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MNT Example 10MNT Example 10: : .  Proof: Take .  Proof: Take .  Clearly .  Clearly  is infinite.  Let any is infinite.  Let any  L L ==   aa bb ::  s  s ≥≥  r r -- 11rr ss S S ==  a a++ SS

 ( (  be given.  Then we can write  be given.  Then we can write , , , where , where  and wlog.  and wlog. ..    xx,, yy ∈∈ SS xx ≠≠ yy)) x x ==  a amm y y ==  a ann mm,, n n ≥≥  1 1 m m << nn

Note that since Note that since , we have , we have , so , so  is a legal number of chars for a string.  Take is a legal number of chars for a string.  Take  1 1 ≤≤  m m << nn nn ≥≥ 22 nn -- 22

.  Then .  Then  which is  which is notnot in  in  since  since  is not  is not  when  when .  But.  But  z z ==  b bn-2n-2 yz yz ==  a a bbnn n-2n-2 LL nn -- 22 ≥≥  r r -- 11 rr == nn

 is in  is in  since  since  so  so  as required with  as required with ..xz xz ==  a a bbmm n-2n-2 LL m m <<  n n mm-- 1 1 ≤≤  n n -- 22 ss == nn -- 22

Proof does work: this shows Proof does work: this shows  is PD for  is PD for , and since , and since  is infinite,  is infinite,  is nonregular by MNT.   is nonregular by MNT.  SS LL SS LL ☒☒
  
The issue with the original choice The issue with the original choice  is that the cases  is that the cases  and  and  are actually equivalent: are actually equivalent:  S S ==  a a** m m ==  0 0 mm == 11

.  Thus .  Thus  is NOT PD for  is NOT PD for .  This .  This  is actually "too big."  Fix: Take  is actually "too big."  Fix: Take .  Note that "at.  Note that "at  𝜖𝜖 ∼∼  a aLL SS == aa** LL SS SS == aa++

bottom", bottom",  and  and  are not equivalent:  are not equivalent:  because they are distinguished by  because they are distinguished by : :   aa aaaa a a ≁≁  aa aaLL zz == 𝜖𝜖 az az == a a ∈∈  L L

because we have because we have , , , and , and  does hold.  But  does hold.  But  because that gives  because that gives   rr == 11 ss == 00 ss ≥≥ rr -- 11 yzyz == aa aa ∉∉  L L rr == 22

and and , and , and  is not  is not .  [The proof above is now correct.].  [The proof above is now correct.]ss == 00 00 ≥≥ 22 -- 11
  
  
First, a review of the course to date that paints a philosophical big-picture with emphasis on First, a review of the course to date that paints a philosophical big-picture with emphasis on algorithmsalgorithms  
associated to the concepts we have learned.  We have shown the equivalence of three ways ofassociated to the concepts we have learned.  We have shown the equivalence of three ways of  
representing a regular language representing a regular language ::AA
  

1. 1. Via a regular expression Via a regular expression  such that  such that ..rr LL rr   ==  A A(( ))

2. 2. Via an NFA Via an NFA  such that  such that ..NN LL NN == AA(( ))

3. 3. Via a DFA Via a DFA  such that  such that ..MM LL MM == AA(( ))
  
We have also characterized nonregular languages, which don't have any of these representations.  TheWe have also characterized nonregular languages, which don't have any of these representations.  The  
fact that three separate formalisms (GNFAs are IMHO lumped somewhere between NFAs and regexpsfact that three separate formalisms (GNFAs are IMHO lumped somewhere between NFAs and regexps  
but not really independent) yield the same class but not really independent) yield the same class  of languages shows that being regular is a  of languages shows that being regular is a salientsalientREGREG

 concept.  (My word, not in any text, though many sources say " concept.  (My word, not in any text, though many sources say "robustrobust.").")
  
The equivalence is only about potential to give a language.  It does not sayThe equivalence is only about potential to give a language.  It does not say  
  

• • how efficiently, orhow efficiently, or
• • how useful the representation is for testing strings and combining languages.how useful the representation is for testing strings and combining languages.

