
CSE396 Lecture Thu. 3/18: Parsing and (Un)Ambiguity

Last lecture ended with saying that context-free grammars were a boon to the development of
programming languages. A motivating example starts with the goal of capturing the syntax of
numerical
expressions the way we (humans) like to write them.

Example: Numerical Expressions

Let's use BNF notation style for this one, and let's call the start symbol .E

 <variable> | <constant>E ::= E+E | E-E | E*E | E /E |() () () ()

<variable> ::= any alphanumeric legal identifier
<constant> ::= any legal numeric literal.

.E ⟹ E+E ⟹ E-E +E ⟹ a - E +E ⟹ a - b + c() (()) 2 (()) 4 (())

.E ⟹ E-E ⟹ E- E+E ⟹ a - b+ c() (()) 6 (())

.E ⟹ E-E ⟹ a - E ⟹ a - E+E ⟹ a - b+ c() 2 () (()) 4 (())

The terminal alphabet includes the parentheses, the operator symbols +,-,*,/, and whatever letters 𝛴

and digits and other punctuation are allowed in variables and constants. We don't want to have to
specify the last of these. What we could do is treat the tokens <var> and <const> as if they were
members of . The text gets around this issue by pretending that is the only variable and ignoring 𝛴 a
constants, but being "a little more real" won't hurt us. What we actually do is allow <var> and <const>
to derive any legal identifier or constant in one step.

Now the above grammar generates only fully parenthesized expressions. It doesn't let you write

 or even . We can get them if we make the parentheses optional:a - b + c xy+ z

 <var> | <const>E ::= E+E | E-E | E*E | E /E | E |()

Now we can derive them---note I write to shortcut <var> , etc.E ⟹ a2 E ⟹ ⟹ a

.E ⟹ E-E ⟹ a - E ⟹ a - E+E ⟹ a - b+E ⟹ a - b+ c2 2 2

.E ⟹ E*E ⟹ x*E ⟹ x*E+E ⟹ x*y+E ⟹ x*y+ z2 2 2

Does anything about these derivations trouble you? I will say that this "liberal" grammar generates G

all and only legal numeric expressions, but it "tells fibs" while doing so. The sentiential form a - E

seems to say that the whole rest of the expression gets subtracted from , but that is not how we read a

the expression under the left-to-right associativity rule. More clearly (but less a - b + c

insidiously), the sentiential form seems to say that will multiply both terms in the expression x*E x y+ z

derived from that , but it only multiplies in . (Note that you can write where the E y xy+ z x* y+ z()

 part is counted as a factor.) Perhaps most insidiously, what about the expression ? You y+ z() a / b*c

might read it as if the intent were but it will get parsed as because and have equal a

bc
a / b *c() / *

precedence---at least in C/C++/Java/Python/etc. How can we write a grammar to reflect precedence
(and associativity)? The answer is to add variables for the extra syntactic categories "term" and
"factor":

E ::= T | E+T | E-T

T ::= F | T*F | T / F

 <var> | <const>F ::= E | ()

Now if we try to imitate the first derivation above by putting the minus sign in first, we get:-

E ⟹ E-T ⟹ T-T ⟹ F -T ⟹ a - T2

and we're stuck: there isn't a rule with for . To get we now must do+ T a - b+ c

E ⟹ E+T ⟹ E-T+T ⟹ T-T+T ⟹ F -T+T ⟹ a - T+T ⟹ a - b+ c.2 6

Note: You can also do and thus get fully-parenthesized E ⟹ T ⟹ F ⟹ E ⟹ E+T() ()

expressions too. But you cannot get the sentential form from .E+E() E

The sentential form reads the three terms left-to-right (even though the leftmost term was T-T+T

derived last) at equal level, rather than grouping the last two. Likewise, the only way to derive is xy+ z

by putting out the first rather than the first as before---in terms you may have heard already, the is + * +

