
CSE396 Lecture Tue. Mar. 9: Regular Languages Summary / Context-Free GrammarsCSE396 Lecture Tue. Mar. 9: Regular Languages Summary / Context-Free Grammars

MNT Example 10MNT Example 10: : . Proof: Take . Proof: Take . Clearly . Clearly is infinite. Let any is infinite. Let any L L == aa bb :: s s ≥≥ r r -- 11rr ss S S == a a++ SS

 ((be given. Then we can write be given. Then we can write , , , where , where and wlog. and wlog. .. xx,, yy ∈∈ SS xx ≠≠ yy)) x x == a amm y y == a ann mm,, n n ≥≥ 1 1 m m << nn

Note that since Note that since , we have , we have , so , so is a legal number of chars for a string. Take is a legal number of chars for a string. Take 1 1 ≤≤ m m << nn nn ≥≥ 22 nn -- 22

. Then . Then which is which is notnot in in since since is not is not when when . But. But z z == b bn-2n-2 yz yz == a a bbnn n-2n-2 LL nn -- 22 ≥≥ r r -- 11 rr == nn

 is in is in since since so so as required with as required with ..xz xz == a a bbmm n-2n-2 LL m m << n n mm-- 1 1 ≤≤ n n -- 22 ss == nn -- 22

Proof does work: this shows Proof does work: this shows is PD for is PD for , and since , and since is infinite, is infinite, is nonregular by MNT. is nonregular by MNT. SS LL SS LL ☒☒

The issue with the original choice The issue with the original choice is that the cases is that the cases and and are actually equivalent: are actually equivalent: S S == a a** m m == 0 0 mm == 11

. Thus . Thus is NOT PD for is NOT PD for . This . This is actually "too big." Fix: Take is actually "too big." Fix: Take . Note that "at. Note that "at 𝜖𝜖 ∼∼ a aLL SS == aa** LL SS SS == aa++

bottom", bottom", and and are not equivalent: are not equivalent: because they are distinguished by because they are distinguished by : : aa aaaa a a ≁≁ aa aaLL zz == 𝜖𝜖 az az == a a ∈∈ L L

because we have because we have , , , and , and does hold. But does hold. But because that gives because that gives rr == 11 ss == 00 ss ≥≥ rr -- 11 yzyz == aa aa ∉∉ L L rr == 22

and and , and , and is not is not . [The proof above is now correct.]. [The proof above is now correct.]ss == 00 00 ≥≥ 22 -- 11

First, a review of the course to date that paints a philosophical big-picture with emphasis on First, a review of the course to date that paints a philosophical big-picture with emphasis on algorithmsalgorithms
associated to the concepts we have learned. We have shown the equivalence of three ways ofassociated to the concepts we have learned. We have shown the equivalence of three ways of
representing a regular language representing a regular language ::AA

1. 1. Via a regular expression Via a regular expression such that such that ..rr LL rr == A A(())

2. 2. Via an NFA Via an NFA such that such that ..NN LL NN == AA(())

3. 3. Via a DFA Via a DFA such that such that ..MM LL MM == AA(())

We have also characterized nonregular languages, which don't have any of these representations. TheWe have also characterized nonregular languages, which don't have any of these representations. The
fact that three separate formalisms (GNFAs are IMHO lumped somewhere between NFAs and regexpsfact that three separate formalisms (GNFAs are IMHO lumped somewhere between NFAs and regexps
but not really independent) yield the same class but not really independent) yield the same class of languages shows that being regular is a of languages shows that being regular is a salientsalientREGREG

 concept. (My word, not in any text, though many sources say " concept. (My word, not in any text, though many sources say "robustrobust.").")

The equivalence is only about potential to give a language. It does not sayThe equivalence is only about potential to give a language. It does not say

• • how efficiently, orhow efficiently, or
• • how useful the representation is for testing strings and combining languages.how useful the representation is for testing strings and combining languages.

