
CSE396 Lecture Tue. 4/13: Decision Problems and Procedures
 
The TMs we have seen show off some basic capabilities of Turing Machines

• copying a string
• comparing two strings
• searching for a matching (sub-)string on a tape
• arithmetic like 3n + 1
• branching according to what char is read
• looping.

 
These operations suffice to build an interpreter for assembly code.
 
[Show the "Universal RAM Simulator" handout, discuss the Church-Turing Thesis, and explain why it 
enables machines to be specified in pseudocode from here on out.]
 
 
Theorem 1: For every program  written in any known executable programming language  (high-P L

level or otherwise) that uses standard input and standard output, we can build a 3-tape Turing machine 
 such that whenever  given  on standard input writes  to standard output,  given  on its MP P x y MP x

input tape writes  to a special output tape.  If  halts, then  halts.y P x( ) M xP( )
 
Proof: First, any compiler for   to a known code target can be converted into a compiler from   to L L

the "mini-assembler"---which is essentially similar to what the text calls a RAM.  So we can compile  P
to make an equivalent RAM program .  Then take  to be the Turing machine  in the handout, RP MP T
but with the binary text of  already written on its input tape.  More precisely,  begins with a series RP MP

of dedicated instructions that write out  char-by-char in front of any input  on its first tape, so it has RP x
 there.  Then it just segues to the start state of .  R #xP T ☒

 
Theorem 2: We can build a universal Turing machine, meaning a single TM  that takes inputs of U
the form  and simulates .⟨M, x⟩ M x( )
 
Here  denotes an unspecified but transparent way of combining the code of  and the bits of  ⟨M, x⟩ M x
into a single string over whatever alphabet we need. In the Turing Kit, user-designed Turing machines 

 are stored as ASCII files, so that can be the code  of .  ASCII can be converted to strings over M ⟨M⟩ M
 if we so desire.  The files are self-delimiting, so we can then define  by just appending  to 0, 1{ } ⟨M, x⟩ x

.  Or, assuming that neither  nor  has any commas or angle brackets, we can regard  as ⟨M⟩ M x ⟨M, x⟩
literally ' ' then whatever string code of , then comma, then , and finally ' '.  The choice of tupling ⟨ M x ⟩

scheme does not matter in detail.
 
Proof: The Turing Kit is a high-level Java program  that reads a TM  and an input  and executes P M x

.  That is (essentially), .  Then compile  to  as above and call it .  Then M x( ) P ⟨M, x⟩  =  M x( ) ( ) P MP U
.  This notation includes that if and only if .  U ⟨M, x⟩  = P ⟨M, x⟩  =  M x( ) ( ) ( ) U ⟨M, x⟩ ↓( ) M x ↓( )

(The down arrow means "halts" while is read as "diverges" or "does not halt.")  ↑ ☒

 

 



 
Both this and the next theorem are usually proved in more specialized ways in textbooks.
 
Theorem 3: For every nondeterministic TM  we can build a deterministic TM  such that N M

.L M = L N( ) ( )
 
Proof: The Turing Kit could be upgraded to a version  that simulates a given NTM  on an input  by T' N x
branching to try all possibilities, accepting if and when some branch accepts .  The program  itself is x T'

deterministic.  Hence so is the equivalent Turing machine  obtained from  via Theorem 1.  MT' T' ☒
 
The one thing we don't know how to do is make  avoid exponential branching, which slows down the T'

time exponentially.  This is different from the situation with an NFA  on a given input , where we can N x
simulate  by the trick of maintaining the current set  of possible states after each bit  of , and N x( ) Ri i x
thus avoid the exponential blowup of converting  into a DFA.  Whether we can do a similar trick for a N
general NTM  is the infamous  problem, which we will confront in the last week of the N NP = ?  P
course.  To set this up, we jump ahead a little to make the following definition.
 
