CSE396 Lecture Thu. 3/18: Parsing and (Un)Ambiguity

Last lecture ended with saying that context-free grammars were a boon to the development of
programming languages. A motivating example starts with the goal of capturing the syntax of
numerical

expressions the way we (humans) like to write them.

Example: Numerical Expressions
Let's use BNF notation style for this one, and let's call the start symbol E.

E == (E+E)|(E-E)|(E+E) | (E/E) | <variable> | <constant>
<variable> ::= any alphanumeric legal identifier
<constant> ::= any legal numeric literal.

E = (E+E) = ((E-E)+E) = ?(@-E)+E) = *(a-b)+o) .
E = (E-E) = (E-(E+E)) = °%@-(b+0)).
E = (E-F) = 2(a-F) = (@a—(E+E)) = *@-(b+0)).

The terminal alphabet X includes the parentheses, the operator symbols +,-,*,/, and whatever letters
and digits and other punctuation are allowed in variables and constants. We don't want to have to
specify the last of these. What we could do is treat the fokens <var> and <const> as if they were
members of 2. The text gets around this issue by pretending that a is the only variable and ignoring
constants, but being "a little more real" won't hurt us. What we actually do is allow <var> and <const>
to derive any legal identifier or constant in one step.

Now the above grammar generates only fully parenthesized expressions. It doesn't let you write
a — b + corevenxy+z. We can get them if we make the parentheses optional:

E = E+E|E-E|E+E|E/E|(E)| <var>| <const>

Now we can derive them--—-note | write E = 2 4 to shortcut E = <var> — a, etc.
E—= E-E =2 g-E = a-E+E = ?a-b+E = ?a-b+c .

E = E+E = 2x+E = x+E+E = 2xsy+E = 2xxy+2z.

Does anything about these derivations trouble you? | will say that this "liberal" grammar G generates
all and only legal numeric expressions, but it "tells fibs" while doing so. The sentiential form a — E
seems to say that the whole rest of the expression gets subtracted from a, but that is not how we read
the expressiona — b + ¢ under the left-to-right associativity rule. More clearly (but less
insidiously), the sentiential form x+E seems to say that x will multiply both terms in the expression iy + z
derived from that E, but it only multiplies y in xy +z. (Note that you can write x*(y + z) where the

(y + z) part is counted as a factor.) Perhaps most insidiously, what about the expression a/b*c? You
might read it as if the intent were Z—C but it will get parsed as (a/ b)*c because / and * have equal

precedence---at least in C/C++/Java/Python/etc. How can we write a grammar to reflect precedence
(and associativity)? The answer is to add variables for the extra syntactic categories "term" and
"factor":

E == T| E+T | E-T
T == F | T+F | T/F
F == (E) | <var> | <const>

Now if we try to imitate the first derivation above by putting the minus sign — in first, we get:

E = E-T =T7-T=F-T=?%a-T

and we're stuck: there isn't a rule with + for T. To get a — b + ¢ we now must do
E=FE+T=E-T+T=T-T+T=F-T+T = ?2a-T+T = % a-b+c.

Note: Youcanalsodo E = T — F = (E) = (E + T) and thus get fully-parenthesized
expressions too. But you cannot get the sentential form (E + E) from E.

The sentential form T — T + T reads the three terms left-to-right (even though the leftmost term was
derived last) at equal level, rather than grouping the last two. Likewise, the only way to derive xy + z is
by putting out the + first rather than the * first as before---in terms you may have heard already, the + is
the "topmost" or "outermost" operator. The derivation

E = E4T = T+4T = T+F+T = FF+T = * xxy+T =3 02y + 2

now makes clear that x was never intended to multiply z. We can also still write the fully-parenthesized
forms if we wish, as well as options in-between, even silly but legal ones like (x*(y) + ((z))). We can
also tack on more syntactic categories, such as having a <factor> involve powers. Some programming
languages have a native operation for powers like **, but you have to be careful that it is right-

b

c Cc
associative: a=+b++xc means ax+(bx+c) = a’ , not (a*+b)*+c = (ab) because the latter just becomes

at. In practice, the part of the grammar for expressions in modern programming languages has a

dozen or two dozen variables (i.e., syntactic categories). But the point is that not only is the grammar
able perfectly to describe the syntax of the language (still falling short of checking consistency of types
and the number/sequence of arguments in function/method calls, which Ada95 for one called the
"semantic" phase), the grammar also is instrumental to write the compiler's parsing stage. So let's
move on to parsing---still in section 2.1 but not intending to go into the compiler-level detail of the later
section 2.4.

Parse Trees, Leftmost Derivations, and Ambiguity.

Definition: A parse tree of a CFG G = (V, X, R, S) is a finite rooted tree in which:
« every leaf is labeled by a terminal symbol ¢ € X or by €,
+ every internal node is labeled by a variable,
« the root is labeled by S (or by whatever variable we want to derive from), and
« if the children of an internal node with label A are X7, X5, ..., X,, in left-to-right order, where m
is the valence of the node, then A — XX, --- X,,, isarulein R.