On efficiency, the languages On efficiency, the languages give a great give a great LL == xx ∈∈ 00,, 11 :: the mth bit from the end is a 1 the mth bit from the end is a 1mm {{ }}**

example:example:

1. 1. The regular expressions The regular expressions have only 12 symbols plus the bits of have only 12 symbols plus the bits of rr == 00 ++ 11 11 00 ++ 11mm (())** (())m-1m-1 mm-- 11

in binary notation, thanks to powering as an abbreviation, which gives size in binary notation, thanks to powering as an abbreviation, which gives size .. OO mm((loglog))

2. 2. The NFAs The NFAs we saw have we saw have states and states and instructions, for size instructions, for size . Regular. Regular NNmm mm ++ 11 2m2m ++ 11 OO mm(())

expressions without powering are similar: expressions without powering are similar: [[times]. times].00 ++ 11 11 00 ++ 11 00 ++ 11 ⋯⋯ 00 ++ 11(())** (())(()) (()) mm-- 11

3. 3. But DFAs need exponentially many states and instructions: But DFAs need exponentially many states and instructions: states is minimum, because by states is minimum, because by 22mm

MNT, MNT, is a PD set for is a PD set for that has size that has size ..S S == 00,, 11{{ }}mm LLmm 22mm

4. 4. Converting any DFA or NFA back to a regexp is painful if you copy it out longhand, but if theConverting any DFA or NFA back to a regexp is painful if you copy it out longhand, but if the
 matrix operations are manipulated via references and list data structures, it counts as an matrix operations are manipulated via references and list data structures, it counts as an mm ×× mm

-time algorithm, which is a -time algorithm, which is a polynomial-timepolynomial-time algorithm (along with 1 and 2). algorithm (along with 1 and 2).mmOO 33

for k = m downto 2:for k = m downto 2:

for i = 1 to k-1:for i = 1 to k-1:
for j = 1 to k-1:for j = 1 to k-1:

T(i,j) = T(i,j) + T(i,k)T(i,j) = T(i,j) + T(i,k) T(k,k)T(k,k) T(k,j).T(k,j).⋅⋅ ⋅⋅**

Here, regular expressions can be incredibly efficient, and NFAs are efficient too. But that Here, regular expressions can be incredibly efficient, and NFAs are efficient too. But that succinctnesssuccinctness
 can blow up in your face if you try to convert them to DFAs. Why would you want to convert them? can blow up in your face if you try to convert them to DFAs. Why would you want to convert them?

1. 1. Running a Running a -state DFA -state DFA on a string on a string of length of length takes time only takes time only with good data with good data kk MM xx nn OO nn mm((loglog))

structures. If we ignore structures. If we ignore loglog factors, we can call this factors, we can call this , basically linear time., basically linear time.nnOO(())

2. 2. Running a Running a -state NFA -state NFA on on : If you convert it to a DFA, it could take : If you convert it to a DFA, it could take time. Instead, time. Instead, kk NN xx OO 22mm

track the sets track the sets of possible states (from the NFA-to-DFA proof) and how they changed while of possible states (from the NFA-to-DFA proof) and how they changed while RRii

reading bit reading bit of of . Time: . Time: or at worst or at worst for "bushy" NFAs. This is an example of for "bushy" NFAs. This is an example of ii xx nmnmOO(()) nmnmOO 22

polynomial timepolynomial time versus versus exponential timeexponential time, the last main course topic., the last main course topic.
3. 3. When you match a string When you match a string to a regexp to a regexp in a scripting language or OS command line, the in a scripting language or OS command line, the xx rr

system builds the equivalent NFA system builds the equivalent NFA and runs and runs on on . If the system disallows numerical. If the system disallows numerical NNrr NNrr xx

powering, and disallows other operations in powering, and disallows other operations in , this doesn't blow up., this doesn't blow up.rr

What operations should we be wary of? How about moving from a language What operations should we be wary of? How about moving from a language to its complement to its complement AA ::AA

1. 1. If we have a DFA If we have a DFA such that such that , it's cinchy: Just build, it's cinchy: Just build M M == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(()) LL MM == AA(())

 by switching accepting and rejecting states, and then we get by switching accepting and rejecting states, and then we get M' M' == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, QQ ⧵⧵ FF(())

 right away. right away.LL M'M' == (()) AA

2. 2. If we have an NFA If we have an NFA , this trick does not work. Doing this to , this trick does not work. Doing this to above makes above makes N N == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(()) NNmm

the start state eternally accepting, thus trivializing the language to be the start state eternally accepting, thus trivializing the language to be , not , not . The best. The best 𝛴𝛴** ∼∼ LLmm

we know in general is to convert to a DFA we know in general is to convert to a DFA , but that can blow up exponentially., but that can blow up exponentially.MM

3. 3. If we have a regexp If we have a regexp , the same often goes for the NFA , the same often goes for the NFA . (Have you seen a regular. (Have you seen a regular rr NNrr

expression package that allows general complementation, as opposed to just allowing theexpression package that allows general complementation, as opposed to just allowing the
exclusion of certain sets of characters at lowest level?)exclusion of certain sets of characters at lowest level?)

