
 
CSE396 Lecture Tue. 4/27: Mapping Reductions
 
If we have a total computable function , then we can put it, too, inside a solid box.  f :𝛴 𝛴

* → *

Suppose we have a TM  that recognizes a language , and we design a TM  like so:MB B MA

 

 
In either case, we have .  Putting  as well as , L M  =  x :  f x ∈ L M( A) { ( ) ( B)} A = L M( A) B = L M( B)

what we have is that for all , .  x ∈ 𝛴* x ∈ A ⟺  f x ∈ B( )

 
Chapter 5's title topic "Mapping Reducibility" doesn't come until section 5.3, but we put it up-front:
 
Definition: A language  mapping-reduces to a language  if there is a total computable function A B

 such that for all ,  .  This is written .  f :𝛴 𝛴* → * x ∈ 𝛴* x ∈ A ⟺  f x ∈ B( ) A ≤  Bm

 
We also say  via  and call  a mapping reduction.  The historical term is to call  a many-A ≤  Bm f f f

one reduction to say that  need not be a 1-to-1 correspondence.  The above flowchart diagrams f
already prove the first two of the following main implications about mapping reductions:
 
Theorem 1: Suppose  and  are any languages such that .  Then:A B A ≤  Bm

(a) If  is decidable, then  is decidable.B A

(b) If  is c.e., then  is c.e.B A

(c) If  is co-c.e., then  is co-c.e.B A
 
Proof: Only part (c) is left to prove, and it needs only the fact that  is logically x ∈ A ⟺  f x ∈ B( )

equivalent to .  If  is co-c.e., then  is c.e., and we have .   By part (b), x ∈  ⟺  f x ∈A ( ) B B B ≤  A m B

this makes  c.e., which means that  is co-c.e.   A A ☒
 
We will use this to prove more problems to be undecidable---and more languages to be not c.e. or even 
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neither c.e. nor co-c.e.---by applying the contrapositive form:
 
Theorem 2: Suppose  and  are any languages such that .  Then:A B A ≤  Bm

(a) If  is undecidable, then  is undecidable.A B

(b) If  is not c.e., then  is not c.e.A B

(c) If  is not co-c.e., then  is not co-c.e.  A B ☒
 
 
Examples of Mapping Reductions
 
We have already seen numerous examples of mapping reductions---just not yet labeled as such:
 

1. The mapping , where  is a DFA and  is obtained by interchanging its f ⟨M⟩  = ⟨M'⟩ 1( ) M M'

accepting and rejecting states, reduced the  problem to the  problem.  This was a ALLDFA EDFA

"positive use": because  has a decider, we got a decider for .  EDFA ALLDFA

(a) We further solved  by appeal to what I called  but this was not by a mapping EDFA NEDFA

of instances; it was by re-interpeting what "yes" and "no" meant.
(b) Super-technically, we must define  for all .  If  is not a valid code of a DFA, f w1( ) w ∈ 𝛴* w

then we can recognize that fact and map , where  is a fixed DFA for f w = ⟨M ⟩1( ) 0 M0

which the answer to the target problem is "no."  Henceforth, we allow assuming that the 
input is a valid code.  This is not the same as assuming it is a case for which the answer 
to the source problem is "yes."
 

2. The mapping , where  and  are DFAs and  is their Cartesian f ⟨M , M ⟩  =  ⟨M ⟩2( 1 2 ) 3 M1 M2 M3

product with XOR as the operation, reduced the  problem to the  problem.  The EQDFA EDFA

reduction  was correct because .f2 L M = L M  ⟺  L M = ∅( 1) ( 2) ( 3)

 
3. The problem  takes two NFAs  and asks whether .  It can be EQNFA N , N1 2 L N = L N( 1) ( 2)

reduced to  by the mapping , where  and  are the EQDFA f ⟨N , N ⟩  =  ⟨M , M ⟩3( 1 2 ) 1 2 M1 M2

conversion of  and  into DFAs.  The function  can take a long time to compute in many N1 N2 f3

NFA cases, but it is computable and reduces  to .  Because reductions are EQNFA EQDFA

transitive, the composition  is a computable function that reduces  all the way to f ∘ f2 3 EQNFA

