

CSE396 Lecture Tue. 4/27: Mapping Reductions

If we have a total computable function , then we can put it, too, inside a solid box. f :𝛴 𝛴

* → *

Suppose we have a TM that recognizes a language , and we design a TM like so:MB B MA

In either case, we have . Putting as well as , L M = x : f x ∈ L M(A) { () (B)} A = L M(A) B = L M(B)

what we have is that for all , . x ∈ 𝛴* x ∈ A ⟺ f x ∈ B()

Chapter 5's title topic "Mapping Reducibility" doesn't come until section 5.3, but we put it up-front:

Definition: A language mapping-reduces to a language if there is a total computable function A B

 such that for all , . This is written . f :𝛴 𝛴* → * x ∈ 𝛴* x ∈ A ⟺ f x ∈ B() A ≤ Bm

We also say via and call a mapping reduction. The historical term is to call a many-A ≤ Bm f f f

one reduction to say that need not be a 1-to-1 correspondence. The above flowchart diagrams f
already prove the first two of the following main implications about mapping reductions:

Theorem 1: Suppose and are any languages such that . Then:A B A ≤ Bm

(a) If is decidable, then is decidable.B A

(b) If is c.e., then is c.e.B A

(c) If is co-c.e., then is co-c.e.B A

Proof: Only part (c) is left to prove, and it needs only the fact that is logically x ∈ A ⟺ f x ∈ B()

equivalent to . If is co-c.e., then is c.e., and we have . By part (b), x ∈ ⟺ f x ∈A () B B B ≤ A m B

this makes c.e., which means that is co-c.e. A A ☒

We will use this to prove more problems to be undecidable---and more languages to be not c.e. or even

Input x

Compute y = f x()

Run open-endedly,M yB()

not just for 1 step. If and
when it accepts ,y

Accept x

M :A

If we know in advance
that is total, thenMB

we get total too:MA

Input x

Compute y = f x()

Run open-endedly,M yB()

not just for 1 step. If it
accepts , elsey

Accept x Reject x

M :A

neither c.e. nor co-c.e.---by applying the contrapositive form:

Theorem 2: Suppose and are any languages such that . Then:A B A ≤ Bm

(a) If is undecidable, then is undecidable.A B

(b) If is not c.e., then is not c.e.A B

(c) If is not co-c.e., then is not co-c.e. A B ☒

Examples of Mapping Reductions

We have already seen numerous examples of mapping reductions---just not yet labeled as such:

1. The mapping , where is a DFA and is obtained by interchanging its f ⟨M⟩ = ⟨M'⟩ 1() M M'

accepting and rejecting states, reduced the problem to the problem. This was a ALLDFA EDFA

"positive use": because has a decider, we got a decider for . EDFA ALLDFA

(a) We further solved by appeal to what I called but this was not by a mapping EDFA NEDFA

of instances; it was by re-interpeting what "yes" and "no" meant.
(b) Super-technically, we must define for all . If is not a valid code of a DFA, f w1() w ∈ 𝛴* w

then we can recognize that fact and map , where is a fixed DFA for f w = ⟨M ⟩1() 0 M0

which the answer to the target problem is "no." Henceforth, we allow assuming that the
input is a valid code. This is not the same as assuming it is a case for which the answer
to the source problem is "yes."

2. The mapping , where and are DFAs and is their Cartesian f ⟨M , M ⟩ = ⟨M ⟩2(1 2) 3 M1 M2 M3

product with XOR as the operation, reduced the problem to the problem. The EQDFA EDFA

reduction was correct because .f2 L M = L M ⟺ L M = ∅(1) (2) (3)

3. The problem takes two NFAs and asks whether . It can be EQNFA N , N1 2 L N = L N(1) (2)

reduced to by the mapping , where and are the EQDFA f ⟨N , N ⟩ = ⟨M , M ⟩3(1 2) 1 2 M1 M2

conversion of and into DFAs. The function can take a long time to compute in many N1 N2 f3

NFA cases, but it is computable and reduces to . Because reductions are EQNFA EQDFA

transitive, the composition is a computable function that reduces all the way to f ∘ f2 3 EQNFA

, and that gives us a decider for . But because of the use of NFA-to-DFA, neither EDFA EQNFA

 nor the decider we get is "polynomial-time" efficient.f2

4. The mapping reduces to . Thus:f ⟨M⟩ = ⟨M, M⟩4() KTM ATM

(a) By Theorem 1(b), because the language is c.e., we got that is c.e.ATM K

(b) But by Theorem 2(a), because is undecidable, we got that is undecidable.KTM ATM