How about binary Boolean operations How about binary Boolean operations that involve negating one or both languages, such that involve negating one or both languages, such C C == A A opop B B

.

00,, 11

11 00 00 00

11 11 11

mm-- 1 arcs1 arcs

NN == mm

as difference as difference or symmetric difference or symmetric difference (often written (often written when when is used as the symbol is used as the symbol AA ⧵⧵BB AA△△BB AA⊕⊕BB ⊕⊕

for XOR). The considerations are similar to those for complementation:for XOR). The considerations are similar to those for complementation:

1. 1. If we have DFAs If we have DFAs and and , then we can use, then we can use MM == QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FFAA ((AA AA AA AA)) MM == QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FFBB ((BB BB BB BB))

the Cartesian product construction to build the Cartesian product construction to build by byMM == QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FFCC ((CC CC CC CC))

– – QQ == Q Q ×× Q QCC AA BB

– – ss == ss ,, ssCC ((AA BB))

– – , and finally, and finally𝛿𝛿 qq ,, qq ,, cc == 𝛿𝛿 qq ,, cc ,, 𝛿𝛿 qq ,, ccCC((((AA BB)))) ((AA((AA)) BB((BB))))

– – ..FF == qq ,, qq :: q q ∈∈ FF opop q q ∈∈ FFCC {{((AA BB)) AA AA BB BB }}

If If and and both have both have states, then states, then has (at most) has (at most) states, making this an states, making this an MMAA MMBB mm MMCC mm22

-time algorithm. Thuis this is also polynomial time.-time algorithm. Thuis this is also polynomial time.mmOO 22

2. 2. But if we are given NFAs But if we are given NFAs and and , Cartesian product won't work---at least not with negation, Cartesian product won't work---at least not with negation NNAA NNBB

in general. We might be left needing exponential time. Note, as a general word to the wise,in general. We might be left needing exponential time. Note, as a general word to the wise,

, so these operations include complements as a special case. Same, so these operations include complements as a special case. Same == 𝛴 𝛴 ⧵⧵A A == 𝛴 𝛴 △△AAAA ** **

issue if we are given regexps---why we don't have them as basic operations.issue if we are given regexps---why we don't have them as basic operations.

This finally brings us to This finally brings us to intersectionintersection vis-à-vis vis-à-vis unionunion . When we have regexps . When we have regexps and and , union is, union is ∩∩ ∪∪ rrAA rrBB
a basic operation: a basic operation: (text) or (text) or (notes and other sources, though regexp (notes and other sources, though regexp rr == r r ∪∪ r rCC AA BB rr == r r ++ rrCC AA BB

packages generally use packages generally use). If you have NFAs). If you have NFAs and and it is almost as easy: it is almost as easy:rr == r r || r rCC AA BB NNAA NNBB

With a linked-list representation, this is actuallyWith a linked-list representation, this is actually time. time. But is there such an easy way to "rewire ourBut is there such an easy way to "rewire our OO 11(())
brains" for intersection?brains" for intersection?

There is some "psych" evidence of not. If we have a list of rules or requirements we have to satisfy, it isThere is some "psych" evidence of not. If we have a list of rules or requirements we have to satisfy, it is
easier for us if the list is an OR, because we only have to scan to find one clause that works and caneasier for us if the list is an OR, because we only have to scan to find one clause that works and can
then forget the others. If it is an AND, we have to keep everything in mind until the end. If a sequencethen forget the others. If it is an AND, we have to keep everything in mind until the end. If a sequence
of directions is like a recipe where we can read the next step after doing the previous one, then it is likeof directions is like a recipe where we can read the next step after doing the previous one, then it is like
AND THEN, which is easier than when you really do have to read all the directions in advance beforeAND THEN, which is easier than when you really do have to read all the directions in advance before
doing the first step. Note that AND THEN corresponds to the basic regexp operation of concatenationdoing the first step. Note that AND THEN corresponds to the basic regexp operation of concatenation

