
CSE396 Lecture Tue. 5/4: Computation Checking and Complexity

Reductions Via Computation Traces

We recall (from the April 8 lecture) the definition of instantaneous descriptions (IDs, also called
configurations), which give the current state, current tape contents aside from blanks, and current
head position(s) at any point in a computation by a Turing machine. The starting ID on an input x ∈ 𝛴*

is denoted by . For a single-tape Turing machine with start state this can have the simple I x0() M s
form where the state is treated as a character. If we make TMs do "good housekeeping" I x = sx0()

when they are about to produce an output by blanking out everything on their tape(s) except for , y y
then the computations can end in a unique final ID . If the TM is a decider, we can suppose it I = q yf acc

outputs for "accept" and for "reject". Then it has a unique accepting ID . We also defined 1 0 I = q 1f acc

the relation to mean the ID can go to the ID in a single step by . Thus a valid accepting I ⊢ JM I J M
computation (trace) has the form

,I x ⊢ I ⊢ I ⊢ I ⊢ ⋯ ⊢ I ⊢ I ⊢ I0() M 1 M 2 M 3 M M t-2 M t-1 M f

and a valid computation that halts and rejects can be defined analogously with as the last I = q 0rej rej

ID . Then is the number of steps---that is, the time taken by the computation---and we generally It t
suppose this is at least where is the length of . The computation trace itself can be encoded n + 1 n x
as a string

. = ⟨I x , I , I , I , … , I , I , I ⟩c 0() 1 2 3 t-2 t-1 t

of length , since the IDs can expand by at most one char in each step. The key question is:O t2

What kinds of machines---or combinations of machines or other formal objects---can tell whether Z
strings of this kind really represent valid computations?

That is, given any Turing machine , what does it take to recognize the language of its valid M VM
computation traces? Let's write this as a definition and observe a key set of facts:

Definition: For any Turing machine (wlog. a single-tape deterministic TM), is the language of its M VM
valid (accepting) computation traces.

Theorem: . L M = ∅ ⟺ V = ∅() M ☒

Note that even if is not total---indeed even if is c.e. but undecidable so that cannot be total--M L M() M
-the language can be decidable. This is because you are not just given but an entire string VM x

, and you just need to determine by looking entirely within the w = ⟨I x , I , I , I , … , I , I , I ⟩0() 1 2 3 t-2 t-1 t

bounds of itself whether it is valid. This means checking thatw

https://cse.buffalo.edu/~regan/cse396/CSE396lect040821.pdf

I ⊢ Ik-1 M k

for all , . This relation is decidable by checking that the action of some instruction k 1 ≤ k ≤ t

 in the code of that is applicable in (for instance on a single-tape TM, the ID could q, c / d, D, r() M Ik-1

be for some strings and) produces the ID . For example, suppose uqcv u, v ∈ 𝛤* c ∈ 𝛤 Ik x = 011001

and the first three instructions executed by a single-tape TM are , , and M s, 0 / 0, R, p() p, 1 / 0, R, q()

. Thenq, 1 / 1, L, r()

= ⟨s011001, 0p11001, 00q1001, 0r01001, … ⟩c

The text defines linear bounded automata (LBAs) as machines to do the check, but I instead like to
picture a two-tape kind of DFA, one that "Is-A" deterministic LBA anyway:

Definition (not in the text): A two-head DFA (2HDFA) is a deterministic two-tape TM that gets its input

 initially on both tapes, and whose heads may not move left.x

A 2HDFA can accept the nonregular language by having one head advance to the a b : n ≥ 0n n bn

part (or if the input is , accept right away) while the other stays put, and then check against . It x 𝜖 an bn

can recognize the marked double-word language in a similar manner. DW = w#w : w ∈ 0, 1{ }*

And that's essentially why 2HDFAs can check computations:

Note that most of the check is that the parts of the IDs away from the "state" part match char-by-char,
as in . Recall that is not a CFL but it is the complement of a CFL. Now is like an iterated DW DW VM

version of . The complement of , however, comes down to much the same as the complement DW VM

of . Basically, a string belongs to if and only if either:DW w = ⟨I x , I , I , … , I , I ⟩0() 1 2 t-1 t VM

 s 0 1 1 0 0 1 , 0 p 1 1 0 0 1 , 0 0 q 1 0 0 1 , 0 r 0 1 0 0 1 , …

 s 0 1 1 0 0 1 , 0 p 1 1 0 0 1 , 0 0 q 1 0 0 1 , 0 r 0 1 0 0 1 , …

⟨ s 0 1 1 0 0 1 ,

s 0

0 p

1

1

1

1

1

1

0

0

0

0

,

,

0

0

p 1

0 q

. . .
0 q 1

r 0 1

q, 1 / 1, L, r()

. . .

p, 1 / 0, R, q()s, 0 / 0, R, p()

q 1 ⟩acc

A two-head DFA checking computations, plus the idea of the Post Correspondence Problem

⟨

⟩

• it doesn't have the correct form as a sequence of IDs, or
• there is a screwup for some : no legal instruction can execute the change, or some I ⊬ Ik-1 k k

other character mismatch.

The first kind of fault can always be detected on the fly---that's another reason we can often ignore the
issue of "invalid codes" and assume a given string has the right "angle-bracket" format. The main w
point is that if the second happens, it is enough that it happens for just one . Hence a nondeterministick
 PDA can guess which and then verify that there is a screwup. (If a branch of guesses the N k N
wrong , some other branch will guess the right and accept; or if there is no screwup or other fault, all j k
branches will correctly reject.) The ability of a PDA to detect a mismatch is related to the reason the
complement of the double-word language is a CFL. Thus we conclude:

Lemma: For any Turing machine , is a CFL. Moreover, there is a computable mapping such M VM h

that giving a CFG such that . h ⟨M⟩ = ⟨G⟩() G L G =() VM ☒

This finally brings us to the proof of a long-promised fact:

Theorem: The problem is undecidable.ALLCFG

Proof: , where is given ⟨M⟩ ∈ E ≡ L M = ∅ ⟺ V = ∅ ⟺ = ∅ ⟺ L G = 𝛴TM () M L G() () * G
by the computable mapping . h ⟨M⟩() ☒

In fact, this is part of a "Meta-Theorem":

General Theorem: For any type of machine or "machine combo" that can verify computation traces, Z
the problem ("emptiness problem for -machines") is undecidable. If the combo represents "broken EZ Z
traces" instead, then is undecidable. ALLZ ☒

So what other " " besides a combo of two (D)PDA/grammars or "complement of a grammar" can do Z
computation-checking? Here is a summary of examples---of which we care most about 5:

1. The complement of the language of a CFG, so is undecidable.ALLCFG
2. A two-head DFA. Since 2HDFAs are deterministic total TMs that can be complemented, both

 and are undecidable.E2HDFA ALL2HDFA
3. A Post System , which (FYI) is defined as a set of tiles, each of which has a "top" string and a

"bottom" string. You can use as many copies of each tile as desired except for a unique
starting tile, which can be as shown in the picture with top string " " (or just). Some tiles have ⟨ 𝜖
shorter bottom string than top string---and inutitively they involve a machine blanking out a
character, which it can do at each step in the "good housekeeping" routine mentioned above
before accepting---which can involve a final tile having " " is its top string and " " (or) as q 1⟩acc ⟩ 𝜖

its bottom string. The goal is to add tiles after the start tile so that the whole top and bottom
strings become equal. We can convert any TM and input into a set of tiles, with "M w TM,w

" as the bottom string of the start tile, that can be solved if and only if accepts (so we ⟨sw M w
can solve Post's problem by completing the computation trace). So ⟨M, w⟩ ∈ A ⟺ TTM M,w
is a solvable case of Post's Problem, and so Post's Problem is undecidable. Emil Post
published the problem in 1946, but he had related ideas going back to the 1920s.