, and that gives us a decider for .  But because of the use of NFA-to-DFA, neither EDFA EQNFA

 nor the decider we get is "polynomial-time" efficient.f2

 
4. The mapping  reduces  to .  Thus:f ⟨M⟩  = ⟨M, M⟩4( ) KTM ATM

(a) By Theorem 1(b), because the  language is c.e., we got that  is c.e.ATM K

(b) But by Theorem 2(a), because  is undecidable, we got that  is undecidable.KTM ATM

 
The mapping  is especially simple: it basically just doubles the given string.  The  example shows f4 f4

how reductions can be used both "positively" (for upper bounds like "is c.e.") and "negatively" (for 
lower bounds like "is not decidable").  Here is another example of the latter:

 

 



 
Example:  via , where  is transformed from  as follows: A  ≤  HPTM m TM f ⟨M, w⟩  =  ⟨M', w⟩( ) M' M

• We may presume  is in the text's normal form with  and  as its only halting states.M qacc qrej

• Make  by adding a loop  for every char  in the work alphabet  of .M' q , c / c, S, q )( rej rej c 𝛤 M

• [Super-technically, we can bolt on a new rejecting state  that is never reached in order to q'rej
"restore" the test's normal form for cosmetic purposes.]

 
Here is a little picture that shows just about everything we need to say (never mind that it says " " x

instead of " "):w

I use the acronym "CCC" for the three things one needs to say:
1. Construction: how  is built from , so as to define .M' M f ⟨M, w⟩  =  ⟨M', w⟩( )

2. Computability: Often we could say this is "obvious", but it helps to give knowledge of the 
complexity of the reduction too.  E.g., the mappings  and  above are super-simple, while f1 f4

the Cartesian-product  is not so simple---but its quadratic time counts as "polynomial time."  f2

The mapping  involves converting any given NFAs into DFAs, so it is exponential time, but still f3

counts as computable.  This mapping  is super-simple.f

3. Correctness: the " " part, where here the " " is .  It often helps to x ∈ A ⟺  f x ∈ B( ) x ⟨M, w⟩

break the " " into two implications going from the source problem to the target problem.  So ⟺

to show that  accepts   on input  halts, we verify:.M w ⟺ M' w
 
Here, " " is the (language of the)  problem, " " is is  as an instance of the  problem,  "A ATM x ⟨M, w⟩ ATM

" is the  problem, " " is a similarly-structured instance  of the  problem (where B HPTM f x( ) ⟨M', w⟩ HPTM

the  part happens to be the same), and the  " " is the statement  w x ∈ A ⟺  f x ∈ B( ) ⟨M, w⟩ ∈ ATM

(i.e.,  is in the  language) if and only if  language.  To verify this, ⟨M, w⟩ ATM ⟨M', w⟩ ∈ HPTM

 
 accepts   goes to  goes to its own  as well .M w ⟹ M w( ) q  ⟹  M' wacc ( ) q'acc ⟹  M' w ↓( )

 does not accept  either  or  goes to   either way.M w ⟹ M w ↑( ) M w( ) qrej ⟹  M' w ↑( )

 

 

 



Put together, we have that .  ⟨M, w⟩ ∈  A ⟺ ⟨M', w⟩ ∈  HPTM TM ☒

This finally shows that the classic Halting Problem is undecidable.
 
[As a footnote, for the second part of correctness, we could prefer using the converse rather than the 
inverse of the first part:  
 

 accepts  (because  is the only place  can halt  accepts  too.M' w ↓  ⟹  M'( ) w q'acc M' ⟹  M w

Thus  so the reduction is correct.   w ∈ L M  ⟺ M' w ↓  ( ) ( ) ☒
 
But I prefer always keeping the flow going from the source problem to the target problem.  Getting the 
"from-to" logic backwards is one of the most common mistakes with reductions.]
 
