
CSE439/510 Fall 2025 Week 1: QC Overview, Chapters 1, 2, and 3.1--3.2. 
 
Philosophy I: "Simple Realism"   

• Show polarizing filters.  (Link to chapter with photo.)
• Show part of talk https://cse.buffalo.edu/~regan/Talks/UnionCollege52115.pdf

 
Philosophy II: Is Nature Lexical?

• The idea of Logos from 500 BCE.  Identified, perhaps incorrectly, with "word".
• The possible meaning of the final sentence of Umberto Eco's novel The Name of the Rose, 

quoting Bernard of Cluny, 1100s:
 

Stat rosa pristina nomine; nomina nuda tenemus  
 
This means: The [original] rose abides (as a/by its) [original/former] name; we hold the bare names. It 
misquotes Cluny's "Stat Roma..." meaning that we (in the 1100s or 2000s) know the glory of ancient 
Rome only through recorded memory of it.  I, however, subscribe to a deeper reading that treats 
"pristina" as meaning "unsullied" rather than "original", takes some liberties with Latin grammar, and 
brings in Shakespeare's "a rose by any other name would smell as sweet" (as I believe Eco intended):
 

The rose abides unsullied by a name; we hold only the bare names.
 
Regarding the rose as representing Nature, and "names" as our lexical mathematical and programming-
language formalisms, the issue is whether Nature's workings must be read as paying heed to the 
symbolic way we describe them.  The (theoretically-)efficient quantum factoring algorithm by Peter Shor 
is a real challenge to the idea that nature is symbolically mathematical.
 
Even before computational complexity theory developed, there were loomings that caused Richard 
Feynman to exclaim, "Nature isn't classical, dammit!" (whole quote).  Feynman wrote a paper about 
building a quantum machine to do simulations circa 1980.  David Deutsch took up the technical mantle 
in the 1980s while he was a postdoc at Oxford, where I was a student.  We will pick up his story in 
detail later in chapters 8 and 9.  He first thought that quantum computers could solve the Halting 
Problem in definitive time, but when that was rebuffed, he started again on a smaller scale.  That is 
where we will begin.
 
Quantum States
 
[Note: I have edited the following to number from zero in "underlying co-ordinates" as in the text.  This 
is different from how most linear algebra texts do it.  It will however be conventional to number 
"quantum coordinates" from 1.]  Natural systems can be modeled (inefficiently!?) by vectors
 

 

 

https://cse.buffalo.edu/~regan/cse491596/LRQmitbook2pp131-147.pdf
https://cse.buffalo.edu/~regan/Talks/UnionCollege52115.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm
https://x.com/ProfFeynman/status/1756541914700988574
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We say that  has  "underlying coordinates."  Often  will be a power of , , where  will be a N N 2 N =  2

n n

the number of "quantum coordinates" or qubits.  We can also have powers of larger numbers , d

.  When  we will get qutrits,  will give quarts, and the general case gives qudits.  N =  dn d = 3 d = 4

Maybe over 99% of the "QC" literature is about qubits.  But actually, let's first think of  as not being N
subdivided at all.
 
One insight of linear algebra is that the entries  are not just "things unto themselves" but stand for ai

multiples of corresponding basis vectors:
 

,a  =   a  e  +  a  e  +  a  e  +  ⋯  +  a  e  +  ⋯  a  e0 0 1 1 2 2 i i N N

 
where for each ,i
 

e   =   0, 0, 0, … , 0, 1, 0, … , 0i [ ]T

 
with the lone 1 in position .  Notice we're being picky about considering vectors to be column vectors i

and writing transpose  to make  be a column vector.  (Whether Nature really makes this distinction is T ei

a real question.  We took the "no" side in the first edition, but using the angle-bracket notation from 
physics makes an initial commitment to the "yes" side.)  With this notation, the vectors  are ei

collectively called the standard basis.
 