  

On efficiency, the languages On efficiency, the languages  give a great give a great  LL   ==   xx ∈∈ 00,, 11 ::  the mth bit from the end is a 1 the mth bit from the end is a 1mm {{ }}**

example:example:
  

1. 1. The regular expressions The regular expressions  have only 12 symbols plus the bits of  have only 12 symbols plus the bits of   rr   ==   00 ++ 11 11 00 ++ 11mm (( ))** (( ))m-1m-1 mm-- 11

in binary notation, thanks to powering as an abbreviation, which gives size in binary notation, thanks to powering as an abbreviation, which gives size ..  OO mm((loglog ))

2. 2. The NFAs The NFAs  we saw have  we saw have  states and  states and  instructions, for size  instructions, for size .  Regular.  Regular  NNmm mm ++ 11 2m2m ++ 11 OO mm(( ))

expressions without powering are similar: expressions without powering are similar:  [ [  times]. times].00 ++ 11 11 00 ++ 11 00 ++ 11 ⋯⋯ 00 ++ 11(( ))** (( ))(( )) (( )) mm-- 11

  

  



3. 3. But DFAs need exponentially many states and instructions: But DFAs need exponentially many states and instructions:  states is minimum, because by states is minimum, because by  22mm

MNT, MNT,  is a PD set for  is a PD set for  that has size  that has size ..S S ==   00,, 11{{ }}mm LLmm 22mm

4. 4. Converting any DFA or NFA back to a regexp is painful if you copy it out longhand, but if theConverting any DFA or NFA back to a regexp is painful if you copy it out longhand, but if the  
 matrix operations are manipulated via references and list data structures, it counts as an matrix operations are manipulated via references and list data structures, it counts as an  mm ×× mm

-time algorithm, which is a -time algorithm, which is a polynomial-timepolynomial-time algorithm (along with 1 and 2). algorithm (along with 1 and 2).mmOO 33

  
for k = m downto 2:for k = m downto 2:

for i = 1 to k-1:for i = 1 to k-1:
for j = 1 to k-1:for j = 1 to k-1:

T(i,j) = T(i,j) + T(i,k)T(i,j) = T(i,j) + T(i,k) T(k,k)T(k,k) T(k,j).T(k,j).⋅⋅ ⋅⋅**

  
Here, regular expressions can be incredibly efficient, and NFAs are efficient too.  But that Here, regular expressions can be incredibly efficient, and NFAs are efficient too.  But that succinctnesssuccinctness
 can blow up in your face if you try to convert them to DFAs.  Why would you want to convert them? can blow up in your face if you try to convert them to DFAs.  Why would you want to convert them?

  
1. 1. Running a Running a -state DFA -state DFA  on a string  on a string  of length  of length  takes time only  takes time only  with good data with good data  kk MM xx nn OO nn mm(( loglog ))

structures.  If we ignore structures.  If we ignore loglog factors, we can call this  factors, we can call this , basically linear time., basically linear time.nnOO(( ))

2. 2. Running a Running a -state NFA -state NFA  on  on : If you convert it to a DFA, it could take : If you convert it to a DFA, it could take  time.  Instead, time.  Instead,  kk NN xx OO 22mm

track the sets track the sets  of possible states (from the NFA-to-DFA proof) and how they changed while of possible states (from the NFA-to-DFA proof) and how they changed while  RRii

reading bit reading bit  of  of .  Time: .  Time:  or at worst  or at worst  for "bushy" NFAs.  This is an example of for "bushy" NFAs.  This is an example of  ii xx nmnmOO(( )) nmnmOO 22

polynomial timepolynomial time versus  versus exponential timeexponential time, the last main course topic., the last main course topic.
3. 3. When you match a string When you match a string  to a regexp  to a regexp  in a scripting language or OS command line, the in a scripting language or OS command line, the  xx rr

system builds the equivalent NFA system builds the equivalent NFA  and runs  and runs  on  on .  If the system disallows numerical.  If the system disallows numerical  NNrr NNrr xx

powering, and disallows other operations in powering, and disallows other operations in , this doesn't blow up., this doesn't blow up.rr
  