, which in turn relates to , which in turn relates to series circuitsseries circuits.. ⋅⋅

The "psych" evidence is even more for negation. Because The "psych" evidence is even more for negation. Because is a monotone operation, getting a is a monotone operation, getting a ∩∩

regexp regexp such that such that is actually not horrible. You can convert the given is actually not horrible. You can convert the given rrCC LL rr == L L rr ∩∩ L L rr((CC)) ((AA)) ((BB))

regexps to NFAs regexps to NFAs and and and do "Cartesian for and do "Cartesian for " directly on them with " directly on them with NNAA NNBB ∩∩ FF == FF ×× FF ==CC AA BB

Like a Like a Parallel Electric CircuitParallel Electric Circuit

NN == 𝛾𝛾

ss𝛾𝛾

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼

ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽

𝜖𝜖

𝜖𝜖

ff𝛾𝛾

𝜖𝜖

𝜖𝜖

 both both and and are accepting in their respective machines are accepting in their respective machines . Then convert the resulting. Then convert the resulting
NFANFA
qq ,, qq ::{{((AA BB)) qqAA qqBB }}

 into into . Unlike with negation, this is a guaranteed polynomial-time algorithm, but it is still more. Unlike with negation, this is a guaranteed polynomial-time algorithm, but it is still more NNCC rrCC
painful (quadratic for Cartesian, cubic for painful (quadratic for Cartesian, cubic for) than just putting in the) than just putting in the operator is for union! operator is for union!rrCC ∪∪

We will see the difference between AND and OR become even more "imprinted" in the next unit:We will see the difference between AND and OR become even more "imprinted" in the next unit:
Context-Free LanguagesContext-Free Languages ((CFLCFLs) have easy use of s) have easy use of , but the class , but the class of CFLs will be seen not to of CFLs will be seen not to ∪∪ CFLCFL

be closed under be closed under at all! Nor under at all! Nor under either (since it is closed under union, if it were closed undereither (since it is closed under union, if it were closed under ∩∩ ∼∼

complementation then it would be closed under all Boolean ops after all).complementation then it would be closed under all Boolean ops after all).

Context-Free Grammars Context-Free Grammars [new material not on next week's exam][new material not on next week's exam]

These came out in papers by Noam Chomsky and then in his 1957 book These came out in papers by Noam Chomsky and then in his 1957 book Syntactic StructuresSyntactic Structures. Let's. Let's
have a blast of syntax before we see examples and larger motivations.have a blast of syntax before we see examples and larger motivations.

DefinitionDefinition: A : A context-free grammarcontext-free grammar ((CFGCFG) is an object) is an object where: where:G G == VV,,𝛴𝛴,,RR,, SS(())

1. 1. is a finite alphabet of is a finite alphabet of variablesvariables, aka. , aka. non-terminalsnon-terminals..VV

2. 2. is the is the terminal alphabetterminal alphabet..𝛴𝛴

3. 3. , a member of , a member of , is the , is the start symbolstart symbol..SS VV

4. 4. is a finite set of is a finite set of rulesrules, each of the form , each of the form , where , where and and . More. More RR A A X X→→ AA ∈∈ VV XX ∈∈ VV∪∪𝛴𝛴(())**

simply put, simply put, is a subset of is a subset of ..RR V V ×× VV∪∪𝛴𝛴(())**

Common alternative notations are Common alternative notations are in place of in place of and and for "productions" in place of for "productions" in place of for "rules." for "rules." TT 𝛴𝛴 PP RR

Variables are commonly denoted by capital letters Variables are commonly denoted by capital letters This can confuse with languages but This can confuse with languages but AA,, BB,, CC,, DD,, ……

hopefully not in-context, and besides, each variable hopefully not in-context, and besides, each variable will stand for the language will stand for the language of strings that canof strings that can AA LL AA

be derived from that variable, with be derived from that variable, with . A common alternate notation is to put variables in angle-. A common alternate notation is to put variables in angle-LL GG == LL(()) SS

brackets, such as brackets, such as in place of in place of . Then also the arrow is often written ":=" or "::=" which goes. Then also the arrow is often written ":=" or "::=" which goes ⟨⟨sentencesentence⟩⟩ SS
into into Backus-Naur FormBackus-Naur Form ((BNFBNF) grammars. BNF is more liberal than CFG notation but stays equivalent) grammars. BNF is more liberal than CFG notation but stays equivalent
in the languages that can be represented.in the languages that can be represented.