Definition: A Turing machine  runs in time  if for all  and inputs  of length ,  halts within M t n( ) n x n M x( )

 steps.  If  is nondeterministic, all possible computations must halt within  steps.t n( ) M t n( )
 
For example, every DFA---and every NFA without -transitions---runs in time , which is the 𝜖 t n = n + 1( )
fastest possible time that reads every input char and the blank that says the input is terminated.  (This 
is sometimes called running in real time.)  It is convenient to apply -notation to time without caring O
about the exact number of steps.  All the 2-tape machines we have seen have run in  time, which O n( )

is called linear time, but some of the 1-tape machines have run in  time, which is quadratic 𝛩 n2

time.  This is no accident:
 
Theorem: For any -tape TM  that runs in time , we can build a 1-tape TM k M = Q,𝛴, 𝛤, 𝛿, ⎵, s, F( ) t n( )

 that simulates  and runs in  time.M' M O t n( )2

 
Proof Sketch:  uses work alphabet , which can pack the  chars in any "column " of the  M' 𝛤' =  𝛤k k j k
tapes of  into one "superchar" in cell  on the one tape of .  We also need chars that say whether M j M'

they are currently being scanned by a tape head of , so we actually have  where  M 𝛤' =  𝛤∪ 𝛤( ⦿)k 𝛤⦿

is a "dotted copy" of .  Initially,  converts each char  into the "superchar"  which 𝛤 M' x( ) xi x ⎵⎵⎵…⎵[ i ]

packs  and  blanks into one char of  and rewinds its single tape head onto the superchar xi k - 1 𝛤

 which lines up the  "virtual" tape heads of  on  and blanks below it to the left ∧ ⎵ ⎵ ⋯ ⎵[ ⦿ ⦿ ⦿ ⦿] k M ∧

of .  Thereafter,  simulates each step of  in one left-to-right pass that reads the -tuple of x M' M k
scanned characters according to which parts of superchars have  and then a right-to-left pass that ⦿

performs the corresponding instruction of .  The total time for each pass is initially  but can grow 𝛿 2n + 4

if and when  uses more tape cells beyond the end(s) of .  The width of a pass cannot be more than M x
(twice the) time taken by  thus far, so it is always less than  (or less than , if  uses cells to M t n( ) 2t n( ) M

the left of  as well).  Thus the total time is .  x O t n( )2 ☒

 

 



 
There are cases where quadratic time expansion cannot be improved, but that will be AOK when 
running in time , which is called polynomial time, is what we care about.  Also FYI, if we have a nO 1( )

"fair cost" running time function  for an algorithm in our favorite high-level programming language t n( )

, then the 3-tape TM in the "Universal RAM Simulator" handout runs in time  as coded and L O t n( )4

time if coded more cleverly.  So "polynomial time" is the same for the basic 1-tape TM O t n n( )2 log

model as it is for our real programs [maybe unless quantum computers ever become real].  This all 
has three main takeaways, IMHO:
 

1. The Turing machine model (especially allowing 2 or 3 tapes) remains a quite realistic model of 
computation.

2. The Church-Turing Thesis extends to a polynomial-time version that claims all machines ever 
built (will) have broadly equivalent benchmarks for feasible time, and extends to say that Nature 
is lexical.  

3. This enables us to regard procedures specified in prose to be fully equivalent to Turing 
machines and other computing models---even for broadly judging their time efficiency.

 
Point 3 includes saying that a total Turing machine (i.e., one that halts for all inputs), a flowchart in 
which every component terminates (conventionally enclosing it in a "solid box"), and pseudocode in 
which every loop terminates, can all be regarded as equivalent forms of a decision procedure.
 
Decision Problems
TopHat 4899
[The next material is not on Prelim II.]  The Sipser text adopts the format for specifying decision 
problems that came from an older text by Michael Garey and David S. Johnson:
 
[Name of problem in small caps]
INSTANCE: [a description of the input(s) to the problem: strings, numbers, machines, graphs, etc.]
QUESTION: [a yes/no condition where yes means the input is accepted]
 
INSTANCE is also called INPUT; one can abbreviate it to INST and QUESTION to QUES.  The 
language of the problem is the set of valid instances for which the answer is yes.  Sometimes 
confusingly, the name of the problem usually doubles as the name of the language.  The Sipser text 
also established a standard scheme for naming various decision problems that arise with the various 
machine, regexp, and grammar classes in this subject.  It is best described by example.
 

