
CSE396 Lecture Tue. 5/4: Computation Checking and Complexity
 
Reductions Via Computation Traces 
 
We recall (from the April 8 lecture) the definition of instantaneous descriptions (IDs, also called 
configurations), which give the current state, current tape contents aside from blanks, and current 
head position(s) at any point in a computation by a Turing machine.  The starting ID on an input  x ∈ 𝛴*

is denoted by .  For a single-tape Turing machine  with start state  this can have the simple I x0( ) M s
form  where the state is treated as a character.  If we make TMs do "good housekeeping" I x = sx0( )

when they are about to produce an output  by blanking out everything on their tape(s) except for , y y
then the computations can end in a unique final ID .  If the TM is a decider, we can suppose it I = q yf acc

outputs  for "accept" and  for "reject".  Then it has a unique accepting ID .  We also defined 1 0 I = q 1f acc

the relation  to mean the ID  can go to the ID  in a single step by .  Thus a valid accepting I ⊢  JM I J M
computation (trace) has the form
 

,I x  ⊢  I  ⊢  I  ⊢  I  ⊢  ⋯  ⊢  I  ⊢  I ⊢  I0( ) M 1 M 2 M 3 M M t-2 M t-1 M f
 
and a valid computation that halts and rejects can be defined analogously with  as the last I  =  q 0rej rej

ID .  Then  is the number of steps---that is, the time taken by the computation---and we generally It t
suppose this is at least  where  is the length of .  The computation trace itself can be encoded n + 1 n x
as a string
 

. =  ⟨I x , I , I , I , … , I , I , I ⟩c 0( ) 1 2 3 t-2 t-1 t
 
of length , since the IDs can expand by at most one char in each step.  The key question is:O t2

 
What kinds of machines---or combinations  of machines or other formal objects---can tell whether Z
strings of this kind really represent valid computations?

 
That is, given any Turing machine , what does it take to recognize the language  of its valid M VM
computation traces?  Let's write this as a definition and observe a key set of facts:
 
Definition: For any Turing machine  (wlog. a single-tape deterministic TM),  is the language of its M VM
valid (accepting) computation traces.
 
Theorem: .  L M = ∅ ⟺  V = ∅( ) M ☒
 
Note that even if  is not total---indeed even if  is c.e. but undecidable so that  cannot be total--M L M( ) M
-the language  can be decidable.  This is because you are not just given  but an entire string VM x

, and you just need to determine by looking entirely within the w = ⟨I x , I , I , I , … , I , I , I ⟩0( ) 1 2 3 t-2 t-1 t

bounds of  itself whether it is valid.  This means checking thatw
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I  ⊢  Ik-1 M k
 
for all , .  This relation is decidable by checking that the action of some instruction k 1 ≤ k ≤ t

 in the code of  that is applicable in  (for instance on a single-tape TM, the ID could q, c / d, D, r( ) M Ik-1

be  for some strings  and ) produces the ID .  For example, suppose   uqcv u, v ∈ 𝛤* c ∈ 𝛤 Ik x = 011001

and the first three instructions executed by a single-tape TM  are , , and M s, 0 / 0, R, p( ) p, 1 / 0, R, q( )

.  Thenq, 1 / 1, L, r( )
 

= ⟨s011001, 0p11001, 00q1001, 0r01001, … ⟩c
 
The text defines linear bounded automata (LBAs) as machines to do the check, but I instead like to 
picture a two-tape kind of DFA, one that "Is-A" deterministic LBA anyway: 
 
Definition (not in the text): A two-head DFA (2HDFA) is a deterministic two-tape TM that gets its input 

 initially on both tapes, and whose heads may not move left.x
 

A 2HDFA can accept the nonregular language  by having one head advance to the  a b : n ≥ 0n n bn

part (or if the input  is , accept right away) while the other stays put, and then check  against .  It x 𝜖 an bn

can recognize the marked double-word language  in a similar manner.  DW = w#w :  w ∈ 0, 1{ }*

And that's essentially why 2HDFAs can check computations:
 