The mapping is especially simple: it basically just doubles the given string. The example shows f4 f4

how reductions can be used both "positively" (for upper bounds like "is c.e.") and "negatively" (for
lower bounds like "is not decidable"). Here is another example of the latter:

Example: via , where is transformed from as follows: A ≤ HPTM m TM f ⟨M, w⟩ = ⟨M', w⟩() M' M

• We may presume is in the text's normal form with and as its only halting states.M qacc qrej

• Make by adding a loop for every char in the work alphabet of .M' q , c / c, S, q)(rej rej c 𝛤 M

• [Super-technically, we can bolt on a new rejecting state that is never reached in order to q'rej
"restore" the test's normal form for cosmetic purposes.]

Here is a little picture that shows just about everything we need to say (never mind that it says " " x

instead of " "):w

I use the acronym "CCC" for the three things one needs to say:
1. Construction: how is built from , so as to define .M' M f ⟨M, w⟩ = ⟨M', w⟩()

2. Computability: Often we could say this is "obvious", but it helps to give knowledge of the
complexity of the reduction too. E.g., the mappings and above are super-simple, while f1 f4

the Cartesian-product is not so simple---but its quadratic time counts as "polynomial time." f2

The mapping involves converting any given NFAs into DFAs, so it is exponential time, but still f3

counts as computable. This mapping is super-simple.f

3. Correctness: the " " part, where here the " " is . It often helps to x ∈ A ⟺ f x ∈ B() x ⟨M, w⟩

break the " " into two implications going from the source problem to the target problem. So ⟺

to show that accepts on input halts, we verify:.M w ⟺ M' w

Here, " " is the (language of the) problem, " " is is as an instance of the problem, "A ATM x ⟨M, w⟩ ATM

" is the problem, " " is a similarly-structured instance of the problem (where B HPTM f x() ⟨M', w⟩ HPTM

the part happens to be the same), and the " " is the statement w x ∈ A ⟺ f x ∈ B() ⟨M, w⟩ ∈ ATM

(i.e., is in the language) if and only if language. To verify this, ⟨M, w⟩ ATM ⟨M', w⟩ ∈ HPTM

 accepts goes to goes to its own as well .M w ⟹ M w() q ⟹ M' wacc () q'acc ⟹ M' w ↓()

 does not accept either or goes to either way.M w ⟹ M w ↑() M w() qrej ⟹ M' w ↑()

Put together, we have that . ⟨M, w⟩ ∈ A ⟺ ⟨M', w⟩ ∈ HPTM TM ☒

This finally shows that the classic Halting Problem is undecidable.

[As a footnote, for the second part of correctness, we could prefer using the converse rather than the
inverse of the first part:

 accepts (because is the only place can halt accepts too.M' w ↓ ⟹ M'() w q'acc M' ⟹ M w

Thus so the reduction is correct. w ∈ L M ⟺ M' w ↓ () () ☒

But I prefer always keeping the flow going from the source problem to the target problem. Getting the
"from-to" logic backwards is one of the most common mistakes with reductions.]

An important self-study question: Does the same also reduce back to ?f HPTM ATM

That would need us to say that accepts . That is not what happens in the code M w ↓ ⟺ M'() w

constructed by the above mapping. But we can make a new mapping with a different "code f f''

modification" that brings this logic about:

, where ⟨M, w⟩ ↪ ⟨M'', w⟩ M'' =

f''

if it accepts

Simulate M w()

input y = w()

if it halts
and rejects

q''rej
c / c, S()

(all)c ∈ 𝛤

q''acc

This mapping is equally super-simple to compute: it adds arcs from the old to the accepting f'' qrej

state rather than loops at . The correctness logic is:qrej

 goes to or to goes to either way accepts .M w ↓() ⟹ M w() qacc q ⟹ M'' wrej () q''acc ⟹ M'' w

 does not halt either, so does not accept . M w ↑ ⟹ M'' w() () M'' w

This entitles us to say . ⟨M, w⟩ ∈ HP ⟺ ⟨M'', w⟩ ∈ APTM TM ☒

Thus, in fact, the Acceptance and Halting Problems are mapping equivalent, for which we write

.A ≡ HPTM m TM

This underscores why, historically, "accepting" and "halting" were considered the same thing, and why
accepting states are called "final" states. We can show mapping equivalence graphically by putting the
"dots" for each language in the same place in our diagrams:

Actually, is mapping-equivalent to as well. This may seem surprising because has KTM ATM KTM

"less stuff": its instance type is "just an " rather than "an and a ". The converse reduction M M w

 will be an incidental benefit of the "All-Or-Nothing Switch" reduction design pattern A ≤ KTM m TM

below. Thus we can move its dot into the same location at the very top of . Why the very top? It's RE

because every c.e. language accepted by a fixed machine mapping reduces to via the A MA ATM

"super-simple" mapping

,f x = ⟨M , x⟩() A

which is correct because accepts . This state of affairs is x ∈ A ⟺ MA x ⟺ ⟨M , x⟩ ∈ AA TM

summarized by the following key definition.

