
CSE396 Lecture Thu. 4/8: Multitape TMs, PDAs, and General Computation
 
A -tape Turing Machine (TM) has the same components  as a single-tape TM but k M = Q, 𝛴, 𝛤, 𝛿, ⎵ , s, F( )

with 
 

.𝛿 ⊆  Q ×  𝛤  ×  𝛤  × L, R, S  × Q  k k { }k

 
It is deterministic (a DTM) if no two instructions share the same first two components.  A DTM is "in normal form" if 

 consists of one state  and there is only one other state  in which it can halt, so thatF qacc qrej

 
    𝛿 :  Q ⧵  q , q  ×  𝛤( { acc rej })

k → 𝛤  × L, R, S  × Qk { }k

 
 This is read: "  is a function from  to ."  The notation then becomes 𝛿 Q ⧵  q , q  ×  𝛤( { acc rej })

k
𝛤  × L, R, S  × Qk { }k

All instructions (still also called 5-tuples or just tuples) have the formM = Q, 𝛴, 𝛤, 𝛿, ⎵ , s, q , q .  ( acc rej)

 
p, c , c , … , c  /  d , d , … , d , D , D , … , D , q( [ 1 2 k] [ 1 2 k] [ 1 2 k] )

 
with ,  , and  (  to ).  An option I will show with  or  is to write them p, q ∈ Q c , d ∈ 𝛤j j D ∈ L, R, Sj { } j = 1 k k = 2 3

vertically like so:

p, / , q
c1

c2

d1 D1

d2 D2

 
The Turing Kit allows both options, calling the latter "stacked"---IMHO it is easier to visualize.  Either 
form gives rise to the following definition.
 
Definition: A pushdown automaton (PDA) is (equivalent to) a 2-tape Turing machine  in which M
every instruction has:

• , so that the input tape is read-only;d = c1 1

• , so that the input tape is one-way; andD ≠ L1

•  only if , so that the tape-2 head is always on or right of the rightmost char.D = L2 d = ⎵2

The PDA is deterministic (a DPDA) or nondeterministic (an NPDA) according as  is deterministic or M
nondeterministic.
 
The third condition makes the second tape behave like a stack.  Its head can only read the rightmost 
non-blank char, which is the "top" of a stack that "grows" to the right by "pushing" new chars.  If the 
head wants to read the char to its left, the third condition makes it have to blank-out the top char, which 
is a "pop" move.  The one cosmetic difference of using the TM notation is the need for an extra "stutter-
step" to switch between "push mode" (which is when scanning the blank to the right of the topmost 
char) and "pop mode" (when scanning the topmost char).  
 
Having the stay option  on the input tape is a handy coding convenience and replaces the use (IMHO, S

overuse) of 's in the text's PDA notation in section 2.2.  Another convenience is to introduce  as a 𝜖 ∧

bottom-of-stack marker on tape 2 in the first step 

 

 



 

s, / , q⎵
⎵

⎵ R

∧ R

 
(and optionally, for general TMs, to introduce on tape 1 as well---this is why many of my example ∧

machines in the Turing Kit state the convention of starting on the cell to the left of the input string).  That 
way you can't confuse blank meaning "the stack is empty" with the blank to the right of the stack saying 
where you can push new chars.
 
 
[show examples using the Turing Kit, also of a non-PDA]
 
PDAs and CFLs
TopHat 6028
Note, incidentally, that a DFA "Is-A" DPDA that never uses its stack nor the "stay" option on tape 1, and 
an NFA "Is-A" NPDA.  This amounts to an immediate way of seeing why every regular language is a 
CFL, after proving the following theorem from section 2.2 (we will mostly skip the proof):
 
Theorem: A language  is a CFL if and only if there is an NPDA  such that .A N L N = A( )

 
Proof Idea: Take a CFG  in Chomsky NF such that .  (As with the CFL G = V,𝛴,R, S( ) L G = A ⧵ 𝜖( ) { }

Pumping Lemma, ChNF is not necessary and the text does without it, but IMHO it improves the visual 
understanding.  If  we can handle that by a later patch to the code of .)  The NPDA  has just 𝜖 ∈ A N N
one "hub state"  (together with a helper state  for pushing) besides  and  (and  just to comply q p s qacc qrej

with the text's TM syntax).  It begins with the instructions
 

   , s, / , p⎵
⎵

⎵ R

∧ R
p, / , qc

⎵
c S

S S

 
which initialize the stack to hold just  and the grammar's start symbol .  Note that the second step ∧ S
leaves whatever char  is on the input tape alone (and if  so that  and we want to c ∈ 𝛴 c = ⎵ x = 𝜖

accept , this is where we can).  A grammar rule  becomes the instructions:𝜖 A BC→

 

, q, / , pc
A

c S

C R
p, / , qc

⎵
c S

B S

 
Notice that  is pushed first, because  will be expanded next in a leftmost derivation and so needs to C B
be top-of-stack.  Also note that if there are multiple rules for , they all have the same  and , and A q A
they automatically have  for all  because the input tape is left alone in these moves---so  is c c ∈ 𝛴 N
nondeterministic.  And a terminal rule  simply becomes the "pop" moveA c→

 

 

 