What operations should we be wary of?  How about moving from a language What operations should we be wary of?  How about moving from a language  to its complement  to its complement AA ::AA

1. 1. If we have a DFA If we have a DFA  such that  such that , it's cinchy: Just build, it's cinchy: Just build  M M ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) LL MM == AA(( ))

 by switching accepting and rejecting states, and then we get by switching accepting and rejecting states, and then we get  M' M' ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, QQ ⧵⧵ FF(( ))

 right away. right away.LL M'M'   ==   (( )) AA

2. 2. If we have an NFA If we have an NFA , this trick does not work.  Doing this to , this trick does not work.  Doing this to  above makes above makes  N N ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) NNmm

the start state eternally accepting, thus trivializing the language to be the start state eternally accepting, thus trivializing the language to be , not , not .  The best.  The best  𝛴𝛴** ∼∼ LLmm

we know in general is to convert to a DFA we know in general is to convert to a DFA , but that can blow up exponentially., but that can blow up exponentially.MM

3. 3. If we have a regexp If we have a regexp , the same often goes for the NFA , the same often goes for the NFA .  (Have you seen a regular.  (Have you seen a regular  rr NNrr

expression package that allows general complementation, as opposed to just allowing theexpression package that allows general complementation, as opposed to just allowing the  
exclusion of certain sets of characters at lowest level?)exclusion of certain sets of characters at lowest level?)

  
How about binary Boolean operations How about binary Boolean operations  that involve negating one or both languages, such that involve negating one or both languages, such  C C ==  A  A opop B B
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NN   ==   mm



as difference as difference  or symmetric difference  or symmetric difference  (often written  (often written  when  when  is used as the symbol is used as the symbol  AA ⧵⧵BB AA△△BB AA⊕⊕BB ⊕⊕

for XOR).  The considerations are similar to those for complementation:for XOR).  The considerations are similar to those for complementation:
  

1. 1. If we have DFAs If we have DFAs  and  and , then we can use, then we can use  MM   ==   QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FFAA (( AA AA AA AA)) MM   ==   QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FFBB (( BB BB BB BB))

the Cartesian product construction to build the Cartesian product construction to build  by byMM   ==   QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FFCC (( CC CC CC CC))

– – QQ   ==  Q Q   ××  Q QCC AA BB

– – ss   ==   ss ,, ssCC (( AA BB))

– – , and finally, and finally𝛿𝛿 qq ,, qq ,, cc   ==   𝛿𝛿 qq ,, cc ,, 𝛿𝛿 qq ,, ccCC(((( AA BB)) )) (( AA(( AA )) BB(( BB ))))

– – ..FF   ==   qq ,, qq ::  q q ∈∈ FF     opop  q  q ∈∈ FFCC {{(( AA BB)) AA AA BB BB }}

If If  and  and  both have  both have  states, then  states, then  has (at most)  has (at most)  states, making this an states, making this an  MMAA MMBB mm MMCC mm22

-time algorithm. Thuis this is also polynomial time.-time algorithm. Thuis this is also polynomial time.mmOO 22

2. 2. But if we are given NFAs But if we are given NFAs  and  and , Cartesian product won't work---at least not with negation, Cartesian product won't work---at least not with negation  NNAA NNBB

in general.  We might be left needing exponential time.  Note, as a general word to the wise,in general.  We might be left needing exponential time.  Note, as a general word to the wise,  

, so these operations include complements as a special case.  Same, so these operations include complements as a special case.  Same    ==  𝛴 𝛴 ⧵⧵A  A  ==   𝛴  𝛴 △△AAAA ** **

issue if we are given regexps---why we don't have them as basic operations.issue if we are given regexps---why we don't have them as basic operations.
  