REC

RE co-RE

neither c.e. nor co-c.e.

This diagram conveys some extra information:
 is closed under complements, ◎ REC

, and◎ RE ∩ co-RE = REC

 All three classes are closed downward under◎

 computable many-one/mapping reductions.

DTM
KTM

𝜃 > 45∘

A

B

means A ≤ Bm

A , HPTM TM

ALLTM

A

Definition: A language is complete for a class of languages (such as) under a
reducibility

B C C = RE

relation (such as computable mapping reductibility) if:≤ r ≤ m

1. , andB ∈ C

2. for all languages , .A ∈ C A ≤ Br

If only the latter holds, we say that is hard for under the reducibility. In the case where is , we B C C RE

also say that is -complete (or -hard if we don't have), and the synonyms r.e.-B RE RE B ∈ RE

complete, c.e.-complete or just "complete" come into play (but not "recognizably complete").

Thus , , and are all complete for . Moreover, is complete for co-RE. In point ATM HPTM KTM RE DTM

of fact, they are all complete under "super-simple" reductions---as we will shortly see for while KTM

doing hardness for , , and in one swoop. We will also see that is not in , NETM KTM ALLTM ALLTM RE

so it is -hard without being -complete. The class should actually "collapse to a single point" RE RE REC

under because of the following trivial theorem:≤ m

Theorem 3: All decidable languages are -equivalent (technically except for and).≡ m ∅ 𝛴*

Proof: Suppose and are decidable, and is neither is or . Then there is a "yes string" A B B ∅ 𝛴

*

 and a "no string" . By being decidable, we can take a total TM such that y ∈ B0 z ∉ B0 A MA

. Then define the mapping as follows, for all :L M = A(A) f x ∈ 𝛴*

.f x = ()
y0 if M accepts xA

z0 if M rejects xA

Because is total, we can compute in all cases, and clearly by the MA f x() x ∈ A ⟺ f x ∈ B()

choice of the two strings. Since the exception of and technically reducing only from themselves is ∅ 𝛴
*

often ignored, we can say all decidable sets are trivially complete for . REC ☒

But under simpler reductions than , such as polynomial-time mapping reducibility , the ≤ m ≤

p
m

equivalence no longer holds globally---e.g., if does not run in polynomial time. The classes , MA REC

, and co-RE all "keep their shape" under (and in fact, basically every reduction seen in this RE ≤
p
m

course except ones like needing NFA-to-DFA will be computable in quadratic time at worst). Indeed, f3

, , , etc. are all complete under , though next wee what we will care about is ATM HPTM KTM ≤
p
m

completeness for the class under . The one place where the diagram misleads is that NP ≤
p
m REC

does not have complete sets under , which we try to signify by putting a little round arc under its ≤
p
m

"peaked top."

Three Design Patterns For Reductions

The motivation is similar to that in general code: the ideas of reductions are often reusable.

I. "Wait For It"

Long ago, certainly before Hamilton, I used to call the first one "Waiting For Godot" after the Samuel
Beckett play in which (spoiler alert---wait, giving a spoiler alert for that play is an ultimate existential
absurdity) ... When we first had the Turing Kit and Java was new and intimations of the "Internet of
Things" started to buzz, I called this the generic reduction to the "Brew Coffee" problem: if you switch
on your Java-enabled coffee maker , will it brew coffee? You see, might ask Alexa to invoke the M' M'

Turing Kit on a given , and brew your coffee only if and when accepts . This year, with the ⟨M, w⟩ M w

Turing note, I considered joking about the "ATM Problem": if you put your card in and try to £50

withdraw , will it give you a Turing or a background check that never halts? But let's do it with a £50

problem that is actually highly relevant and attempted in practice when trying to cut down "code bloat"
by removing unused classes from object-oriented code.