Ordinary strings in Ordinary strings in will be put in lowercase as will be put in lowercase as as usual. But strings that can includeas usual. But strings that can include 𝛴𝛴** xx,, yy,, zz,, ww,, ……

variables will be emphasized by putting them in uppercase as variables will be emphasized by putting them in uppercase as etc. Two or more rules etc. Two or more rules XX,, YY,, ZZ,, WW,, ……

for the same variable are often grouped using for the same variable are often grouped using between the alternatives, for instance between the alternatives, for instance .. || A A X X || Y Y || Z Z→→

This hints right away that CFGs are fundamentally nondeterministic and that the class of languages weThis hints right away that CFGs are fundamentally nondeterministic and that the class of languages we
get will be closed under union. Usually get will be closed under union. Usually , , , and the start symbol can be inferred from how the rules, and the start symbol can be inferred from how the rules VV 𝛴𝛴

are laid out, so it is only necessary to state the rules in order to specify a context-free grammar are laid out, so it is only necessary to state the rules in order to specify a context-free grammar .. GG

Here is how to define the language Here is how to define the language :: LL GG(())

DefinitionDefinition: Given a CFG : Given a CFG and two strings and two strings , we write , we write and say that and say that GG YY,, ZZ ∈∈ 𝛴𝛴∪∪VV(())** YY ⟹⟹ Z ZGG YY

derives derives in one step if there are strings in one step if there are strings and a rule and a rule in in such that such that ZZ UU,, WW ∈∈ 𝛴𝛴∪∪VV(())** AA XX→→ RR

 and and ..Y Y == UAW UAW Z Z == UXW UXW

We say that We say that was re-written to was re-written to by the rule. This is called "context-free" because none of the letters by the rule. This is called "context-free" because none of the letters AA XX

next to next to in in matter. We drop the subscript matter. We drop the subscript as it is usually clear. Now we do one final "inductive as it is usually clear. Now we do one final "inductive AA YY GG
escalation":escalation":

DefinitionDefinition::

• • Any string Any string is considered to "derive itself in zero steps": is considered to "derive itself in zero steps": .. XX ∈∈ 𝛴𝛴∪∪VV(())** X X ⟹⟹ X X00

• • For For , write , write if there is a if there is a such that such that and and .. kk ≥≥ 11 XX ⟹⟹ Z Zkk YY X X ⟹⟹ Y Yk-1k-1 Y Y ⟹⟹ Z Z

• • Then write Then write if there is a if there is a such that such that ..X X ⟹⟹ Z Z** kk ≥≥ 00 XX ⟹⟹ Z Zkk

• • Finally, Finally, ..LL GG == xx ∈∈ 𝛴𝛴 :: S S ⟹⟹ x x(()) ** **

An An such that such that is called a is called a sentential formsentential form. Sometimes we speak of "the. Sometimes we speak of "the XX ∈∈ VV∪∪𝛴𝛴(())** SS ⟹⟹ X X**

language of sentential forms", but strictly speaking the language of the grammar is the set of derivablelanguage of sentential forms", but strictly speaking the language of the grammar is the set of derivable
terminal strings only. Note that the superscript terminal strings only. Note that the superscript keeps its reading of "zero or more" (steps). Now let's keeps its reading of "zero or more" (steps). Now let's **

see some basic examples of grammars and derivations.see some basic examples of grammars and derivations.

ExampleExample

 Here the start symbol Here the start symbol is the only variable, and is the only variable, and . Some derivations:. Some derivations:G G == S S 0S1 0S1 || 𝜖 𝜖→→ SS 𝛴𝛴 == 00,, 11{{ }}

• • .. This is a one-step derivation using the rule This is a one-step derivation using the rule . The empty string counts as a. The empty string counts as a S S ⟹⟹ 𝜖 𝜖 SS 𝜖𝜖→→

terminal string since it belongs to terminal string since it belongs to (as well as to (as well as to). So). So ..𝛴𝛴** 𝛴𝛴∪∪VV(())** 𝜖𝜖 ∈∈ LL GG(())