This finally brings us to This finally brings us to intersectionintersection   vis-à-vis  vis-à-vis unionunion  .  When we have regexps .  When we have regexps  and  and , union is, union is  ∩∩ ∪∪ rrAA rrBB
a basic operation: a basic operation:  (text) or  (text) or  (notes and other sources, though regexp (notes and other sources, though regexp  rr   ==  r r   ∪∪  r rCC AA BB rr   ==  r r ++ rrCC AA BB

packages generally use packages generally use ).   If you have NFAs ).   If you have NFAs  and  and  it is almost as easy: it is almost as easy:rr   ==  r r   || r rCC AA BB NNAA NNBB

With a linked-list representation, this is actuallyWith a linked-list representation, this is actually   time.   time.  But is there such an easy way to "rewire ourBut is there such an easy way to "rewire our  OO 11(( ))
brains" for intersection?brains" for intersection?
  
There is some "psych" evidence of not.  If we have a list of rules or requirements we have to satisfy, it isThere is some "psych" evidence of not.  If we have a list of rules or requirements we have to satisfy, it is  
easier for us if the list is an OR, because we only have to scan to find one clause that works and caneasier for us if the list is an OR, because we only have to scan to find one clause that works and can  
then forget the others.  If it is an AND, we have to keep everything in mind until the end.  If a sequencethen forget the others.  If it is an AND, we have to keep everything in mind until the end.  If a sequence  
of directions is like a recipe where we can read the next step after doing the previous one, then it is likeof directions is like a recipe where we can read the next step after doing the previous one, then it is like  
AND THEN, which is easier than when you really do have to read all the directions in advance beforeAND THEN, which is easier than when you really do have to read all the directions in advance before  
doing the first step.  Note that AND THEN corresponds to the basic regexp operation of concatenationdoing the first step.  Note that AND THEN corresponds to the basic regexp operation of concatenation  

, which in turn relates to , which in turn relates to series circuitsseries circuits..    ⋅⋅

  
The "psych" evidence is even more for negation.  Because The "psych" evidence is even more for negation.  Because  is a monotone operation, getting a is a monotone operation, getting a  ∩∩

regexp regexp  such that  such that  is actually not horrible.  You can convert the given is actually not horrible.  You can convert the given  rrCC LL rr   ==  L L rr   ∩∩  L L rr(( CC)) (( AA)) (( BB))

regexps to NFAs regexps to NFAs  and  and  and do "Cartesian for  and do "Cartesian for " directly on them with " directly on them with   NNAA NNBB ∩∩ FF == FF ×× FF ==CC AA BB

  

  

Like a Like a Parallel Electric CircuitParallel Electric Circuit

NN   ==   𝛾𝛾

ss𝛾𝛾

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼

ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽
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 both  both  and  and  are accepting in their respective machines are accepting in their respective machines .  Then convert the resulting.  Then convert the resulting  
NFANFA  
qq ,, qq ::{{(( AA BB)) qqAA qqBB }}

 into  into .  Unlike with negation, this is a guaranteed polynomial-time algorithm, but it is still more.  Unlike with negation, this is a guaranteed polynomial-time algorithm, but it is still more  NNCC rrCC
painful (quadratic for Cartesian, cubic for painful (quadratic for Cartesian, cubic for ) than just putting in the ) than just putting in the  operator is for union! operator is for union!rrCC ∪∪

  
We will see the difference between AND and OR become even more "imprinted" in the next unit:We will see the difference between AND and OR become even more "imprinted" in the next unit:  
Context-Free LanguagesContext-Free Languages ( (CFLCFLs) have easy use of s) have easy use of , but the class , but the class  of CFLs will be seen not to of CFLs will be seen not to  ∪∪ CFLCFL

be closed under be closed under at all!  Nor under at all!  Nor under either (since it is closed under union, if it were closed undereither (since it is closed under union, if it were closed under  ∩∩ ∼∼

complementation then it would be closed under all Boolean ops after all).complementation then it would be closed under all Boolean ops after all).
  