An important self-study question: Does the same  also reduce  back to ?f HPTM ATM

 
That would need us to say that  accepts .  That is not what happens in the code M w ↓  ⟺  M'( ) w

constructed by the above  mapping.  But we can make a new mapping  with a different "code f f''

modification" that brings this logic about:

 

 

 

, where   ⟨M, w⟩   ↪    ⟨M'', w⟩ M'' =

f''

if it accepts

Simulate M w( )

input y = w( )

if it halts
and rejects

q''rej
c / c, S( )

(all )c ∈ 𝛤

q''acc



This mapping  is equally super-simple to compute: it adds arcs from the old  to the accepting f'' qrej

state rather than loops at .  The correctness logic is:qrej

 
 goes to  or to  goes to  either way  accepts .M w ↓( ) ⟹ M w( ) qacc q ⟹ M'' wrej ( ) q''acc ⟹ M'' w

 does not halt either, so  does not accept .  M w ↑  ⟹  M'' w( ) ( ) M'' w
 
This entitles us to say .  ⟨M, w⟩ ∈  HP ⟺ ⟨M'', w⟩ ∈  APTM TM ☒
 
Thus, in fact, the Acceptance and Halting Problems are mapping equivalent, for which we write 
 

.A   ≡   HPTM m TM

 
This underscores why, historically, "accepting" and "halting" were considered the same thing, and why 
accepting states are called "final" states. We can show mapping equivalence graphically by putting the 
"dots" for each language in the same place in our diagrams:
 

 
Actually,  is mapping-equivalent to  as well.  This may seem surprising because  has KTM ATM KTM

"less stuff": its instance type is "just an " rather than "an  and a ".  The converse reduction M M w

 will be an incidental benefit of the "All-Or-Nothing Switch" reduction design pattern A  ≤  KTM m TM

below.  Thus we can move its dot into the same location at the very top of .  Why the very top?  It's RE

because every c.e. language  accepted by a fixed machine  mapping reduces to  via the A MA ATM

"super-simple" mapping
 

,f x  =  ⟨M , x⟩( ) A

 
which is correct because  accepts  .  This state of affairs is x ∈ A ⟺  MA x ⟺ ⟨M , x⟩ ∈ AA TM

summarized by the following key definition.
 

 

 

REC

RE co-RE

neither c.e. nor co-c.e.

This diagram conveys some extra information:
 is closed under complements, ◎ REC

, and◎ RE ∩  co-RE =  REC

 All three classes are closed downward under◎

     computable many-one/mapping reductions.

DTM
KTM

𝜃 >  45∘

A

B

means A ≤  Bm

A , HPTM TM

ALLTM

A



Definition: A language  is complete for a class  of languages (such as ) under a 
reducibility 

B C C = RE

relation  (such as computable mapping reductibility ) if:≤ r ≤ m

1. , andB ∈ C

2. for all languages , .A ∈ C A ≤  Br

If only the latter holds, we say that  is hard for  under the reducibility.  In the case where  is , we B C C RE

also say that  is -complete (or -hard if we don't have ), and the synonyms r.e.-B RE RE B ∈ RE

complete, c.e.-complete or just "complete" come into play (but not "recognizably complete").
 
Thus , , and  are all complete for .  Moreover,  is complete for co-RE.  In point ATM HPTM KTM RE DTM

of fact, they are all complete under "super-simple" reductions---as we will shortly see for  while KTM

doing hardness for , , and  in one swoop.  We will also see that  is not in , NETM KTM ALLTM ALLTM RE

so it is -hard without being -complete.  The class  should actually "collapse to a single point" RE RE REC

under  because of the following trivial theorem:≤ m

 
Theorem 3: All decidable languages are -equivalent (technically except for  and ).≡ m ∅ 𝛴*

 
Proof: Suppose  and  are decidable, and  is neither is  or .  Then there is a "yes string" A B B ∅ 𝛴

*

 and a "no string" .  By  being decidable, we can take a total TM  such that y ∈ B0 z ∉ B0 A MA

.  Then define the mapping  as follows, for all :L M = A( A) f x ∈ 𝛴*

 

.f x  =  ( )
y0 if M  accepts xA

z0 if M  rejects xA

 
Because  is total, we can compute  in all cases, and clearly  by the MA f x( ) x ∈ A ⟺  f x ∈ B( )

choice of the two strings.  Since the exception of  and  technically reducing only from themselves is ∅ 𝛴
*

often ignored, we can say all decidable sets are trivially complete for .  REC ☒
 
But under simpler reductions than , such as polynomial-time mapping reducibility , the ≤ m ≤

p
m

equivalence no longer holds globally---e.g., if  does not run in polynomial time.  The classes , MA REC

, and co-RE all "keep their shape" under  (and in fact, basically every reduction seen in this RE ≤
p
m

course except ones like  needing NFA-to-DFA will be computable in quadratic time at worst).  Indeed, f3

, , , etc. are all complete under , though next wee what we will care about is ATM HPTM KTM ≤
p
m

completeness for the class  under .  The one place where the diagram misleads is that  NP ≤
p
m REC

does not have complete sets under , which we try to signify by putting a little round arc under its ≤
p
m

"peaked top."
 