,q, / , qc
A

c R

⎵ L

 
which also moves on to the next char on the input tape.  If there is no next char, then we want to accept 
if and only if we just popped the last variable on the stack, which finishes off a leftmost derivation of the 
input  in .  So the computation should accept iff it now sees the on tape 2, and this is handled by x G ∧

the single instruction
 

 .q, / , q⎵
∧

⎵ S

⎵ S
acc

 
The invariant that explains why  is that at any point  in a leftmost derivation L N = L G( ) ( ) X

 of  in ChNF, the sentential form  belongs to , that is, has the S ⟹  …  ⟹  X ⟹  … G X 𝛴 V* *

form  where  has only terminals and  has only variables.  At the same point,  has read  X = uW u W N u
so far on its input tape and its stack has  in reverse---so that the first variable in  is the top-of-stack W W
element.  When the  part disappears, this means  was the whole input string  and  sees the , W u x N ∧

so we simultaneously have  and  accepts . S ⟹ x* N x
 
The proof in the other direction---from machine to equivalent grammar---is more complicated and is: 
FYI, skim/skip in the text.  ☒
 
The above also contains the essence of proving the equivalence of two criteria for PDAs that one can 
find discussed in other sources: acceptance by empty stack and acceptance by final state.  We can 
always make a PDA---nondeterministic or deterministic---do both simultaneously.  One final definition 
and fact to wrap up the material regarded as covered in chapter 2 (it is in the first few pages of section 
2.4 but just take it from here---that section is otherwise skipped):
 
Definition: A language  is a deterministic context-free language (DCFL) if there is a DPDA  
such 

A M

that .  The class of all DCFLs (over any given alphabet ) is denoted by DCFL.L M = A( ) 𝛴

 
Theorem: The complement of a DCFL is always a DCFL.  That is, the class DCFL is closed under 
complementation.
 
Proof: Given any DPDA , the idea is simply to do the same trick we did M = Q,𝛴, 𝛤, 𝛿, ⎵ , s, q , q( acc rej)

with DFAs: to interchange the accepting and rejecting states to make .  M' = Q,𝛴, 𝛤, 𝛿, ⎵ , s, q , q( rej acc)

We can get away with this, however, only if we first guarantee that  cannot "loop forever" with stay M
moves on Tape 1 and repeatedly thrashing the stack on tape 2.  The details of doing so are FYI (they 
are gritty even with the text's PDA notation).  ☒
 
The basic point made here becomes accentuated for general Turing machines, where we cannot 
always modify them so that they always halt.  The demonstration of this is one of two main themes for 
the rest of the course (the other is mapping reductions).  First, we should finally address details of 
computations.

 

 



 
 
Computations
 
An instantaneous description (ID), also called a configuration, of a Turing machine  specifies:M

1. The current internal state  of .q M

2. The contents  of the  tapes, such that all else on the tapes is blank. =  w , … , ww 1 k k

3. The positions  of the heads on those tapes. =  h , … , hh 1 k

We can write  to denote an ID.I =  ⟨q, , ⟩w h
 
Write  if there is an instruction in  that when executed in ID  produces ID .  For , write I ⊢  JM 𝛿 I J r ≥  2

 if there is an ID  such that  and .  Also write  for all  and  I ⊢  Kr
M J I ⊢  JM J ⊢  Kr-1

M I ⊢  I0
M I I ⊢  J*

M

if  for some .  These notions apply to nondeterministic TMs as well as DTMs.I ⊢  Jr
M r

 
For a single-tape TM and input , the initial ID can be written  (if we number the cells x I x  =  ⟨s, x, 1⟩0( )

from ) or  (if we use the convention of an initial  in cell 0 but still number  from 1 I x  =  ⟨s, ∧ x, 1⟩0( ) ∧ x
 and start up scanning the first bit rather than the ).  Yet another convention is to start in the ID 1 ∧

 with a right-endmarker  too.  A 1-tape TM is a linear bounded automaton (LBA) if  is ⟨s, ∧ x $, 1⟩ $ 𝛿

syntactically coded so that the only instructions involving the endmarlers have the form  p, ∧/∧ , R, q( )

or , so that the head always stays between  and .p, $ / $, L, q( ) ∧ $

 
For -tape TMs we could use 's to stand for the other tapes being blank and 's for the other head k 𝜖 1

positions, but we won't go any further into details of IDs until we hit complexity theory.  An accepting ID 
has  as its state and a rejecting ID has .  Now we can formally define the language of a TM qacc qrej

(NTMs too):
 

Definition: .L M  =  x :  I x  ⊢  I  for some accepting ID I  ( ) 0( ) *
M f f

 
[Inserted, will cover Tue.]  Given a DTM  and an input , we can write "  to refer to the whole M x M x "( )

computation that occurs.  It might never halt, in which case we write and also say  M x ↑( ) M x( )

diverges.  If it halts, we write .  If  halts for all inputs , we say  is total.  A language  M x ↓( ) M x( ) x M A
is computably enumerable (c.e.) if there is a DTM  such that , and decidable if also  M L M = A( ) M
is total.  When  is total we also say that  decides its language, while saying "  accepts " can M M M A
allow  not to be total.  (There are many synonyms here, as we will see.)M
 
Example of a 2-tape TM that decides a non-CFL, the double-word language.  It also exemplifies the 
kind of prose description asked for on 3(b) of assignment 8.

 

 



Figure 1: The description in prose at the bottom is regarded as enough to specify the particular state 
code with arcs and nodes.  The equivalence of TMs to high-level languages (end of chapter 3 and 

beginning of chapter 4) justifies this theoretically.

 
TMs and High-Level Computation (pick up on Tuesday 4/13)
 
The TMs we have seen show off some basic capabilities of TMs

• copying a string
• comparing two straings
• searching for a matching (sub-)string on a tape
• arithmetic like 3n + 1

• branching according to what char is read
• looping.

These operations suffice to build an interpreter for assembly code.
 
[Show Universal RAM Simulator handout, discuss the Church-Turing Thesis, and explain why it 
enables 
machines to be specified in pseudocode from here on out.  Then go into chapter 4.]

 

 