  
Context-Free Grammars   Context-Free Grammars   [new material not on next week's exam][new material not on next week's exam]
  
These came out in papers by Noam Chomsky and then in his 1957 book These came out in papers by Noam Chomsky and then in his 1957 book Syntactic StructuresSyntactic Structures.   Let's.   Let's  
have a blast of syntax before we see examples and larger motivations.have a blast of syntax before we see examples and larger motivations.
  
DefinitionDefinition: A : A context-free grammarcontext-free grammar ( (CFGCFG) is an object ) is an object  where: where:G G ==   VV,,𝛴𝛴,,RR,, SS(( ))

1. 1.  is a finite alphabet of  is a finite alphabet of variablesvariables, aka. , aka. non-terminalsnon-terminals..VV

2. 2.  is the  is the terminal alphabetterminal alphabet..𝛴𝛴

3. 3. , a member of , a member of , is the , is the start symbolstart symbol..SS VV

4. 4.  is a finite set of  is a finite set of rulesrules, each of the form , each of the form , where , where  and  and .  More.  More  RR A A  X X→→ AA ∈∈ VV XX ∈∈ VV∪∪𝛴𝛴(( ))**

simply put, simply put,  is a subset of  is a subset of ..RR V V ××   VV∪∪𝛴𝛴(( ))**

  
Common alternative notations are Common alternative notations are  in place of  in place of  and  and  for "productions" in place of  for "productions" in place of  for "rules." for "rules."    TT 𝛴𝛴 PP RR

Variables are commonly denoted by capital letters Variables are commonly denoted by capital letters  This can confuse with languages but This can confuse with languages but  AA,, BB,, CC,, DD,, ……

hopefully not in-context, and besides, each variable hopefully not in-context, and besides, each variable  will stand for the language  will stand for the language of strings that canof strings that can  AA LL   AA

be derived from that variable, with be derived from that variable, with .  A common alternate notation is to put variables in angle-.  A common alternate notation is to put variables in angle-LL GG == LL(( )) SS

brackets, such as brackets, such as  in place of  in place of .  Then also the arrow is often written ":=" or "::=" which goes.  Then also the arrow is often written ":=" or "::=" which goes  ⟨⟨sentencesentence⟩⟩ SS
into into Backus-Naur FormBackus-Naur Form ( (BNFBNF) grammars.  BNF is more liberal than CFG notation but stays equivalent) grammars.  BNF is more liberal than CFG notation but stays equivalent  
in the languages that can be represented.in the languages that can be represented.  
  
Ordinary strings in Ordinary strings in  will be put in lowercase as  will be put in lowercase as as usual.  But strings that can includeas usual.  But strings that can include  𝛴𝛴** xx,, yy,, zz,, ww,, ……

variables will be emphasized by putting them in uppercase as variables will be emphasized by putting them in uppercase as  etc.  Two or more rules etc.  Two or more rules  XX,, YY,, ZZ,, WW,, ……

for the same variable are often grouped using for the same variable are often grouped using  between the alternatives, for instance  between the alternatives, for instance ..    || A A  X  X || Y  Y || Z Z→→

This hints right away that CFGs are fundamentally nondeterministic and that the class of languages weThis hints right away that CFGs are fundamentally nondeterministic and that the class of languages we  
get will be closed under union.  Usually get will be closed under union.  Usually , , , and the start symbol can be inferred from how the rules, and the start symbol can be inferred from how the rules  VV 𝛴𝛴

are laid out, so it is only necessary to state the rules in order to specify a context-free grammar are laid out, so it is only necessary to state the rules in order to specify a context-free grammar ..    GG

Here is how to define the language Here is how to define the language ::  LL GG(( ))
  