 
Three Design Patterns For Reductions
 
The motivation is similar to that in general code: the ideas of reductions are often reusable.
 

 

 



I. "Wait For It"
 
Long ago, certainly before Hamilton, I used to call the first one "Waiting For Godot" after the Samuel 
Beckett play in which (spoiler alert---wait, giving a spoiler alert for that play is an ultimate existential 
absurdity) ...  When we first had the Turing Kit and Java was new and intimations of the "Internet of 
Things" started to buzz, I called this the generic reduction to the "Brew Coffee" problem: if you switch 
on your Java-enabled coffee maker , will it brew coffee?  You see,  might ask Alexa to invoke the M' M'

Turing Kit on a given , and brew your coffee only if and when  accepts .  This year, with the ⟨M, w⟩ M w

Turing  note, I considered joking about the "ATM Problem": if you put your card in and try to £50

withdraw , will it give you a Turing or a background check that never halts?  But let's do it with a £50

problem that is actually highly relevant and attempted in practice when trying to cut down "code bloat" 
by removing unused classes from object-oriented code.
 
USEFULCLASS

Instance: A Java program  and a class  defined in the code of .P C P

Question: Is there an input  such that  creates an object of class ?x P x( ) C

 
We mapping-reduce  to the language of this decision problem.  We need to compute ATM

 such that:f ⟨M, w⟩  =  P( )

 
•  accepts for some ,  executes an instruction like C c = new C();M w ⟹ x P x( )

•  does not accept for all , never executes any statement involving .M w ⟹ x P x  ( ) C

 
I like to picture  as dropping  and  into a flowchart for :f M w P
 

 
A key fine point in the correctness logic is that the class C does not appear anywhere else in the code 
of .  The main body of  can be entirely a call to the Turing Kit program with  and  pre-packaged.  P P M w

This body does not use any classes besides those in the Turing Kit itself.  Even if , whereupon M w ↑( )

 never halts either, it remains true that the class C is never used---so that removing it would not P

change the behavior of , not on any input .  P x

 

 

⟨M, w⟩   ↪    P =
f

if & when it accepts

Simulate M w( )

input x
(ignore x)

execute C c = new C();

w/o using class C



 
Building the program  is straightforward given any  and : just fix  and  to be the arguments in P M w M w
the call to the Turing Kit's main simulation routine and append the statement shown in the diagram after 
the place in the Turing Kit's own java code where it shows the String accepted dialog box.  Thus 
the code mapping  itself is computable, indeed, easily linear-time computable.f
 
The conclusion is that the problem of detecting (never-)used classes is undecidable.  It may seem that 
programs  are irrelevant ones by which to demonstrate this because they are so artificial P =  PM.w

and stupidly impractical.  However:
 

1. the reduction to these programs shows that there is "no silver bullet" for deciding the useful-code 
problem in all cases; and

2. the programs  are "tip of an iceberg" of cases that have so solidly resisted solution that PM.w

most people don't try---exceptions such as the Microsoft Terminator Project are rare.
 
This kind of reduction is one I call "Waiting for Godot" after a play by Samuel Beckett in which two 
people spend the whole time waiting for the title character but he never appears.  The real import is that 
there are a lot of "waiting for..." type problems about programs  that one would like to tell in advance P

by examining the code of .  The moral is that most of these problems, by dint of being undecidable in P
their general theoretical formulations, are practically hard to solve.  The practical problem of eliminating 
code bloat by removing never-used classes is one of them.  Without strict version control, whether 
blocks of code have become truly "orphaned" and no longer executed can become hard to tell.  
 