:  (The "Acceptance Problem for DFAs")ADFA

INST: A DFA  and a string .  M = Q,𝛴, 𝛿, s, F( ) x ∈ 𝛴
*

QUES: Does  accept ?M x
 
The input to a decision procedure for this problem is given in the form .  The language is⟨M, x⟩
 

.A  =  ⟨M, x⟩ : M is a DFA and M accepts xDFA { }
 

 

 



The length  of  can be reckoned as roughly of order  where  is the number of states in N ⟨M, x⟩ m + n m
 (note that the number of instructions for a DFA is  times  and we can treat  as a fixed Q m |𝛴| |𝛴|

constant such as ) and  as usual.  The alphabet of the  language can be reckoned as 2 n = |x| ADFA

ASCII or even as .  Here is a simple statement of an algorithm to solve the  problem:0, 1{ } ADFA

 
1. Given , first decode  and  individually.  (If not possible, reject.)⟨M, x⟩ M x
2. Run  (using a simulator like the Turing Kit) until the DFA reaches the end of .M x( ) x
3. Accept  if  accepted , else halt and reject .⟨M, x⟩ M x ⟨M, x⟩

 
This pseudocode always halts because a DFA  always halts.  To simulate a step of  takes time M M x( )

at most order- ; really it can be  time per step using good data structures (mainly being able m O m(log )

to assign a pointer to the destination state in any executed instruction).  So the running time is  O mn( )

which gives time  taking the length  into account.  Thus we can say:O N2 N = |⟨M, x⟩|

 
• The algorithm is a decision procedure to solve the  problem.ADFA

• Hence the  problem and the  language are called decidable.ADFA ADFA

• In fact, they are decidable in polynomial time.
 
Now suppose we have an NFA in place of the DFA.
 

:  (The "Acceptance Problem for NFAs")ANFA

INST: An NFA  and a string .  N = Q,𝛴, 𝛿, s, F( ) x ∈ 𝛴*

QUES: Does  accept ?N x
 
The following qualifies as a decision procedure, albeit highly inefficient:

1. Given , first decode  and  individually.⟨N, x⟩ N x
2. Convert  into an equivalent DFA .N M
3. Then run the decision procedure for  on  and give the same yes/no answer.ADFA ⟨M, x⟩

 
Step 3 will later be called reducing the (instance of the) latter problem to the (equivalent "mapped" 
instance of the) former problem.  But step 2 makes this an inefficient reduction---it can require order-of 

 time where we are now calling  the number of states in .  Then again, step 2 does always halt, 2m m N
so if halting is all you care about, it goes as a decision procedure.  But faster is:
 

1. Given , first decode  and  individually.⟨N, x⟩ N x
2. Initialize  to be the -closure of the start state of .R0 𝜖 N
3. For each char  of , build the set  of states reachable from a state in  by processing .xi x Ri Ri-1 xi

4. Accept  if and only if , which is if and only if  accepts .⟨N, x⟩ R ∩ F ≠ ∅n N x
 
For each char , step 3 runs in time at worst  (again, one can do better with smarter data i O m2

structures), so the whole time is , which is polynomial in .  O m n2 |⟨N, x⟩| ≈  m + n

 

 

 



(Non-)Emptiness Problems
 
This is the first of numerous problems in which the instance type is "Just a Machine."
 

:NEDFA

INST: (The string code  of) A DFA .⟨M⟩ M = Q,𝛴, 𝛿, s, F( )

QUES: Is ?L M ≠ ∅( )
 
The QUESTION is worded oppositely from the text's wording of , which we'll come to.  Here is an EDFA

efficient decision procedure:
 

1. On input , treat  as a directed graph without caring about the character labels on arcs.⟨M⟩ M
2. Execute a breadth-first search in that graph from the start node  of (the graph of) .s M
3. If the search terminates having visited at least one state in , accept , else reject.F ⟨M⟩

 
The BFS in step  terminates---indeed, in time  at worst since the graph has  nodes.  [Well, it 2 O m2 m

has  edges, so you can get better time with random access to good data structures.]  The O m( )

procedure is correct because if BFS finds a path from  to a state  in , then the chars along that path s q F
form a string in , so .L M( ) L M ≠ ∅( )
 