4. A linear bounded automaton (LBA), defined as a Turing machine that on any input uses only x
the cells initially occupied by (plus optionally the blanks to the left and right of , or we can x x
initialize with endmarkers or instead). Called DLBA when deterministic, else NLBA. ∧ x $ ⟨ x ⟩
A 2HDFA "Is-A" DLBA, and DLBAs are closed under complementation, so we've already proved
the text's theorems about and being undecidable.EDLBA ALLDLBA

5. Boolean Circuits---wlog. of NAND gates only since NAND is a universal gate. They can verify
computations by arranging the alleged IDs in a grid, since the space used by t + 1 × t + 1() () s
an ID cannot grow to be more than the time elapsed.t

The concept of works also when is nondeterministic. The circuits can still verify that a given VM M Cn
computation branch of the NTM is legal, if the branch is written over the whole "circuit board." But only
when is deterministic can be given just " " (followed by the binary code for the rest of the M Cn ⟨I x0()
top row being blanks) and then execute the rest of the computation, with the 0/1 (no/yes) answer
coming on the output wire as shown. This says that (with only an loss in efficiency that can w0 O t2

be cleverly reduced to software can be burned into hardware. We will use this idea when O t t(log))

the input includes both and a potential "witness string" .x y

 s 0 1 1 0 0 1 ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵…

 0 0 q 1 0 0 1 ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵…

 0 p 1 1 0 0 1 ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵…

 0 r 0 1 0 0 1 ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵ ⎵…

⟨

⟨

⟨

⟨

⟨ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⟨ qacc 1

Input gates x ,x ,x ,x , … ,x1 2 3 4 n

⋱ ⋱⋱ ⋱ ⋱

The output wire of the circuit. Could also be coming from .w0 0 ⟨ q 0rej

𝛿
A single "gadget" of NAND gates, using binary code
for the chars and states of the given TM , that isM
based on the of and is replicated on the entire𝛿 M
circuit "wafer."

Boolean circuits simulating a TM on inputs of length .Cn M x n

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Computational Complexity (Ch. 7 now)

We have talked about the running times of Turing machines and algorithms in general, already. It is
finally time to formalize this.

Definition:

1. Given a function , a DTM runs in time if for all and inputs of length , t : N N→ M t n() n x n
within steps.M x ↓() t n()

2. Given a function , a DTM runs in space if for all and inputs of length , s : N N→ M s n() n x n
while changing the character in at most tape cells.M x ↓() s n()

3. A nondeterministic Turing machine runs within a given time or space bound if all of its possible
computations obey the bound.

Note that although a computation can "loop" within a finite amount of space, the machine is not
regarded as running within that space (in practice, the activation stack or some other tracker would
overflow). When the input tape is read-only, the space measure is essentially equivalent to the number
of cells accessed on the initially-blank worktapes. For some examples:

• Every DFA runs in time . The allows an extra step for the Turing machine version of the n + 1 +1

DFA to go to or on the blank after the input is all read, depending on whether the qacc qrej x
original DFA state is accepting or rejecting.

• An NFA might not run in time if its computation uses -arcs a lot. But it can be efficiently n + 1 𝜖

converted into an equivalent NFA without -arcs, and of course (but not always efficiently) into a 𝜖

DFA, both of which do run in time . They all run in zero space.n + 1

• A 2-head DFA runs in time at most ; in worst case, one head advances while the other 2n + 1

stays put, then the other catches up. Thus for any DTM or NTM , the language belongs M VM

to and hence to , as well as to as the text implies.DTIME O n[()] P DLBA

• A PDA runs in space equal to the maximum size of its stack during a computation, which is most
often linear space. It can be made to run in linear time, but the proof is not easy.

• All the problems in Chapter 4, section 4.1, can be decided by Turing machines that run in
polynomial time, except for the ones that used converting an NFA or regexp into a DFA.