[The transition to Thursday's lecture came out here.]

 
For a side note, the "type" of the target problem is "Just a progarm ", not "a program and an input P

string" as with  itself.  We did not map  to ;  is not the input to .  Instead,  is ATM ⟨M, w⟩ ⟨P, w⟩ w P x

quantified existentially in the statement of the problem.  This makes sense: the code is useful so long 
as some input uses it.  The language of the problem combines two existential conditions:
 

• there exists an  such that when  is run on , ...x P x

• ...there exists a step at which  creates an object of the class C.P

 
A language defined by existential quantifiers in this way, down to "bedrock" predicates like creating a 
class object that are decidable, is generally c.e.  The kind of algorithmic technique used to show this is 
commonly called "dovetailing."  I like to picture dovetailing as occurring inside an enclosing arbitrary 
time-allowance loop.  In this case, noting that we are trying to analyze :P
 
input ⟨P, C⟩

for :t =  1, 2, 3, 4, …

   for each input  up to  (or you can say: of length up to ):x t t

      run  for  steps.  If  builds an object of class  during those steps, accept .    P x( ) t P x( ) C ⟨P, C⟩

 

 

 



This loop is a program  such that , which is R L R  =  ( ) {⟨P, C⟩ :  ∃x P x  builds an object of class C( )[ ( ) ]}

the language of the USEFULCLASS problem.  So this language is c.e. but undecidable.
 
 
II The "All-or-Nothing Switch"
 
This actually builds on the "wait-for-it" kind of reductions.  Note that  had an instance type that HPTM

specified both "an  and an input " but UsefulClass had the instance type "just a program " where M x P

the  part was quantified as "Does there exist an  such that ...?"  When there is flexibility in how x x P x( )

the " " part is treated, we can often hit a whole bunch of problems with a reduction at once.  Here are x

three (and  will make a fourth):KTM

 
NETM

Instance: A TM .M

Question: Is ?L M  ≠  ∅( )

 
ALLTM

Instance: A TM .M

Question: Is ?L M  =  𝛴( ) *

 
EpsTM

Instance: A TM .M

Question: Does  accept ?M 𝜖

 
In the first problem, it might seem more natural to phrase the question as "is ?" but that L M  =  ∅( )

would make the language of the problem become , which is called .  The ⟨M⟩ :  L M  =  ∅{ ( ) } ETM

reason we need to use  is that when doing mapping reductions, we NE  =  TM {⟨M⟩ :  L M  ≠  ∅( ) }

need to make "yes" cases of the source problem line up with "yes" answers to the target problem.  We 
will see that usually it is impossible to do it the other way.  Here is the reduction:
 

 

 

 

⟨M, w⟩   ↪    M' =
f

if & when it accepts

Simulate M w( )

input x
(ignore x)

accept x. qrej



Here  is a Turing machine, but we could get it by using the same call to the Turing Kit and then M'

converting the resulting Java code to a Turing machine as proved in the Friday 10/2 lecture.  Or we can 
just build  by having   (which depends on  and ) first write the fixed string  on its tape M' M' M w ⟨M, w⟩

next to  (or even in place of  in this case) and then go to the start state of a universal TM  which is x x U

made to run on .  Either way,  is computable---since  is fixed and the initial "write " ⟨M, w⟩ f U ⟨M, w⟩

step takes time proportional to the length of  to code, the latter more clearly makes  linear-time ⟨M, w⟩ f

computable.  So this construction is computable.
 

Here is the one-shot correctness analysis for all three target problems:
the "fuzzy box" main body of  always exits, regardless of the input ;M accepts w ⟹ M' x

                     for all inputs ,  accepts ;⟹ x M' x

                     , which also implies that  and  accepts .⟹ L M'  = 𝛴  ( ) * L M'  ≠  ∅( ) M 𝜖

Thus,
 is in all of , , and .  Whereas,⟨M, w⟩ ∈ A  ⟹  fTM (⟨M, w⟩  =  ⟨M'⟩) ALLTM NETM EpsTM

 
the main body of  rejects or never finishes; either way, it never accepts;M doesn't accept w ⟹ M'

                                for all inputs ,  does not accept ;⟹ x M' x

                                , which also implies that  and .⟹ L M'  = ∅ ( ) L M'  ≠  𝛴( ) * 𝜖 ∉  L M'( )

Thus,
, , and  .⟨M, w⟩ ∉ A  ⟹  fTM (⟨M, w⟩  ∉ E) TM f(⟨M, w⟩  ∉ ALL) TM f(⟨M, w⟩  ∉ Eps) TM

 
So we have simultaneously shown , , and .  
Thus 

A  ≤  NETM m TM A  ≤  ALLTM m TM A  ≤  EpsTM m TM

all three of these problems and their languages are undecidable.
 