The complementary problem (" " for emptiness) is:E
 

:EDFA

INST: A DFA .M = Q,𝛴, 𝛿, s, F( )

QUES: Is ?L M = ∅( )
 
The solution is to use the same decision procedure, but switch the "accept" and "reject" cases:
 

1. On input , treat  as a directed graph without caring about the character labels on arcs.⟨M⟩ M
2. Execute a breadth-first search in that graph from the start node  of (the graph of) .s M
3. If the search terminates having visited at least one state in , reject , else accept.F ⟨M⟩

 
The corresponding problems for NFAs are just as easy: they have the same algorithms:
 

:NENFA

INST: An NFA .N = Q,𝛴, 𝛿, s, F( )

QUES: Is ?L N ≠ ∅( )
 
Solution:

1. On input , treat  as a directed graph without caring about the character labels on arcs.⟨N⟩ N
2. Execute a breadth-first search in that graph from the start node  of (the graph of) .s N
3. If the search terminates having visited at least one state in , accept , else reject.F ⟨N⟩

 

 

 



This is BFS explicitly in the graph of  with node set .  It is not the same as the BFS used to convert N Q

an NFA into a DFA, which ran implicitly on the power set  of .  Also "the same" is:2Q Q
 

:ENFA

INST: An NFA .N = Q,𝛴, 𝛿, s, F( )

QUES: Is ?L N = ∅( )
 
Solution: run the decision procedure for  but interchange the yes/no answers.NENFA

 
 
Now we consider a different kind of complementation:
 

:ALLDFA

INST: A DFA .M = Q,𝛴, 𝛿, s, F( )

QUES: Is ?L M = 𝛴( ) *

 
Solution:

1. On input , form the complementary DFA  with .⟨M⟩ M' = Q,𝛴, 𝛿, s, F'( ) F' =  Q ⧵ F
2. Feed  to the decision procedure for .⟨M'⟩ EDFA

3. If that procedure accepts , then accept , else reject .⟨M'⟩ ⟨M⟩ ⟨M⟩

 
This embodies what in Chapter 5 we will call a mapping reduction from  to .  The ALLDFA EDFA

reduction and the whole procedure are correct because .L M = 𝛴  ⟺  L M' = ∅( ) * ( )
 
This is not the same as the way we complemented  to , and the best way to see why it's NEDFA EDFA

not so simple is to consider the analogous problem for NFAs.
 

:ALLNFA

INST: An NFA .N = Q,𝛴, 𝛿, s, F( )

QUES: Is ?L N = 𝛴( ) *

 
We can solve this by converting  into an equivalent DFA  and running the decider for  on N M ALLDFA

.  But that can take exponential time.  Can we use the same idea as for  of reducting to the ⟨M⟩ ALLDFA

corresponding emptiness problem, , which we solved just as efficiently as for ?  The problem ENFA EDFA

is that we can't directly complement an NFA.  Surely some other idea can help?  The fact is, this 
problem is -hard.  Nobody (on Earth) knows a polynomial-time algorithm, and most (on Earth) NP

believe that no such algorithm exists.
 
Two-Machine Problems
 
Here the input  has type "Two Machines", meaning a pair .  If the input  does not have this w ⟨M , M ⟩1 2 w
pair form, it is rejected to begin with.  
 

 

 



:EQDFA

INST: Two DFAs  and .M = Q ,𝛴, 𝛿 , s , F1 ( 1 1 1 1) M = Q ,𝛴, 𝛿 , s , F2 ( 2 2 2 2)

QUES: Is ?L M = L M( 1) ( 2)

 
The fact that gives an efficient decision procedure is that two sets  and  are equal if and only if their A B
symmetric difference  is empty.  The symmetric A△B =  A ⧵B ∪ B ⧵A  =  A∪B ⧵ A∩B( ) ( ) ( ) ( )

difference is often written , with  also used to mean XOR.  Thus if we apply the Cartesian A⊕B ⊕

product construction to  and  with XOR as the operation, to produce a DFA , then the answer M1 M2 M3

is yes if and only if .L M = ∅( 3)
 