Definition: For any time function and space function , using to mean DTM and t n() s n() M

:N for NTM
1. DTIME t n = L M : M runs in time t n[()] { () ()}

2. NTIME t n = L N : N runs in time t n[()] { () ()}

3. DSPACE s n = L M : M runs in space s n[()] { () ()}

4. NSPACE s n = L N : N runs in space s n[()] { () ()}

Convention: For any collection of time or space bounds, in particular one defined by -notation, T O

 means the union of over all functions in , and so on.DTIME T[] DTIME t n[()] t n() T

Definition (some of the "Canonical Complexity Classes"):
1. P = DTIME nO 1()

2. NP = NTIME nO 1()

3. .DLBA = DSPACE O n = L M : M is a DLBA[()] { () }

4. .NLBA = NSPACE O n = L N : N is an NLBA[()] { () }

5. PSPACE = DSPACE nO 1()

6. .EXP = DTIME 2nO 1()

The latter equality in lines 3 and 4 is actually a theorem but is pretty immediate. The only two class we
know to contain languages not in is the last one: we know . Regarding line 5, it seems P P ⊊ EXP

we've skipped an analogously-defined class " " but it actually equals . Right now NPSPACE PSPACE P

and , along with co- will take center stage, beginning with an important NP NP = ∼ L : L ∈ NP{ }

analogy to , , and co- . REC RE RE

Details about NP

The text gives the verifier definition of . A verifier for a language decides a predicate . NP V L R x, y()

Whenever holds we must have , and then is called a witness (or certificate) for being R x, y() x ∈ L y x
in . This defines to belong to if:L L NP

• runs in polynomial time (that is, the language belongs to), andV ⟨x, y⟩ : R x, y holds{ () } P

• the length of is bounded by a polynomial in the length of .y p x

The theorem that this definition of is equivalent to our first one says something even more general NP

about the relation to existential logic and the way relates to . RE REC

Theorem For any language ,L

• is c.e. if and only if there is a polynomial-time decidable predicate such that for all L R x, y()

,x ∈ 𝛴*

.x ∈ L ⟺ ∃y ∈ 𝛴 R x, y* ()

• if and only if there are a polynomial-time decidable predicate and a polynomial L ∈ NP R x, y()

 such that for all ,p n() x ∈ 𝛴*

.x ∈ L ⟺ ∃y ∈ 𝛴 : |y| ≤ p |x| R x, y* () ()

Proof: If we have an NTM such that , then given any , take to stand for the code of an N L N = L() x y
accepting computation trace (if any, that is, if):x ∈ L

y = ⟨I x , I , … , I ⟩0() 1 t

That is, the verifier just decides membership in the language . If runs in polynomial time , VN N q n()

where , this means and so where . And is not only n = |x| t ≤ q n() |y| ≤ p n() p n = O q n() ()2 VN

decidable but decidable in time linear in , which is likewise polynomial in .y|| n

Going the other way, given a verifier deciding per above, we can build an NTM that on any V R x, y() N
input uses nondeterministic steps to "guess" a string and then runs on . The branch of x y V ⟨x, y⟩ N
accepts if accepts , and per above, some such exists if and only if . Thus , x V ⟨x, y⟩ y x ∈ L L N = L()

so is c.e.---and if is at most a polynomial in , then runs in polynomial time, which puts such L |y| |x| N
an into . L NP ☒

Corollary: For any language ,L'

• is co-c.e. if and only if there is a polynomial-time decidable predicate such that for all L' R' x, y()

,x ∈ 𝛴*

.x ∈ L' ⟺ ∀y ∈ 𝛴 R' x, y* ()

• co-NP if and only if there are a polynomial-time decidable predicate and a L' ∈ R' x, y()

polynomial such that for all ,p n() x ∈ 𝛴*

. x ∈ L' ⟺ ∀y ∈ 𝛴 : |y| ≤ p |x| R' x, y* () () ☒

This yields the analogy that furnishes the gut-check reason for believing and co-NP the NP ≠ P NP ≠

way we showed and co-RE:RE ≠ REC RE ≠

P

NP co-NP 𝜃 > 45∘

A

B

means A ≤ Bp
m

REG

∃p ∀p

Note differences from
the unbounded
computability case:
NP intersect co-NP is
not known (or believed)
to equal P, and the
quantifiers are length-
bounded by a polynomial.