In passing, here's a self-study question: How would you go about showing ?  Showing A  ≤  KTM m TM

 was easy, but now we have to package an arbitrary pair  into a single K  ≤  ATM m TM ⟨M, w⟩

machine  that accepts its own code if and only if  accepts .  If you think about this task M' M w

intensionally, it may seem daunting: how can we vary the code of  for all the various  strings so M' w

that  does or does not accept its wn code depending on whether  gets accepted by .  How on M' w M
earth can we pack two things into one?  But if you think extensionally in terms of the correctness logic 
of a reduction, the answer might "jump off the page" at you...
 
By showing , we have not only shown that the  language is undecidable, we A  ≤  NETM m TM NETM

have shown it is not co-c.e.  But since the  language is c.e.,  could be c.e.---and indeed it is, ATM NETM

by dovetailing: Given any TM , for : try  on all inputs  for up to  steps.  If M' t =  1, 2, 3, … M' x <  t t

 is found to accept any of them within  steps, accept , else continue.   That the language (of) M' t ⟨M'⟩

is c.e. is simpler to see: given , just run  and accept  if and when  accepts .  Eps  TM M' M' 𝜖( ) ⟨M'⟩ M' 𝜖

But how about the language of ?  Hmmm....ALLTM

 
 
III The "Delay Switch"

 

 



 
The third useful reduction technique is something I call the "Delay Switch."  The intuition and attitude 
are the opposite of "Waiting for Godot" and the all-or-nothing switch.  This time you picture your target 
machine  or target program  as monitoring a condition that you hope doesn't happen, such as M' P

when doing security for a building.  The input  to the target machine is first read as giving a length  x t0

of time that you have to monitor the condition for.  Usually we just take , the length of the input t  =  |x|0

string  (you may always call this length  too).  If the condition doesn't happen over that time---that is, x n

if no "alarm" goes off---then you stay in a good status.  But if the alarm goes off within  steps, then t0

you "panic" and make  (or ) do something else.  Because this is a general tool, let's show an M' P
example of the construction even before we decide what problems we're reducing to and from:  
 

 
This flowchart is a little more complicated, but it is just as easily computed given the code of .  We've M

given  not  in order to help tell this apart from the other reductions and because of the ⟨M⟩ ⟨M, w⟩

source problem we get.  A key second difference is that all the components of  are solid boxes: M'

 always halts for any .  The logical analysis now says:M' x( ) x
 

• If  never accepts its own code, then the diamond always takes the  branch.   So every input M no

 gets accepted, and so .x L M'  =  𝛴( ) *

• If  does accept its own code, then there is a number  of steps at which the acceptance M t

occurs.  Thus for any input  of length , the simulation of  in the main body sees x n ≥  t M ⟨M⟩( )

the acceptance.  So the  branch of the diamond is taken, and the "post-alarm" action in this yes

case is to circle the wagons and reject .  This means that all but the finitely many  having x x

 get rejected, so not only is , it isn't even infinite.|x| <  t L M'  ≠  𝛴( ) *

 
What this amounts to is: .  So we have ⟨M⟩ ∈  D  ⟺  L M'  =  𝛴  ⟺  f ⟨M⟩  ∈  ALLTM ( ) * ( ) TM

shown , whereas before we showed , hence by transitivity, D  ≤  ALLTM m TM A  ≤  ALLTM m TM

.  Since  is not c.e., this means we have shown that  is not c.e. either.  K  ≤  ALLTM m TM DTM ALLTM

Hence  is neither c.e. nor co-c.e.  To convey this consequence pictorially:ALLTM

 

 