USEFULCLASS

Instance: A Java program and a class defined in the code of .P C P

Question: Is there an input such that creates an object of class ?x P x() C

We mapping-reduce to the language of this decision problem. We need to compute ATM

 such that:f ⟨M, w⟩ = P()

• accepts for some , executes an instruction like C c = new C();M w ⟹ x P x()

• does not accept for all , never executes any statement involving .M w ⟹ x P x () C

I like to picture as dropping and into a flowchart for :f M w P

A key fine point in the correctness logic is that the class C does not appear anywhere else in the code
of . The main body of can be entirely a call to the Turing Kit program with and pre-packaged. P P M w

This body does not use any classes besides those in the Turing Kit itself. Even if , whereupon M w ↑()

 never halts either, it remains true that the class C is never used---so that removing it would not P

change the behavior of , not on any input . P x

⟨M, w⟩ ↪ P =
f

if & when it accepts

Simulate M w()

input x
(ignore x)

execute C c = new C();

w/o using class C

Building the program is straightforward given any and : just fix and to be the arguments in P M w M w
the call to the Turing Kit's main simulation routine and append the statement shown in the diagram after
the place in the Turing Kit's own java code where it shows the String accepted dialog box. Thus
the code mapping itself is computable, indeed, easily linear-time computable.f

The conclusion is that the problem of detecting (never-)used classes is undecidable. It may seem that
programs are irrelevant ones by which to demonstrate this because they are so artificial P = PM.w

and stupidly impractical. However:

1. the reduction to these programs shows that there is "no silver bullet" for deciding the useful-code
problem in all cases; and

2. the programs are "tip of an iceberg" of cases that have so solidly resisted solution that PM.w

most people don't try---exceptions such as the Microsoft Terminator Project are rare.

This kind of reduction is one I call "Waiting for Godot" after a play by Samuel Beckett in which two
people spend the whole time waiting for the title character but he never appears. The real import is that
there are a lot of "waiting for..." type problems about programs that one would like to tell in advance P

by examining the code of . The moral is that most of these problems, by dint of being undecidable in P
their general theoretical formulations, are practically hard to solve. The practical problem of eliminating
code bloat by removing never-used classes is one of them. Without strict version control, whether
blocks of code have become truly "orphaned" and no longer executed can become hard to tell.

[The transition to Thursday's lecture came out here.]

For a side note, the "type" of the target problem is "Just a progarm ", not "a program and an input P

string" as with itself. We did not map to ; is not the input to . Instead, is ATM ⟨M, w⟩ ⟨P, w⟩ w P x

quantified existentially in the statement of the problem. This makes sense: the code is useful so long
as some input uses it. The language of the problem combines two existential conditions:

• there exists an such that when is run on , ...x P x

• ...there exists a step at which creates an object of the class C.P

A language defined by existential quantifiers in this way, down to "bedrock" predicates like creating a
class object that are decidable, is generally c.e. The kind of algorithmic technique used to show this is
commonly called "dovetailing." I like to picture dovetailing as occurring inside an enclosing arbitrary
time-allowance loop. In this case, noting that we are trying to analyze :P

input ⟨P, C⟩

for :t = 1, 2, 3, 4, …

 for each input up to (or you can say: of length up to):x t t

 run for steps. If builds an object of class during those steps, accept . P x() t P x() C ⟨P, C⟩

This loop is a program such that , which is R L R = () {⟨P, C⟩ : ∃x P x builds an object of class C()[()]}

the language of the USEFULCLASS problem. So this language is c.e. but undecidable.

II The "All-or-Nothing Switch"

This actually builds on the "wait-for-it" kind of reductions. Note that had an instance type that HPTM

specified both "an and an input " but UsefulClass had the instance type "just a program " where M x P

the part was quantified as "Does there exist an such that ...?" When there is flexibility in how x x P x()

the " " part is treated, we can often hit a whole bunch of problems with a reduction at once. Here are x

three (and will make a fourth):KTM

NETM

Instance: A TM .M

Question: Is ?L M ≠ ∅()

ALLTM

Instance: A TM .M

Question: Is ?L M = 𝛴() *

EpsTM

Instance: A TM .M

Question: Does accept ?M 𝜖

In the first problem, it might seem more natural to phrase the question as "is ?" but that L M = ∅()

would make the language of the problem become , which is called . The ⟨M⟩ : L M = ∅{ () } ETM

reason we need to use is that when doing mapping reductions, we NE = TM {⟨M⟩ : L M ≠ ∅() }

need to make "yes" cases of the source problem line up with "yes" answers to the target problem. We
will see that usually it is impossible to do it the other way. Here is the reduction:

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x
(ignore x)

accept x. qrej

Here is a Turing machine, but we could get it by using the same call to the Turing Kit and then M'

converting the resulting Java code to a Turing machine as proved in the Friday 10/2 lecture. Or we can
just build by having (which depends on and) first write the fixed string on its tape M' M' M w ⟨M, w⟩

next to (or even in place of in this case) and then go to the start state of a universal TM which is x x U

made to run on . Either way, is computable---since is fixed and the initial "write " ⟨M, w⟩ f U ⟨M, w⟩

step takes time proportional to the length of to code, the latter more clearly makes linear-time ⟨M, w⟩ f

computable. So this construction is computable.

Here is the one-shot correctness analysis for all three target problems:
the "fuzzy box" main body of always exits, regardless of the input ;M accepts w ⟹ M' x

 for all inputs , accepts ;⟹ x M' x

 , which also implies that and accepts .⟹ L M' = 𝛴 () * L M' ≠ ∅() M 𝜖

Thus,
 is in all of , , and . Whereas,⟨M, w⟩ ∈ A ⟹ fTM (⟨M, w⟩ = ⟨M'⟩) ALLTM NETM EpsTM

the main body of rejects or never finishes; either way, it never accepts;M doesn't accept w ⟹ M'

 for all inputs , does not accept ;⟹ x M' x

 , which also implies that and .⟹ L M' = ∅ () L M' ≠ 𝛴() * 𝜖 ∉ L M'()

Thus,
, , and .⟨M, w⟩ ∉ A ⟹ fTM (⟨M, w⟩ ∉ E) TM f(⟨M, w⟩ ∉ ALL) TM f(⟨M, w⟩ ∉ Eps) TM

So we have simultaneously shown , , and .
Thus

A ≤ NETM m TM A ≤ ALLTM m TM A ≤ EpsTM m TM

all three of these problems and their languages are undecidable.

In passing, here's a self-study question: How would you go about showing ? Showing A ≤ KTM m TM

 was easy, but now we have to package an arbitrary pair into a single K ≤ ATM m TM ⟨M, w⟩

machine that accepts its own code if and only if accepts . If you think about this task M' M w

intensionally, it may seem daunting: how can we vary the code of for all the various strings so M' w

that does or does not accept its wn code depending on whether gets accepted by . How on M' w M
earth can we pack two things into one? But if you think extensionally in terms of the correctness logic
of a reduction, the answer might "jump off the page" at you...

By showing , we have not only shown that the language is undecidable, we A ≤ NETM m TM NETM

have shown it is not co-c.e. But since the language is c.e., could be c.e.---and indeed it is, ATM NETM

by dovetailing: Given any TM , for : try on all inputs for up to steps. If M' t = 1, 2, 3, … M' x < t t

 is found to accept any of them within steps, accept , else continue. That the language (of) M' t ⟨M'⟩

is c.e. is simpler to see: given , just run and accept if and when accepts . Eps TM M' M' 𝜖() ⟨M'⟩ M' 𝜖

But how about the language of ? Hmmm....ALLTM

III The "Delay Switch"

The third useful reduction technique is something I call the "Delay Switch." The intuition and attitude
are the opposite of "Waiting for Godot" and the all-or-nothing switch. This time you picture your target
machine or target program as monitoring a condition that you hope doesn't happen, such as M' P

when doing security for a building. The input to the target machine is first read as giving a length x t0

of time that you have to monitor the condition for. Usually we just take , the length of the input t = |x|0

string (you may always call this length too). If the condition doesn't happen over that time---that is, x n

if no "alarm" goes off---then you stay in a good status. But if the alarm goes off within steps, then t0

you "panic" and make (or) do something else. Because this is a general tool, let's show an M' P
example of the construction even before we decide what problems we're reducing to and from:

This flowchart is a little more complicated, but it is just as easily computed given the code of . We've M

given not in order to help tell this apart from the other reductions and because of the ⟨M⟩ ⟨M, w⟩

source problem we get. A key second difference is that all the components of are solid boxes: M'

 always halts for any . The logical analysis now says:M' x() x

• If never accepts its own code, then the diamond always takes the branch. So every input M no

 gets accepted, and so .x L M' = 𝛴() *

• If does accept its own code, then there is a number of steps at which the acceptance M t

occurs. Thus for any input of length , the simulation of in the main body sees x n ≥ t M ⟨M⟩()

the acceptance. So the branch of the diamond is taken, and the "post-alarm" action in this yes

case is to circle the wagons and reject . This means that all but the finitely many having x x

 get rejected, so not only is , it isn't even infinite.|x| < t L M' ≠ 𝛴() *

What this amounts to is: . So we have ⟨M⟩ ∈ D ⟺ L M' = 𝛴 ⟺ f ⟨M⟩ ∈ ALLTM () * () TM

shown , whereas before we showed , hence by transitivity, D ≤ ALLTM m TM A ≤ ALLTM m TM