DefinitionDefinition: Given a CFG : Given a CFG  and two strings  and two strings , we write , we write  and say that  and say that   GG YY,, ZZ ∈∈ 𝛴𝛴∪∪VV(( ))** YY ⟹⟹  Z ZGG YY

derives derives  in one step if there are strings  in one step if there are strings  and a rule  and a rule  in  in  such that such that  ZZ UU,, WW ∈∈ 𝛴𝛴∪∪VV(( ))** AA XX→→ RR

  
   and      and   ..Y Y ==  UAW UAW Z Z ==  UXW UXW

  

  



  
We say that We say that  was re-written to  was re-written to  by the rule.  This is called "context-free" because none of the letters by the rule.  This is called "context-free" because none of the letters  AA XX

next to next to  in  in  matter.  We drop the subscript  matter.  We drop the subscript  as it is usually clear.  Now we do one final "inductive as it is usually clear.  Now we do one final "inductive  AA YY GG
escalation":escalation":
  
DefinitionDefinition::  

• • Any string Any string  is considered to "derive itself in zero steps":  is considered to "derive itself in zero steps": ..    XX ∈∈ 𝛴𝛴∪∪VV(( ))** X X ⟹⟹  X X00

• • For For , write , write  if there is a  if there is a  such that  such that  and  and ..    kk ≥≥ 11 XX ⟹⟹  Z Zkk YY X X ⟹⟹  Y Yk-1k-1 Y Y ⟹⟹  Z Z

• • Then write Then write  if there is a  if there is a  such that  such that ..X X ⟹⟹  Z Z** kk ≥≥ 00 XX ⟹⟹  Z Zkk

• • Finally, Finally, ..LL GG   ==   xx ∈∈ 𝛴𝛴 ::  S S ⟹⟹  x x(( )) ** **

  
An An  such that  such that  is called a  is called a sentential formsentential form.  Sometimes we speak of "the.  Sometimes we speak of "the  XX ∈∈ VV∪∪𝛴𝛴(( ))** SS ⟹⟹  X X**

language of sentential forms", but strictly speaking the language of the grammar is the set of derivablelanguage of sentential forms", but strictly speaking the language of the grammar is the set of derivable  
terminal strings only.  Note that the superscript terminal strings only.  Note that the superscript  keeps its reading of "zero or more" (steps).  Now let's keeps its reading of "zero or more" (steps).  Now let's  **

see some basic examples of grammars and derivations.see some basic examples of grammars and derivations.
  
ExampleExample

    Here the start symbol     Here the start symbol  is the only variable, and  is the only variable, and .  Some derivations:.  Some derivations:G G ==   S   S  0S1  0S1 || 𝜖 𝜖→→ SS 𝛴𝛴 == 00,, 11{{ }}

• • ..  This is a one-step derivation using the rule   This is a one-step derivation using the rule .  The empty string counts as a.  The empty string counts as a  S S ⟹⟹  𝜖 𝜖 SS 𝜖𝜖→→

terminal string since it belongs to terminal string since it belongs to  (as well as to  (as well as to ).  So ).  So ..𝛴𝛴** 𝛴𝛴∪∪VV(( ))** 𝜖𝜖 ∈∈ LL GG(( ))

• • .  The first step used the rule .  The first step used the rule , then we used the , then we used the -rule.  (Not all-rule.  (Not all  S S ⟹⟹  0S1  0S1 ⟹⟹  01 01 SS 0S10S1→→ 𝜖𝜖

grammars have grammars have -rules, and we will later want to eliminate them from those that do.)-rules, and we will later want to eliminate them from those that do.)𝜖𝜖

• • ..S S ⟹⟹  0S1  0S1 ⟹⟹  00S11  00S11 ⟹⟹  0011 0011

This is enough to give the idea of why This is enough to give the idea of why ..LL GG   ==   00 11 ::  n n ≥≥ 00(( )) nn nn

  
[I put the above example back the way it was.  This is as far as I got on Tuesday.  My lecture on[I put the above example back the way it was.  This is as far as I got on Tuesday.  My lecture on  
Thursday will pick up here.]Thursday will pick up here.]
  