⟨M⟩    ↪     M' =
f Simulate M ⟨M⟩( )

for up to n steps

input x

 accept x

compute n =  |x|

Did M
accept?no yes (panic!)

 reject x
(things are good)



 

 
There is an intuition which we will later turn into a theorem while proving its version for  and -  NP co NP

at the same time.  The language  has a purely negative feel: the set of  such that  does not DTM M M
accept its own code.  When we boil this down to immediately verifiable statements, we introduce a 
universal quantifier:
 

For all time steps ,  does not accept its own code in that step.t M
 

The watchword is that the  language is definable by purely universal quantification over decidable DTM

predicates.  So is the  language:ETM

 
For all inputs  and all time steps ,  does not accept  within  steps.x t M x t

 
We could combine this into just one "for all" quantifier by saying: for all pairs  ...  In any event, ⟨x, t⟩
much like having a purely existential definition is the hallmark of being c.e., haveing a purely universal 
definition makes a language co-c.e.  This is to be expected, because a negated definition of the form 
 

    flips around to become   .¬ ∃t R i, t( ) ( ) ∀t ¬R i, t( ) ( )

 
If the language  is decidable, then so is its complement, which (ignoring the issue ⟨i, t⟩ :  R i, t  holds{ ( ) }

of strings that are not valid codes of pairs) is the language of   So we get the same bedrock of ¬R i, t .( )

decidable conditions in either case.  
 
With , however, we have to combine both kinds of quantifier into one statement to define it. The ALLTM

 

 

REC

RE co-RE

neither c.e. nor co-c.e.

DA , KTM

𝜃 >  45∘

A

B

means A ≤  Bm

 must ALLTM

be somewhere 
in this intersec-
tion of cones.

TOT

REG

char

string

lang

class

number

ETM

∼ TOT



simplest definition of " " is:L M  =  𝛴( ) *

 
For all inputs , there exists a timestep  such that [  accepts  at step ].x t M x t

 
The square brackets are there to suggest that the predicate they enclose is a "solid box" meaning 
decidable.  Believe-it-or-else, this predicate is also named for Stephen Kleene...in a slightly different 
form which we will cover once we hit complexity theory.  
 
Now you might wonder: is there a more clever way to define the notion of " " using just one L M  =  𝛴( ) *

kind of quantifier?  The fact that  is neither c.e. nor co-c.e. says a definite no to this possibility.  ALLTM

 
As for what it means in practice, you can use the "logical feel" of a problem to pre-judge whether it is 
c.e. or co-c.e. (in which case, if asked to show the problem undecidable, the choice of problem to 
reduce from is mostly forced), or neither---in which case, it's "carte blanche"---before proving exactly 
how it is classified.  For example, consider 
 

TOT =  M :  M is total,  i. e.,  ∀x,  M x ↓ .{ ( ) }

 
It has a "for all" feel to it.  So the first intuition says it is not c.e.  That is correct, and we can prove it by 
showing  via the delay switch.  Then we can ask whether it is not co-c.e. either.  In fact, D  ≤  TOTTM m

 is highly similar to  and the same ideas as for  work to show  TOT ALLTM A  ≡  HPTM m TM

.  A similar case is , which we can reduce from  "by restriction."  ALL  ≡  TOTTM m EQTM ALLTM

 
 
 
Example:  Prove this is neither c.e. nor co-c.e.EQ  =  ⟨M , M ⟩ :  L M  =  L M .TM { 1 2 ( 1) ( 2)}

 
Make a special case the target: the case where , say, has .  Call that .  ThenM2 L M  =  𝛴( 2) * Mall

.  And  by the simple 
simple 
⟨M , M ⟩ ∈  EQ  if and only if ⟨M ⟩ ∈  ALL1 all TM 1 TM ALL  ≤  EQTM m TM

reduction .   Because we showed  is neither c.e. nor co-c.e., the same "45  f M  =  M, M( ) ( all) ALLTM
∘

cone logic" says that  is neither c.e. nor co-c.e.EQTM

 
 
[where the material goes from here: more examples of neither-c.e.-nor-co-c.e.; then undecidability via TM computation histories in 

the latter part of section 5.1, finally saying why  and (equivalently)  are undecidable.]ALLCFG ALLPDA

 
 
 
 

 

 