. Since is not c.e., this means we have shown that is not c.e. either. K ≤ ALLTM m TM DTM ALLTM

Hence is neither c.e. nor co-c.e. To convey this consequence pictorially:ALLTM

⟨M⟩ ↪ M' =
f Simulate M ⟨M⟩()

for up to n steps

input x

 accept x

compute n = |x|

Did M
accept?no yes (panic!)

 reject x
(things are good)

There is an intuition which we will later turn into a theorem while proving its version for and - NP co NP

at the same time. The language has a purely negative feel: the set of such that does not DTM M M
accept its own code. When we boil this down to immediately verifiable statements, we introduce a
universal quantifier:

For all time steps , does not accept its own code in that step.t M

The watchword is that the language is definable by purely universal quantification over decidable DTM

predicates. So is the language:ETM

For all inputs and all time steps , does not accept within steps.x t M x t

We could combine this into just one "for all" quantifier by saying: for all pairs ... In any event, ⟨x, t⟩
much like having a purely existential definition is the hallmark of being c.e., haveing a purely universal
definition makes a language co-c.e. This is to be expected, because a negated definition of the form

 flips around to become .¬ ∃t R i, t() () ∀t ¬R i, t() ()

If the language is decidable, then so is its complement, which (ignoring the issue ⟨i, t⟩ : R i, t holds{ () }

of strings that are not valid codes of pairs) is the language of So we get the same bedrock of ¬R i, t .()

decidable conditions in either case.

With , however, we have to combine both kinds of quantifier into one statement to define it. The ALLTM

REC

RE co-RE

neither c.e. nor co-c.e.

DA , KTM

𝜃 > 45∘

A

B

means A ≤ Bm

 must ALLTM

be somewhere
in this intersec-
tion of cones.

TOT

REG

char

string

lang

class

number

ETM

∼ TOT

simplest definition of " " is:L M = 𝛴() *

For all inputs , there exists a timestep such that [accepts at step].x t M x t

The square brackets are there to suggest that the predicate they enclose is a "solid box" meaning
decidable. Believe-it-or-else, this predicate is also named for Stephen Kleene...in a slightly different
form which we will cover once we hit complexity theory.

Now you might wonder: is there a more clever way to define the notion of " " using just one L M = 𝛴() *

kind of quantifier? The fact that is neither c.e. nor co-c.e. says a definite no to this possibility. ALLTM

As for what it means in practice, you can use the "logical feel" of a problem to pre-judge whether it is
c.e. or co-c.e. (in which case, if asked to show the problem undecidable, the choice of problem to
reduce from is mostly forced), or neither---in which case, it's "carte blanche"---before proving exactly
how it is classified. For example, consider

TOT = M : M is total, i. e., ∀x, M x ↓ .{ () }

It has a "for all" feel to it. So the first intuition says it is not c.e. That is correct, and we can prove it by
showing via the delay switch. Then we can ask whether it is not co-c.e. either. In fact, D ≤ TOTTM m

 is highly similar to and the same ideas as for work to show TOT ALLTM A ≡ HPTM m TM

. A similar case is , which we can reduce from "by restriction." ALL ≡ TOTTM m EQTM ALLTM

Example: Prove this is neither c.e. nor co-c.e.EQ = ⟨M , M ⟩ : L M = L M .TM { 1 2 (1) (2)}

Make a special case the target: the case where , say, has . Call that . ThenM2 L M = 𝛴(2) * Mall

. And by the simple
simple
⟨M , M ⟩ ∈ EQ if and only if ⟨M ⟩ ∈ ALL1 all TM 1 TM ALL ≤ EQTM m TM

reduction . Because we showed is neither c.e. nor co-c.e., the same "45 f M = M, M() (all) ALLTM
∘

cone logic" says that is neither c.e. nor co-c.e.EQTM

[where the material goes from here: more examples of neither-c.e.-nor-co-c.e.; then undecidability via TM computation histories in

the latter part of section 5.1, finally saying why and (equivalently) are undecidable.]ALLCFG ALLPDA