the "topmost" or "outermost" operator. The derivation

E ⟹ E+T ⟹ T+T ⟹ T*F+T ⟹ F*F+T ⟹ x*y+T ⟹ x*y + z4 3

now makes clear that was never intended to multiply . We can also still write the fully-parenthesized x z

forms if we wish, as well as options in-between, even silly but legal ones like . We can x* y + z(() (()))

also tack on more syntactic categories, such as having a <factor> involve powers. Some programming
languages have a native operation for powers like , but you have to be careful that it is right-**

associative: means , not because the latter just becomes a**b**c a** b**c =() ab
c

a**b **c = a() b c

. In practice, the part of the grammar for expressions in modern programming languages has a abc

dozen or two dozen variables (i.e., syntactic categories). But the point is that not only is the grammar
able perfectly to describe the syntax of the language (still falling short of checking consistency of types
and the number/sequence of arguments in function/method calls, which Ada95 for one called the
"semantic" phase), the grammar also is instrumental to write the compiler's parsing stage. So let's
move on to parsing---still in section 2.1 but not intending to go into the compiler-level detail of the later
section 2.4.

Parse Trees, Leftmost Derivations, and Ambiguity.

Definition: A parse tree of a CFG is a finite rooted tree in which:G = V,𝛴,R, S()

• every leaf is labeled by a terminal symbol or by ,c ∈ 𝛴 𝜖

• every internal node is labeled by a variable,
• the root is labeled by (or by whatever variable we want to derive from), andS

• if the children of an internal node with label are in left-to-right order, where A X ,X , … ,X1 2 m m

is the valence of the node, then is a rule in .A X X ⋯ X→ 1 2 m R

The yield of the tree is the string formed by concatenating the leaves in left-to-right order. x ∈ 𝛴
*

Rooted tree means that one node is distinguished as the root and all other nodes are "below" it (trees
grow down not up). The definition of subtree is usually restricted to mean taking an internal node A

and including all nodes below . My including the clause in (...) means that any subtree of a parse A T'

tree can be called a parse tree "rooted at " by itself. An opposite notion of subtree includes the T A T''

root and is obtained by deleting zero or more subtrees rooted at internal nodes except for itself, so A A

that effectively becomes a leaf in . When the root is , the yield of is always a sentential A T'' S X T''

form, meaning . I will refer to the bottoms of such trees as "tiers".S ⟹ X*
G

Example
S 𝜖 | aB | bA→

A a | aS | bAA→

B b | bS | aBB→

. S ⟹ bA ⟹ bbAA ⟹ bbaSA ⟹ bbaaBA ⟹ bbaabA ⟹ bbaabaS ⟹ bbaaba

𝜖

S

b
A

b A A

a
S

a
S

a B

b

yield = bbaaba

My style
is not to
draw
circles
around
terminals

Tier frontier

Frontier after 3 steps of the
leftmost derivation below,
when the current sentential
form is .bbaSA

Definition: A derivation is leftmost if it always expands the leftmost variable at any step.

We can get a leftmost derivation from a parse tree by doing a left-to-right transversal of . (The T T
transversal is considered preorder rather than inorder or postorder, but what matters is its going left-
to-right.) From the above tree we get:

.S ⟹ bA ⟹ bbAA ⟹ bbaSA ⟹ bbaaBA ⟹ bbaabA ⟹ bbaabaS ⟹ bbaaba

[A derivation is rightmost if it always expands the rightmost variable (instead). For example:

S ⟹ bA ⟹ bbAA ⟹ bbAaS ⟹ bbAa ⟹ bbaSa ⟹ bbaaBa ⟹ bbaaba

One central family of C-style compilers favored rightmost over leftmost derivations.]