 
Note that most of the check is that the parts of the IDs away from the "state" part match char-by-char, 
as in .  Recall that  is not a CFL but it is the complement of a CFL.  Now  is like an iterated DW DW VM

version of .  The complement of , however, comes down to much the same as the complement DW VM

of .  Basically, a string  belongs to  if and only if either:DW w =  ⟨I x , I , I , … , I , I ⟩0( ) 1 2 t-1 t VM
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A two-head DFA checking computations, plus the idea of the Post Correspondence Problem
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• it doesn't have the correct form as a sequence of IDs, or
• there is a screwup  for some : no legal instruction can execute the change, or some I  ⊬  Ik-1 k k

other character mismatch.
 
The first kind of fault can always be detected on the fly---that's another reason we can often ignore the 
issue of "invalid codes" and assume a given string  has the right "angle-bracket" format.  The main w
point is that if the second happens, it is enough that it happens for just one .  Hence a nondeterministick
 PDA  can guess which  and then verify that there is a screwup.  (If a branch of  guesses the N k N
wrong , some other branch will guess the right  and accept; or if there is no screwup or other fault, all j k
branches will correctly reject.)  The ability of a PDA to detect a mismatch is related to the reason the 
complement of the double-word language is a CFL.  Thus we conclude:
 

Lemma: For any Turing machine ,  is a CFL.  Moreover, there is a computable mapping  such M VM h

that  giving a CFG  such that .  h ⟨M⟩  =  ⟨G⟩( ) G L G =( ) VM ☒
 
This finally brings us to the proof of a long-promised fact:  
 
Theorem: The  problem is undecidable.ALLCFG
 

Proof: , where  is given ⟨M⟩ ∈ E  ≡ L M = ∅ ⟺  V = ∅ ⟺  = ∅ ⟺  L G = 𝛴TM ( ) M L G( ) ( ) * G
by the computable mapping  .  h ⟨M⟩( ) ☒
 
In fact, this is part of a "Meta-Theorem":
 
General Theorem: For any type of machine or "machine combo"  that can verify computation traces, Z
the  problem ("emptiness problem for -machines") is undecidable.  If the combo represents "broken EZ Z
traces" instead, then  is undecidable.  ALLZ ☒
 
So what other " " besides a combo of two (D)PDA/grammars or "complement of a grammar" can do Z
computation-checking?  Here is a summary of examples---of which we care most about 5:
 

1. The complement of the language of a CFG, so  is undecidable.ALLCFG
2. A two-head DFA.  Since 2HDFAs are deterministic total TMs that can be complemented, both 

 and  are undecidable.E2HDFA ALL2HDFA
3. A  Post System , which (FYI) is defined as a set of tiles, each of which has a "top" string and a 

"bottom" string.  You can use as many copies of each tile as desired except for a unique 
starting tile, which can be as shown in the picture with top string " " (or just ). Some tiles have ⟨ 𝜖
shorter bottom string than top string---and inutitively they involve a machine blanking out a 
character, which it can do at each step in the "good housekeeping" routine mentioned above 
before accepting---which can involve a final tile having " " is its top string and " " (or ) as q 1⟩acc ⟩ 𝜖

 

 



its bottom string.  The goal is to add tiles after the start tile so that the whole top and bottom 
strings become equal.  We can convert any TM  and input  into a set  of tiles, with "M w TM,w

" as the bottom string of the start tile, that can be solved if and only if  accepts  (so we ⟨sw M w
can solve Post's problem by completing the computation trace).  So  ⟨M, w⟩ ∈ A  ⟺  TTM M,w
is a solvable case of Post's Problem, and so Post's Problem is undecidable.  Emil Post 
published the problem in 1946, but he had related ideas going back to the 1920s.