Solution:

1. Decode a given input string  into DFAs  and .  (If  does not have that w = ⟨M , M ⟩1 2 M1 M2 w
form, reject.)

2. Create the Cartesian product DFA  with M = Q ,𝛴, 𝛿 , s , F3 ( 3 3 3 3)

.F  =  q , q :  q ∈ F  XOR q ∈ F3 {( 1 2) 1 1 2 2 }

3. Feed  to the decision procedure for , and accept  if and only if that accepts ⟨M ⟩3 EDFA ⟨M , M ⟩1 2

.⟨M ⟩3

 
If  is the maximum of the number of states in  and in , then step  runs in  time (ignoring m Q1 Q2 2 O m2

the  length of state labels).  Step 3 is run on a quadratically bigger machine, so its own quadratic mlog

time becomes  overall, but that's AOK---still polynomial in .  But how about:O m4 m

 
:EQNFA

INST: Two NFAs  and .N = Q ,𝛴, 𝛿 , s , F1 ( 1 1 1 1) N = Q ,𝛴, 𝛿 , s , F2 ( 2 2 2 2)

QUES: Is ?L N = L N( 1) ( 2)
 
We can get a decision procedure by converting the NFAs into DFAs  and  and testing whether M1 M2

.  For decidability purposes, that is all we need to say, but it is inefficient.  Can't we L M = L M( 1) ( 2)

apply the Cartesian product idea directly to  and ?  If the operation is intersection or union, this N1 N2

makes a good self-study question, but for difference or symmetric difference/XOR, there is a clear 
reason for doubt:  If we could solve  efficiently in general, then we could solve it efficiently in EQNFA

cases where  is a fixed NFA that accepts all strings.  Then we would have:N2

 
 .⟨N , N ⟩ ∈  EQ  ⟺  ⟨N ⟩ ∈  ALL1 2 NFA 1 NFA

 
But we have already asserted above that  is -hard.  So this blocks the attempt to solve ALLNFA NP

, and in fact, this shows that the  problem is -hard as well.EQNFA EQNFA NP

 
One can define all these problems when the givens are regular expressions or GNFAs rather than 
DFAs or NFAs.  The Sipser naming scheme will write the problems as , , , EQRegexp AGNFA ALLRegexp

, and so on.  They are all decidable because regular expressions and GNFAs are convertible NEGNFA

to NFAs and DFAs, but not always efficiently to the latter.  Regular expressions and NFAs convert to 

 

 



and from each other especially efficiently, and so the problems subscripted " " have much the Regexp

same status as those subscripted " ".  When we extend the problems to context-free grammars, NFA

pushdown automata, and general (deterministic) Turing machines, however, we will "lose" a lot more.
 
 
Problems Involving Grammars
 
Again, let's "accentuate the positive" and start with the nonemptiness problem rather than the 
emptiness problem.
 

:NECFG

INST: A CFG .G =  V,𝛴,R, S( )

QUES: Is ?  (Nerdy version: Is ?)L G ≠ ∅( ) L G ∩𝛴 ≠ ∅( ) *

 
The following pseudocode to solve the problem is strongly analogous to breadth-first search:
 
bool changed = true;

set< > LIVE ; //constructed to have the terminalsV∪𝛴 =  𝛴
while (changed) {

     changed = false;

     for (each rule  in  such that LIVE) {A→W R A ∉

          if (  is in LIVE ) {W *

               LIVE = LIVE ;∪  A{ }
               changed = true;

          }

     }  //LOOP INV: Every variable in LIVE can derive a terminal string

}

if (  LIVE) accept; else reject;S ∈
 
By the loop invariant, if  is ever added to LIVE then  derives some terminal string, which means that S S

.  Hence the algorithm is sound---that is, it never gives a false positive.  Why does it always L G ≠ ∅( )
terminate, and why is it comprehensive---that is, why does it halt and catch all "yes" cases?
 