RE co-RE

REC

∃ ∀

K D

Problems in NP and co-NP [Lecture got as far as SAT, 3SAT, G3C,and TAUT]

It is usually easiest to tell that (the language of) a decision problem belongs to by thinking of a NP

witness and its verification. For example:

Satisfiability (SAT):
Instance: A logical formula in variables and operators .𝜙 x , … , x1 n ∧ , ∨ , ¬

Question: Does there exist a truth assignment such that ?a ∈ 0, 1{ }n 𝜙 a , … , a = 1(1 n)

The assignment cannot have length longer than the formula, and evaluating a formula on a given
assignment is quick to do. Hunting for a possible satisfying assignment, on the other hand, takes up to

 tries if there is no better way than brute force. This is apparently hard even when the Boolean 2n

formula has a simple form.

Definition. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses

,𝜙 = C ∧ C ∧ ⋯ ∧ C1 2 m

where each clause is a disjunction of literals or . The formula is in -CNF if each clause has at Cj xi x⏨i k
most distinct literals (strictly so if each has exactly). k k

3SAT
Instance: A Boolean formula in 3CNF.𝜙 x , … , x = C ∧ C ∧ ⋯ ∧ C(1 n) 1 2 m

Question: Is there an assignment such that ? = a a ⋯ a ∈ 0, 1a 1 2 n { }n 𝜙 a , … , a = 1(1 n)

Now for a problem with a different kind of witness:

Graph Three-Coloring (G3C):
Instance: An undirected graph .G = V, E()

Question: Does there exist a 3-coloring of the nodes of ?G

A 3-coloring is a function such that for all edges , . The 𝜒 : V R, G, B→ { } u, v ∈ E() 𝜒 u ≠ 𝜒 v() ()

table for needs only entries where , so it has length at most linear in the 𝜒 n n = |V| ≪ N = |G|

encoding length of (often . And it is easy to verify that a given coloring is correct.N G N ≈ n2) 𝜒

PRIMES (encoded as, say,)= 2, 3, 5, 7, 11, 13, 17, 19, 23, …{ } 10, 11, 101, 111, 1011, …

This language was formally shown to belong to only in 2004, but had long been known to be "almost P

there" in numerous senses. But now consider this one:

FACT:
Instance: An integer and an integer .N k
Question: Does have a prime factor such that ?N p p ≤ k

If you can always answer yes/no in polynomial time , where is the number of bits in , r n() n ≈ Nlog2 N
then you can do binary search to find a factor of in time . By doing and p N O nr n(()) N' = n / p
repeating you can get the complete factorization of in polynomial time. This is something that the N
human race currently does not want us to be able to solve efficiently, as it would (more than Covid?)
"destroy the world economy" by shredding the basket in which most of our security eggs are still
placed. (This is the gist of the 1992 movie Sneakers with Robert Redford heading an all-star cast.) But
to indicate proximity to this peril, we note:

FACT: FACT is in co- .NP ∩ NP

Proof: The witness for "no" as well as "yes" is the unique prime factorization . N =: p p ⋯ pa
1

1 a
2

2 a
ℓ

ℓ

Although the right-hand side may seem long, cannot be bigger than the number of bits of in binary ℓ N
because each is at least , and bigger powers only make have to be smaller. The length of the pi 2 ℓ

factorization is . To verify it, one must verify that each is prime---but this is in polynomial time as O n() pi

above---and then simply multiply everything together and check that the result is . Finally, to verify N
the yes answer, check that at least one of the is ; no if none. pi ≤ k

TAUT:
Instance: A Boolean formula , same as for SAT.𝜙'

Question: Is a tautology, that is, true for all assignments?𝜙'

Note that is unsatisfiable every assignment makes false every assignment makes 𝜙 ≡ a 𝜙 a() ⟺ a

 true, where . Thus TAUT is essentially the complement of SAT.𝜙' a() 𝜙' = ¬𝜙

P

NP co-NP

TAUT
SAT,G3C

𝜃 > 45∘

A

B

means A ≤ Bp
m

REG

∃p ∀pNote differences from
the unbounded
computability case:
NP intersect co-NP is
not known (or believed)
to equal P, and the
quantifiers are length-
bounded by a polynomial.

FACT

PRIMES