• • . The first step used the rule . The first step used the rule , then we used the , then we used the -rule. (Not all-rule. (Not all S S ⟹⟹ 0S1 0S1 ⟹⟹ 01 01 SS 0S10S1→→ 𝜖𝜖

grammars have grammars have -rules, and we will later want to eliminate them from those that do.)-rules, and we will later want to eliminate them from those that do.)𝜖𝜖

• • ..S S ⟹⟹ 0S1 0S1 ⟹⟹ 00S11 00S11 ⟹⟹ 0011 0011

This is enough to give the idea of why This is enough to give the idea of why ..LL GG == 00 11 :: n n ≥≥ 00(()) nn nn

[I put the above example back the way it was. This is as far as I got on Tuesday. My lecture on[I put the above example back the way it was. This is as far as I got on Tuesday. My lecture on
Thursday will pick up here.]Thursday will pick up here.]

ExampleExample

. Again . Again is the only variable, but is the only variable, but instead of instead of ..G G == S S 𝜖 𝜖 || SS || SS SS→→ (()) SS 𝛴 𝛴 == ,,{{(())}} 00,, 11{{ }}

The first two rules are much the same as in the first grammar (the order of writing the possible right-The first two rules are much the same as in the first grammar (the order of writing the possible right-
hand sides does not matter, and the only reason the order of writing rules for different variables mighthand sides does not matter, and the only reason the order of writing rules for different variables might
matter is if you need to put rule(s) for the start symbol first in order to say which it is). But the third rulematter is if you need to put rule(s) for the start symbol first in order to say which it is). But the third rule
"expands" by having two (or more) variables on the RHS."expands" by having two (or more) variables on the RHS.

• • We can derive We can derive , etc., much as in the previous grammar., etc., much as in the previous grammar.𝜖𝜖,, ,, ,, (()) (((()))) (((((())))))

• • But we can also do But we can also do to get other kinds of to get other kinds of S S ⟹⟹ SS SS ⟹⟹ SS S S ⟹⟹ S S ⟹⟹ SS ⟹⟹ (()) (()) (())(()) (())(())
balanced-parenthesis expressions.balanced-parenthesis expressions.

• • In fact, In fact, ..LL GG == BAL BAL(())

ExampleExample
is another grammar involving parentheses.is another grammar involving parentheses.G' G' == S S 𝜖 𝜖 || SS || SS S S →→ (()) (())

• • Anything Anything can derive can be derived in can derive can be derived in because the rule because the rule in in can be can be simulatedsimulated G'G' GG SS SS SS→→ (()) G'G'

by the two steps by the two steps in in .. SS ⟹⟹ SS SS ⟹⟹ SS SS(()) GG

• • Hence Hence . Since we already asserted that . Since we already asserted that , this means, this means LL G'G' ⊆⊆ L L GG(()) (()) LL GG == BALBAL(())

. We therefore say that . We therefore say that is is soundsound for for .. LL G'G' ⊆⊆ BAL BAL(()) G'G' BALBAL

• • Is Is , which would follow if , which would follow if ? The latter I call ? The latter I call being being LL G'G' == BAL BAL(()) LL G'G' ⊇⊇ BAL BAL(()) G'G'

comprehensivecomprehensive for for ..BALBAL
• • The combination of being sound and comprehensive just means being The combination of being sound and comprehensive just means being correctcorrect..
• • In fact, yes, In fact, yes, is comprehensive---but that is often not as easy to prove as soundness. is comprehensive---but that is often not as easy to prove as soundness.G'G'

ExampleExample

 generates all strings in the spears-and-dragons game with unlimited generates all strings in the spears-and-dragons game with unlimited G'' G'' == S S 𝜖 𝜖 || 0S 0S || $S $S || $SDS $SDS→→

spears in which the "Player" survives. We can amke it look more like spears in which the "Player" survives. We can amke it look more like by changing "spear" to (and by changing "spear" to (and G'G'

"dragon" to) and ignoring "dragon" to) and ignoring for "empty room": for "empty room":00

..G'' G'' == S S 𝜖 𝜖 || S S || SS SS→→ (((())

Then Then is the language of parenthesis expressions that can be properly closed by appending zero is the language of parenthesis expressions that can be properly closed by appending zero LL G''G''(())
or more right parens.or more right parens.

DiscussionDiscussion
Sense and syntax: "Colorless green ideas sleep furiously".Sense and syntax: "Colorless green ideas sleep furiously".
Balance.Balance.

