 11 == T T 33,, 11 ++ T T 33,, 22 TT 22,, 22 TT 22,, 11(())newnew (())oldold (()) (())** (())

 because there is no arc from 2 to 1. because there is no arc from 2 to 1.== a a ++ b b ⋅⋅ 𝜖 𝜖 ⋅⋅ ∅ ∅

 , which is no change from , which is no change from .].]== a a ++ ∅ ∅ == a a TT 33,, 11(())oldold

The new GNFA isThe new GNFA is

 If you add a new final state like the text says to do, you get this: If you add a new final state like the text says to do, you get this:

Here is the same example "in code" showing the Here is the same example "in code" showing the -matrix but with the states renumbered.-matrix but with the states renumbered.TT

Now we are in the same 2-state case, except with the final state being numbered 2 rather than 3. ItNow we are in the same 2-state case, except with the final state being numbered 2 rather than 3. It
really comes out the same. The reason having really comes out the same. The reason having would not be wrong is that the would not be wrong is that the TT 11,, 11 == a a ++ 𝜖𝜖(())

diagonal entries diagonal entries etc. all get starred, and etc. all get starred, and ..TT 11,, 11(()) a a ++ whatever whatever == a a ++ 𝜖 𝜖 ++ whatever whatever(())** (())**

𝛽 𝛽 == b b ++ aa

𝜂 𝜂 == a a

𝛼 𝛼 == a a 𝛾 𝛾 == ba ba

11 33GG11

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾 ((11)) sfsf
**

**
**

== a a ++ bb ++ aa baba aa bb ++ aa baba ..(((())(())**
**
(())(())**

𝛽 𝛽 == b b ++ aa

𝜂 𝜂 == a a

𝛼 𝛼 == a a 𝛾 𝛾 == 𝜖 𝜖 ++ ba ba

11 33GG11

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾 ((11)) sfsf
**

**
**

== a a ++ bb ++ aa baba aa bb ++ aa baba ..(((())(())**
**
(())(())**

FactFact :: 𝛾 𝛾 == 𝛾 𝛾 ++ 𝜖 𝜖 == 𝛾𝛾++ 𝜖𝜖 for any 𝛾 for any 𝛾** (())** (())++

𝛽 𝛽 == b b ++ aa

𝜂 𝜂 == a a

𝛼 𝛼 == a a 𝛾 𝛾 == ba ba

11 33GG11

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾 ((11)) sfsf
**

**
**

== a a ++ bb ++ aa baba aa bb ++ aa baba ..(((())(())**
**
(())(())**𝜖𝜖

ff

aa

bb
𝜖𝜖aa

aa

bb

11

22 33

TT 11 22 33

11 aa bb 𝜖𝜖
22 aa ∅∅ bb
33 ∅∅ aa ∅∅

Initial Initial -matrix-matrixTT

The green The green on the main diagonal can on the main diagonal canaa
be be and the green and the green entries can entries canaa++ 𝜖𝜖 ∅∅

be changed to be changed to too without throwing too without throwing 𝜖𝜖
off the final answer. But the red off the final answer. But the red off off∅∅

the main diagonal must stay as the main diagonal must stay as ..∅∅

To eliminate state 3:To eliminate state 3:
InIn from 1 and 2, from 1 and 2, outout to 2 only. to 2 only.
Hence update Hence update & & ..TT 11,, 22(()) TT 22,, 22(())

 += += , so, soTT 11,, 22(()) TT 11,, 33 TT 33,, 33 TT 33,, 22(()) (())** (())

new new TT 11,, 22 == b b ++ 𝜖∅ 𝜖∅ a a == b b ++ aa(()) **

 += += , so, soTT 22,, 22(()) TT 22,, 33 TT 33,, 33 TT 33,, 22(()) (())** (())

new new TT 22,, 22 == ∅ ∅ ++ b∅ b∅ a a == ba ba(()) **

New New -matrix = -matrix = TT
aa bb ++ aa
aa baba