4. A linear bounded automaton (LBA), defined as a Turing machine that on any input  uses only x
the cells initially occupied by  (plus optionally the blanks to the left and right of , or we can x x
initialize with endmarkers  or  instead).  Called DLBA when deterministic, else NLBA.  ∧ x $ ⟨ x ⟩
A 2HDFA "Is-A" DLBA, and DLBAs are closed under complementation, so we've already proved 
the text's theorems about  and  being undecidable.EDLBA ALLDLBA

5. Boolean Circuits---wlog. of NAND gates only since NAND is a universal gate.  They can verify 
computations by arranging the alleged IDs in a  grid, since the space  used by t + 1 × t + 1( ) ( ) s
an ID cannot grow to be more than the time  elapsed.t

 

 
The concept of  works also when  is nondeterministic.  The circuits  can still verify that a given VM M Cn
computation branch of the NTM is legal, if the branch is written over the whole "circuit board."  But only 
when  is deterministic can  be given just " " (followed by the binary code for the rest of the M Cn ⟨I x0( )
top row being blanks) and then execute the rest of the computation, with the 0/1 (no/yes) answer 
coming on the output wire  as shown.  This says that (with only an  loss in efficiency that can w0 O t2

be cleverly reduced to  software can be burned into hardware.  We will use this idea when O t t( log ))

the input includes both  and a potential "witness string" .x y
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Computational Complexity (Ch. 7 now)
 
We have talked about the running times of Turing machines and algorithms in general, already.  It is 
finally time to formalize this.
 
Definition: 

1. Given a function , a DTM  runs in time  if for all  and inputs  of length , t :  N N→ M t n( ) n x n
within  steps.M x ↓( ) t n( )

2. Given a function , a DTM  runs in space  if for all  and inputs  of length , s :  N N→ M s n( ) n x n
while changing the character in at most  tape cells.M x ↓( ) s n( )

3. A nondeterministic Turing machine runs within a given time or space bound if all of its possible 
computations obey the bound.

 
Note that although a computation can "loop" within a finite amount of space, the machine is not 
regarded as running within that space (in practice, the activation stack or some other tracker would 
overflow).  When the input tape is read-only, the space measure is essentially equivalent to the number 
of cells accessed on the initially-blank worktapes.  For some examples:
 

• Every DFA runs in time .  The  allows an extra step for the Turing machine version of the n + 1 +1

DFA to go to  or  on the blank after the input  is all read, depending on whether the qacc qrej x
original DFA state is accepting or rejecting.

• An NFA might not run in time  if its computation uses -arcs a lot.  But it can be efficiently n + 1 𝜖

converted into an equivalent NFA without -arcs, and of course (but not always efficiently) into a 𝜖

DFA, both of which do run in time .  They all run in zero space.n + 1

• A 2-head DFA runs in time at most ; in worst case, one head advances while the other 2n + 1

stays put, then the other catches up.  Thus for any DTM or NTM , the language  belongs M VM

to  and hence to , as well as to  as the text implies.DTIME O n[ ( )] P DLBA

• A PDA runs in space equal to the maximum size of its stack during a computation, which is most 
often linear space.  It can be made to run in linear time, but the proof is not easy.

• All the problems in Chapter 4, section 4.1, can be decided by Turing machines that run in 
polynomial time, except for the ones that used converting an NFA or regexp into a DFA.

 
Definition: For any time function  and space function , using  to mean DTM and t n( ) s n( ) M

:N for NTM
1. DTIME t n  =  L M :  M runs in time t n[ ( )] { ( ) ( )}

2. NTIME t n  =  L N :  N runs in time t n[ ( )] { ( ) ( )}

3. DSPACE s n  =  L M :  M runs in space s n[ ( )] { ( ) ( )}

4. NSPACE s n  =  L N :  N runs in space s n[ ( )] { ( ) ( )}
 
Convention: For any collection  of time or space bounds, in particular one defined by -notation, T O

 means the union of  over all functions  in , and so on.DTIME T[ ] DTIME t n[ ( )] t n( ) T
 

 

 



Definition (some of the "Canonical Complexity Classes"):
1. P =  DTIME nO 1( )

2. NP =  NTIME nO 1( )

3. .DLBA =  DSPACE O n  =  L M :  M is a DLBA[ ( )] { ( ) }

4. .NLBA =  NSPACE O n  =  L N :  N is an NLBA[ ( )] { ( ) }

5. PSPACE =  DSPACE nO 1( )

6. .EXP =  DTIME 2nO 1( )