Example: Our expression grammar again:
E ::= T | E+T | E-T

T ::= F | T*F | T / F

 <var> | <const>F ::= E | ()

E ⟹ E+T ⟹ E-T+T ⟹ T-T+T ⟹ F -T+T ⟹ a - T+T ⟹ a - b+ c.2 6

E ⟹ E-T ⟹ T-T ⟹ F -T ⟹ a - T ⟹ a - F ⟹ a - E ⟹ a - E+T2 () ()

⟹ a - T+T ⟹ a - F+T ⟹ a - b+T ⟹ a - b+ c .() () 2 () 2 ()

E

T

F

T

E

+E

T

-

F

F

c

E

T

F

T
-

E

T

a

F

c

F

b

E
(

)

T
+E+

-

a b

c
+

-

a

b c

versus

Expression Trees

a - b+ c

a - b+ c()

a

b

c

Lemma: Parse trees are is 1-to-1 correspondence with leftmost derivations. ☒

[They are also in 1-to-1 correspondence with rightmost derivations.]

Definition: A string is ambiguous in if it has two different parse trees---equivalently, if x ∈ L G() G x
has two different leftmost derivations. [And equivalently, if it has two different rightmost derivations.]
One ambiguous terminal string makes itself ambiguous. But if has no ambiguous strings then G G G
is unambiguous.

Call a variable deadwood if , that is, if does not derive any terminal string. That means if A L = ∅A A

 appears in a tier then it cannot be completed to a parse tree (hence the name). Otherwise, is A T'' A
live.

Proposition: Any grammar with the rules or for live variables or is A AA→ E E+E→ A E
ambiguous.

We can essentially prove this via the example of the balanced-parentheses grammar .S SS | S | 𝜖→ ()

The case of is similar: if is any string derived from , then has the leftmost E E+E→ y E y+ y+ y

derivations and E ⟹ E+E ⟹ E+E+E ⟹ y+E+E ⟹ y+ y+E ⟹ y+ y+ y

. E ⟹ E+E ⟹ y+E ⟹ y+E+E ⟹ y+ y+E ⟹ y+ y+ y

Proposition (asserted but not proved in the text): The "ETF" grammar for expressions is unambiguous.

(

𝜖

) (

𝜖

) (

𝜖

)

S

SSS

SS

S
S

 ()()()

S ⇒ SS ⇒ SSS ⇒ S SS ⇒ SS ⇒ () () 4 ()()()

(

𝜖

) (

𝜖

) (

𝜖

)

S

SSS

SS

S
S

 ()()()

S ⇒ SS ⇒ S S ⇒ S ⇒ SS ⇒ () () () 4 ()()()

The symmetry
notwithstanding,
these count as
different trees.

Example: In , when you have the string , "which spear killed the dragon?"I 𝜖 | $I | $IdI→ $$d

. "First spear killed the dragon."I ⟹ $IdI ⟹ $$IdI ⟹ $$dI ⟹ $$d

. "Second spear killed the dragon."I ⟹ $I ⟹ $$IdI ⟹ $$dI ⟹ $$d

Now read as <statement> (that is, a general statement, which could be compound such as an if-I

statement), as if <condition> then, and as else. Also read as saying that the body $ d I 𝜖→

represented by becomes a basic statement, like an assignment statement. Then reads as:I $$d

if <condition> then if <condition> then (basic startement); else (basic statement);

Which if does the else part go with? Turning parse trees sideways to imitate indentation:

This ambiguity is tolerated by taking the second of these as the official reading: the dangling "else"
associates with the inner "if".

Ambiguity occurs all the time in English and other human languages. There, contextual cues as to
intended meaning often supply the disambiguation. Here is a variation on a notorious example in the
text where the context might come out different from your expectation:

The Bachelor chose the woman with the rose.

You might parse this as (the bachelor) (chose) (the woman with the rose). But if you've watched the TV
show, you know that giving a rose is the method of choosing. So the intended parse is:

if <condition> then

I

I

else

I

if <condition> then

I stmt

stmt

I if <condition> then

I
if <condition> then

I

else

I

stmt

stmt

versus

(The Bachelor) chose (the woman) with the rose.