The yield of the tree is the string x € X formed by concatenating the leaves in left-to-right order.

Rooted tree means that one node is distinguished as the root and all other nodes are "below" it (trees
grow down not up). The definition of subtree is usually restricted to mean taking an internal node A
and including all nodes below A. My including the clause in (...) means that any subtree T” of a parse
tree T can be called a parse tree "rooted at A" by itself. An opposite notion of subtree T”” includes the
root and is obtained by deleting zero or more subtrees rooted at internal nodes A except for A itself, so
that A effectively becomes a leaf in T””. When the root is S, the yield X of T"” is always a sentential
form, meaning S = G X. 1 will refer to the bottoms of such trees as "tiers".

Example

S — €|aB|bA
A — al|aS|bAA
B — b|bS|aBB

@ Tier frontier

Frontier after 3 steps of the
leftmost derivation below,
when the current sentential

My-style form is bbaS A.

is not to
draw
circles
around

terminals \

yield = bbaaba

S = bA = bbAA — bbuSA — bbaaBA — bbansbA — bbaabaS —> bbaaba.

Definition: A derivation is leftmost if it always expands the leftmost variable at any step.

We can get a leftmost derivation from a parse tree T by doing a left-to-right transversal of T. (The
transversal is considered preorder rather than inorder or postorder, but what matters is its going left-
to-right.) From the above tree we get:

S = bA = bbAA — bbaSA — bbaaBA — bbaabA — bbaabaS —> bbaaba.

[A derivation is rightmost if it always expands the rightmost variable (instead). For example:

S = bA = bbAA — bbAaS — bbAa — bbaSa —> bbaaBa —> bbaaba

One central family of C-style compilers favored rightmost over leftmost derivations.]

Example: Our expression grammar again:

E == T| E+T | E-T
T == F | T+F | T/F
F == (E) | <var> | <const>

c
a-b+c / \ versus / \
b c
a b

b ¢ a—(b+c)
E=E+T=E-T+T=T-T+T=F-T+T =?>a-T+T = % a-b+c.
E=E-T=T-T—=F-T=?a-T—=a-F= a-(E)=a-(E+17)
—=a—-(T+T) = a-(F+T) = 2a-(b+T) = 2 a-(b+0).

Lemma: Parse trees are is 1-to-1 correspondence with leftmost derivations.

[They are also in 1-to-1 correspondence with rightmost derivations.]

Definition: A string x € L(G) is ambiguous in G if it has two different parse trees---equivalently, if x
has two different leftmost derivations. [And equivalently, if it has two different rightmost derivations.]
One ambiguous terminal string makes G itself ambiguous. But if G has no ambiguous strings then G
is unambiguous.

Call a variable A deadwood if L4 = @, that is, if A does not derive any terminal string. That means if
A appears in a tier T”” then it cannot be completed to a parse tree (hence the name). Otherwise, A is

live.

Proposition: Any grammar with the rules A — AA or E — E + E for live variables A or E is
ambiguous.

We can essentially prove this via the example of the balanced-parentheses grammar S — SS | (S) | €.

The symmetry
notwithstanding,

\ / / @ Aliba @\

OO0 OO0
S=S55=555=(S)SS=(SS=*()()) S=S85=(59S=0S=(0SS=*()()()

The case of E — E + E is similar: if i is any string derived from E, then y + i + i has the leftmost
derivatonsE — E+E — E+E+E—>y+E+E—y+y+E—y+y+y and
E—=E+E—=y+E—=y+E+E=y+y+E=y+y+y.

Proposition (asserted but not proved in the text): The "ETF" grammar for expressions is unambiguous.

Example: In I — € | $I | $IdI, when you have the string $$d, "which spear killed the dragon?"

I = $ldl = $$1d] = $$d] — $$d. "First spear killed the dragon."
I = $I = $$Idl — $$dl = $$d. "Second spear killed the dragon."

Now read I as <statement> (thatis, a general statement, which could be compound such as an if-
statement), $ as if <condition> then, and d as else. Also read [— € as saying that the body
represented by I becomes a basic statement, like an assignment statement. Then $$d reads as:

if <condition> then if <condition> then (basic startement); else (basic statement);

Which if does the else part go with? Turning parse trees sideways to imitate indentation:
if <condition> then

if <condition> then

NIy

stmt
versus

@7 if <condition> then
T e T <eonditions that
\::::::i‘\<:::>—————-stmt

else

stmt

This ambiguity is tolerated by taking the second of these as the official reading: the dangling "else"
associates with the inner "if".

Ambiguity occurs all the time in English and other human languages. There, contextual cues as to
intended meaning often supply the disambiguation. Here is a variation on a notorious example in the
text where the context might come out different from your expectation:

The Bachelor chose the woman with the rose.

You might parse this as (the bachelor) (chose) (the woman with the rose). But if you've watched the TV
show, you know that giving a rose is the method of choosing. So the intended parse is:

(The Bachelor) chose (the woman) with the rose.