 
The latter equality in lines 3 and 4 is actually a theorem but is pretty immediate.  The only two class we 
know to contain languages not in  is the last one: we know .  Regarding line 5, it seems P P ⊊  EXP

we've skipped an analogously-defined class " " but it actually equals . Right now  NPSPACE PSPACE P

and , along with co-  will take center stage, beginning with an important NP NP =  ∼ L :  L ∈  NP{ }

analogy to , , and co- .  REC RE RE

 
 
Details about NP
 
The text gives the verifier definition of .  A verifier  for a language  decides a predicate .  NP V L R x, y( )

Whenever  holds we must have , and then  is called a witness (or certificate) for  being R x, y( ) x ∈ L y x
in .  This defines  to belong to  if:L L NP

 
•  runs in polynomial time (that is, the language  belongs to ), andV ⟨x, y⟩ :  R x, y  holds{ ( ) } P

• the length of  is bounded by a polynomial  in the length of .y p x
 
The theorem that this definition of  is equivalent to our first one says something even more general NP

about the relation to existential logic and the way  relates to . RE REC

 
Theorem For any language ,L

•  is c.e. if and only if there is a polynomial-time decidable predicate  such that for all L R x, y( )

,x ∈  𝛴*

.x ∈  L ⟺  ∃y ∈ 𝛴 R x, y* ( )

•  if and only if there are a polynomial-time decidable predicate  and a polynomial L ∈  NP R x, y( )

 such that for all ,p n( ) x ∈  𝛴*

.x ∈  L ⟺  ∃y ∈  𝛴 :  |y| ≤  p |x| R x, y* ( ) ( )

 
Proof: If we have an NTM  such that , then given any , take  to stand for the code of an N L N = L( ) x y
accepting computation trace (if any, that is, if ):x ∈ L
 

y =  ⟨I x , I , … , I ⟩0( ) 1 t
 

 

 



That is, the verifier just decides membership in the language .  If  runs in polynomial time , VN N q n( )

where , this means  and so  where .  And  is not only n = |x| t ≤  q n( ) |y| ≤ p n( ) p n = O q n( ) ( )2 VN

decidable but decidable in time linear in , which is likewise polynomial in .y|| n
 
Going the other way, given a verifier  deciding  per above, we can build an NTM  that on any V R x, y( ) N
input  uses nondeterministic steps to "guess" a string  and then runs  on .  The branch of  x y V ⟨x, y⟩ N
accepts  if  accepts , and per above, some such  exists if and only if .  Thus , x V ⟨x, y⟩ y x ∈ L L N = L( )

so  is c.e.---and if  is at most a polynomial in , then  runs in polynomial time, which puts such L |y| |x| N
an  into .  L NP ☒
 
Corollary: For any language ,L'

•  is co-c.e. if and only if there is a polynomial-time decidable predicate  such that for all L' R' x, y( )

,x ∈  𝛴*

.x ∈  L' ⟺  ∀y ∈ 𝛴 R' x, y* ( )

•  co-NP if and only if there are a polynomial-time decidable predicate  and a L' ∈ R' x, y( )

polynomial  such that for all ,p n( ) x ∈  𝛴*

.  x ∈  L' ⟺  ∀y ∈  𝛴 :  |y| ≤  p |x| R' x, y* ( ) ( ) ☒
 
This yields the analogy that furnishes the gut-check reason for believing  and co-NP the NP ≠ P NP ≠

way we showed  and co-RE:RE ≠ REC RE ≠
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Problems in NP and co-NP        [Lecture got as far as SAT, 3SAT, G3C,and TAUT]
 
It is usually easiest to tell that (the language of) a decision problem belongs to  by thinking of a NP

witness and its verification.  For example:
 
Satisfiability (SAT):
Instance: A logical formula  in variables  and operators .𝜙 x , … , x1 n ∧ , ∨ , ¬

Question: Does there exist a truth assignment  such that ?a ∈ 0, 1{ }n 𝜙 a , … , a  =  1( 1 n)
 
The assignment cannot have length longer than the formula, and evaluating a formula on a given 
assignment is quick to do.  Hunting for a possible satisfying assignment, on the other hand, takes up to 

 tries if there is no better way than brute force.  This is apparently hard even when the Boolean 2n

formula has a simple form.
 