• Each iteration of the while loop either adds a new variable to LIVE or leaves changed false.
• If changed is left false, the loop terminates right there.
• The number of times it can add a new variable is limited by the size of .V
• Hence the while loop must terminate within  iterations.  |V| + 1
• So the pseudocode defines a total Turing machine, that is, a decider.

 
Now why is it comprehensive?  Suppose .  Then there is a derivation of a terminal string  L G ≠ ∅( ) x
from .  The string  can be ; this won't matter to the logic.  The derivation has some number  of S x 𝜖 k
steps and can be represented abstractly as
 

 

 



S ⟹   ⟹   ⟹  ⋯  ⟹   ⟹   ⟹  xX
k-1

X
k-2

X
2

X
1

 

The vector signs are to remind that each sentential form  can include multiple variables and its own Xi

terminals as well.  Note the indexing of  in reverse order.  Each  has one variable that was expanded i Xi

in the step---wlog. it is the leftmost variable in ---and we can call it . It can be the same variable in X
i

Ai

different steps but we'll still call them .  The first point is that  must be the only variable in , Ai A1 X1

because replacing it leaves a terminal string.  Put another way, the right-hand side of the rule 

 A1 →W
1

that was applied in the last step must be all terminals (we could have , that's fine) and = 𝜖W1

everything else in  must be terminals.  Since all terminals are initially in the set LIVE, we have the X
1

following facts:
 

• The rule  has .A1 →W1 ∈ LIVEW1
*

• Hence the algorithm on the first iteration includes  into .A1 LIVE

• On the next iteration,  belongs to .X
1

LIVE
*

• Whatever rule  was applied at the next-to-last step, it has  in that iteration.A2 →W2 ∈ LIVEW2
*

• Hence the second iteration adds  to  (if  wasn't there already by virtue of being the A2 LIVE
* A2

same variable as ).A1

 
What this adds up to is that by induction on  we can prove the statement "the variable  is i Q i ≡( ) Ai

added to the set  on or before the -th iteration."  Then with  the variable " " is none other LIVE i i = k Ak

than .  S
 

• Thus the algorithm adds  to , and so it gives the true-positive answer "yes."  S LIVE

• This means the algorithm captures all true positives, so it is comprehensive.  
• Since it has no false positives, it is correct. 
• Thus the problem  is decidable.NECFG

• Since whenever we have a total Turing machine, we can complement the language by 
interchanging  and , the complementary problem "Given a CFG , is qacc qrej E  ≡CFG G

?" is likewise decidable.L G = ∅( )

• The algorithm runs within time , where  means the number of rules but we also O |V| ⋅ |R| ⋅ r( ) |R|

have to allow for the maximum length  of the right-hand side of a rule.  Since the size of the r
(string encoding  of the) grammar  can be reckoned as order-of ), this is at ⟨G⟩ G |V| + r|R|(

worse quadratic.  Anyway, it is a polynomial-time decider for  and .NECFG ECFG

 
Now we consider a different problem but with a closely related solution.  The name is not standard but 
is compatible with Sipser's naming scheme.
 

:EpsCFG

 

 



INST: A CFG .G =  V,𝛴,R, S( )

QUES: Is ?  Equivalently (nerdily), is ?𝜖 ∈ L G( ) L G  ∩  𝜖  ≠  ∅( ) *

 
The algorithm needs changing only one line:
 
bool changed = true;

set< > NULLABLE ; //constructed to be the empty setV =  ∅
while (changed) {

     changed = false;

     for (each rule  in  such that NULLABLE) {A→W R A ∉

          if (  is in NULLABLE ) {W *

               NULLABLE = NULLABLE ;∪  A{ }
               changed = true;

          }

     }

}

if (  NULLABLE) accept; else reject;S ∈
 
The trick that gets this off the ground is our old friend .  Thus, in the first iteration, all variables ∅ = 𝜖* { }

 such that  is a rule get added to NULLABLE.  (We could also have initialized the set NULLABLE A A 𝜖→

this way.)  Every variable  that is later added to NULLABLE truly derives , so the soundness of this B 𝜖

algorithm is clear, and the reason it terminates within  iterations is the same.  Its correctness is a |V| + 1

self-study exercise.  Now we are ready to address the problem .ACFG

 
:  (The "Acceptance Problem for CFGs")ACFG

INST: A CFG  and a string .  G =  V,𝛴,R, S( ) x ∈ 𝛴*

QUES: Is ?x ∈ L G( )
 