ExampleExample

.   Again .   Again  is the only variable, but  is the only variable, but  instead of  instead of ..G G ==  S  S  𝜖  𝜖 ||  SS   || SS SS→→ (( )) SS 𝛴 𝛴 ==   ,,{{(( ))}} 00,, 11{{ }}
  
The first two rules are much the same as in the first grammar (the order of writing the possible right-The first two rules are much the same as in the first grammar (the order of writing the possible right-
hand sides does not matter, and the only reason the order of writing rules for different variables mighthand sides does not matter, and the only reason the order of writing rules for different variables might  
matter is if you need to put rule(s) for the start symbol first in order to say which it is).  But the third rulematter is if you need to put rule(s) for the start symbol first in order to say which it is).  But the third rule  
"expands" by having two (or more) variables on the RHS."expands" by having two (or more) variables on the RHS.    
  

• • We can derive We can derive , etc., much as in the previous grammar., etc., much as in the previous grammar.𝜖𝜖,,   ,,   ,,   (()) (((()))) (((((())))))

• • But we can also do But we can also do  to get other kinds of to get other kinds of  S S ⟹⟹  SS  SS ⟹⟹   SS S S ⟹⟹   S S ⟹⟹   SS   ⟹⟹   (( )) (()) (())(( )) (())(())
balanced-parenthesis expressions.balanced-parenthesis expressions.

• • In fact, In fact, ..LL GG   ==  BAL BAL(( ))
  

  

  



ExampleExample
is another grammar involving parentheses.is another grammar involving parentheses.G' G' == S S  𝜖  𝜖 ||  SS   ||  SS S S →→ (( )) (( ))

  
• • Anything Anything  can derive can be derived in  can derive can be derived in  because the rule  because the rule  in  in  can be  can be simulatedsimulated  G'G' GG SS SS SS→→ (( )) G'G'

by the two steps by the two steps  in  in ..      SS ⟹⟹  SS SS ⟹⟹   SS SS(( )) GG

• • Hence Hence .  Since we already asserted that .  Since we already asserted that , this means, this means  LL G'G'   ⊆⊆  L L GG(( )) (( )) LL GG == BALBAL(( ))

.  We therefore say that .  We therefore say that  is  is soundsound for  for ..    LL G'G' ⊆⊆  BAL BAL(( )) G'G' BALBAL

• • Is Is , which would follow if , which would follow if ?  The latter I call ?  The latter I call  being being  LL G'G'   ==  BAL BAL(( )) LL G'G'   ⊇⊇  BAL BAL(( )) G'G'

comprehensivecomprehensive for  for ..BALBAL
• • The combination of being sound and comprehensive just means being The combination of being sound and comprehensive just means being correctcorrect..
• • In fact, yes, In fact, yes,  is comprehensive---but that is often not as easy to prove as soundness. is comprehensive---but that is often not as easy to prove as soundness.G'G'

  
ExampleExample

 generates all strings in the spears-and-dragons game with unlimited generates all strings in the spears-and-dragons game with unlimited  G''  G''  ==   S   S  𝜖  𝜖 || 0S  0S || $S  $S || $SDS $SDS→→

spears in which the "Player" survives.  We can amke it look more like spears in which the "Player" survives.  We can amke it look more like  by changing "spear" to ( and by changing "spear" to ( and  G'G'

"dragon" to ) and ignoring "dragon" to ) and ignoring  for "empty room": for "empty room":00
  

..G''  G''  ==   S   S  𝜖   𝜖  ||    S  S  ||    SS SS→→ (( (( ))
  
Then Then  is the language of parenthesis expressions that can be properly closed by appending zero is the language of parenthesis expressions that can be properly closed by appending zero  LL G''G''(( ))
or more right parens.or more right parens.
  
DiscussionDiscussion
Sense and syntax: "Colorless green ideas sleep furiously".Sense and syntax: "Colorless green ideas sleep furiously".
Balance.Balance.
  
  

  

  