Definition. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses

,𝜙 =  C  ∧  C  ∧  ⋯  ∧  C1 2 m
 
where each clause  is a disjunction of literals  or .  The formula is in -CNF if each clause has at Cj xi x⏨i k
most  distinct literals (strictly so if each has exactly ).  k k
 
3SAT
Instance: A Boolean formula  in 3CNF.𝜙 x , … , x  =  C  ∧  C  ∧  ⋯  ∧  C( 1 n) 1 2 m

Question: Is there an assignment  such that ? =  a a ⋯ a  ∈  0, 1a 1 2 n { }n 𝜙 a , … , a  =  1( 1 n)
 
Now for a problem with a different kind of witness:
 
Graph Three-Coloring (G3C):
Instance: An undirected graph .G =  V, E( )

Question: Does there exist a 3-coloring of the nodes of ?G
 
A 3-coloring is a function  such that for all edges , .  The 𝜒 :  V R, G, B→ { } u, v  ∈  E( ) 𝜒 u  ≠  𝜒 v( ) ( )

table for  needs only  entries where , so it has length at most linear in the 𝜒 n n =  |V| ≪  N =  |G|

encoding length  of  (often .  And it is easy to verify that a given coloring  is correct.N G N ≈  n2) 𝜒
 
PRIMES    (encoded as, say, )=  2, 3, 5, 7, 11, 13, 17, 19, 23, …{ } 10, 11, 101, 111, 1011, …
 
This language was formally shown to belong to  only in 2004, but had long been known to be "almost P

there" in numerous senses.  But now consider this one:
 
FACT:
Instance: An integer  and an integer .N k
Question: Does  have a prime factor  such that ?N p p ≤  k

 

 



 
If you can always answer yes/no in polynomial time , where  is the number of bits in , r n( ) n ≈  Nlog2 N
then you can do binary search to find a factor  of  in time .  By doing  and p N O nr n( ( )) N' =  n / p
repeating you can get the complete factorization of  in polynomial time.  This is something that the N
human race currently does not want us to be able to solve efficiently, as it would (more than Covid?) 
"destroy the world economy" by shredding the basket in which most of our security eggs are still 
placed.  (This is the gist of the 1992 movie Sneakers with Robert Redford heading an all-star cast.)  But 
to indicate proximity to this peril, we note:
 
FACT: FACT is in co- .NP ∩  NP

 

Proof: The witness for "no" as well as "yes" is the unique prime factorization .  N =:  p p ⋯ pa
1

1 a
2

2 a
ℓ

ℓ

Although the right-hand side may seem long,  cannot be bigger than the number of bits of  in binary ℓ N
because each  is at least , and bigger powers only make  have to be smaller.  The length of the pi 2 ℓ

factorization is .  To verify it, one must verify that each  is prime---but this is in polynomial time as O n( ) pi

above---and then simply multiply everything together and check that the result is .  Finally, to verify N
the yes answer, check that at least one of the  is ; no if none.  pi ≤  k
 
TAUT:
Instance: A Boolean formula , same as for SAT.𝜙'

Question: Is  a tautology, that is, true for all assignments?𝜙'
 
Note that  is unsatisfiable every assignment  makes  false every assignment  makes 𝜙 ≡ a 𝜙 a( ) ⟺ a

 true, where .  Thus TAUT is essentially the complement of SAT.𝜙' a( ) 𝜙' =  ¬𝜙
 

 

 

 

P

NP co-NP

TAUT
SAT,G3C

𝜃 >  45∘

A

B

means A ≤  Bp
m

REG

∃p ∀pNote differences from
the unbounded 
computability case: 
NP intersect co-NP is
not known (or believed) 
to equal P, and the 
quantifiers are length-
bounded by a polynomial.

FACT

PRIMES