A decision procedure:

1. If , apply the decision procedure for  and accept  iff it accepts .x = 𝜖 EpsCFG ⟨G, x⟩ ⟨G⟩
2. Else, convert  into a Chomsky normal form grammar  such that G G' =  V',𝛴,R', S'( )

, so that .L G' = L G ⧵ 𝜖( ) ( ) { } x ∈ L G ⟺ x ∈ L G'( ) ( )

3. Noting that  if and only if  derives  in exactly  steps, where , we can S' ⟹  x* S' x 2n - 1 n = |x|

exhaustively try all derivations of  steps, and accept if and only if at least one of them 2n - 1

derived .x
 
Step 1 runs in polynomial time, but as-stated, steps 2 and 3 do not.  The issue with step 2 as presented 
in many other sources is that if we have a "long rule" like  where each  is nullable, A B B ⋯ B→ 1 2 r Bj

the conversion says to add all rules obtained by deleting any sublist of .  This makes  B , … . B( 1 r) 2r

sublists, each of which might produce a different rule, and so takes exponential time.  But a nifty trick is 
that we can first shorten the rule using  dedicated single-use variables:r - 2
 

 

 



, , , ..., , .A B D→ 1 1 D B D1 → 2 2 D B D2 → 3 3 D B Dr-3 → r-2 r-2 D B Br-2 → r-1 r

 
Then the overall number of rules is multiplied by at most , which keeps the expansion of the grammar 2r
within a polynomial factor of the original data-size of .  The text does something related to this in its G
own incremental way of handling nullable variables when it describes the conversion to Chomsky 
normal form ins ection 2.1.  (The remaining details of that are still FYI, skim/skip.)
 
Step 3 can exponentiate  or worse if there are at least 2 choices for the  applications of a non-2n-1 n - 1
terminal rule in the derivation.  However, there is a nifty dynamic programming algorithm that is 
sometimes mentioned in CSE331 or software-systems courses, called CYK or CKY for its authors 
Cocke, Kasami, and Younger.  It does step 3 in polynomial time, thus completing a polynomial-time 
decider for .  (This is mentioned later in the text, but IMHO not so clearly.)ACFG

 
Since we did , how about the corresponding "all"-type problem?ACFG

 
:  ALLCFG

INST: A CFG .  G =  V,𝛴,R, S( )

QUES: Is ?L G = 𝛴( ) *

 
Shock fact: This problem is not decidable at all.  Indeed, there does not even exist a Turing machine 

 such that , let alone one that is total.  The proof of this will come later M L M  =  ⟨G⟩ : L G = 𝛴( ) ( ) *

in Chapter 5, but we will reach it by starting with undecidable problems that involve Turing machines 
themselves as the data objects.
 
[This will be about the middle of Thursday's lecture.  It will continue into the rest of Chapter 4, but with a 
different order of business:
 

• Less attention to the analogy with showing the real numbers are uncountable by diagonalization--
-skim/skip that.

• Instead of using the Halting Problem as the first undecidable problem, or its close cognate the 
"Acceptance Problem"  for deterministic Turing machines , it A  =  ⟨M, w⟩ :  w ∈ L MTM { ( )} M
will start with the "diagonal language" .D = ⟨M⟩ :  ⟨M⟩ ∉ L MTM { ( )}

• The text implicitly uses  in its undecidability proof at the end of chapter 4, but refers to it in DTM

terms of an impossible machine rather than a language.  I will try to make clear what stuff is real 
and what is nonexistent/counterfactual/"quixotic".  The language  is real.DTM

 
I often leave the diagonalization proof  as a "cliffhanger" at the end of one lecture and revisited at DTM

the start of the next lecture, but we may still be mid-lecture.   Then I will finish showing that the  ATM

language is undecidable, even though (unlike ) it is computably enumerable (c.e., with many DTM

synonyms for both "c.e." and "decidable" being out there).]
;

 

 

 