A second insight of linear algebra is that one need not be "wedded to the standard basis"---one can do 
a change-of-basis.  In general -dimensional linear algebra, any set of  linearly independent vectors N N

can be a basis.  For instance, in  dimensions, the vectorsN = 2
 

   and   1, 0[ ] 0.6, 0.8[ ]
 
are linearly independent (since there are only two vectors, the point is that neither is a multiple of the 
other).  However, the second one is kind-of redundant in the first coordinate with the first.  Whereas 

 is "only East" and   is "only North"---they are orthogonal, meaning that their e  =  1, 00 [ ] e  =  0, 11 [ ]
inner product is zero.  

 

 



We can diagram these vectors on the unit circle---note that .  The 0.6  +  0.8  =  0.36 + 0.64 =  12 2

inner product of  and our "East" vector is .0.6, 0.8[ ] 0.6 ⋅ 1 +  0.8 ⋅ 0 =  0.6
 
There are several ways to write the inner product of two vectors  and :a b

 
,     ,    .a ∙  b ⟨a, b⟩ ⟨a | b⟩

 
The last is what feeds into Dirac Notation, as the bra(c)ket of the row vector  and the column 
vector 

⟨a|

.  I will mention alongside various notations in chapter 2 and onward, but not require it.  In order to |b⟩
motivate the notation scheme, I will briefly jump ahead to the topic of tensor products (chapter 3, 
section 3.2) but come right back out of it.
 
[The first lecture then covered syllabus information: homework and exams; expectations; grade 
objectives and policies; sequence of material to be covered.  The second lecture picked up here.]
 
 
Tensor Products

 

 

1, 0[ ]

0, 1[ ]

0.6, 0.8[ ]

"East"

"North"

0.8, -0.6[ ]



When you think of matrices and vectors, the first idea that pops into mind is the ordinary matrix product 
 of an  and an  matrix.  But this is "lossy," whereas concatenation must be lossless AB ℓ ×  m m ×  n

(except possibly for memory of the place where the strings got concatenated).  Instead, Nature uses 
tensor product, which applies also to vectors and doesn't need the "shapes" of the operands to agree. 
 Here is an informal definition that is more general than matrices:
 
[This part of the lecture was done at the blackboard.]
 
 
Definition: The tensor product  of two "aggregate objects"  and  is obtained by multiplying A ⊗  B A B

every element of by a whole copy of , and adjusting dimensions accordingly.A B
 
The most basic important example also introduces another general question in physics: does Nature 
distinguish "handedness"?  The technical word for this is chirality.  Whatever the answer for "nature's 
rose", we with our mathematical nomenclature have to be careful.  Note that whereas ordinary 
multiplication associates left-to-right, matrix multiplication goes right-to-left.  A concrete illustration for 

 matrices is, how would you calculate  given a length-  vector ?  If you multiply  and  n × n A ⋅ B u( ) n u A B

first, you spend order-of  steps doing that the usual way.  Whereas, if you work right-to-left by first n3

computing  and then doing , you spend order-of  operations twice, which is still order-of v =  Bu Av n2

 time.  (We will define the notation  etc. for "order-of" shortly.)  n2 O n2

 

Example: We will represent the qubit "object" 0 by the standard basis vector  and 1 by e =0
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Note that the latter is the standard basis vector , continuing our policy of numbering the -many e2 N

"underlying coordinates" from .  If we write  in binary as  and  as  then we get:0 2 10 1 01,
 

    and    .  e ⊗ e = e0 1 01 e ⊗ e = e1 0 10

And:
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Thus tensor product does concatenation on the binary strings that index the standard basis vectors, 
first in dimension  and then in dimension .  The resulting ordering of the binary strings as 2 4

 

 

https://en.wikipedia.org/wiki/Chirality_(physics)


 is called lex(icographic) order.  A more visceral way to refer to the standard basis 00, 01, 10, 11

vectors is to put "brackets" around the binary strings themselves: .  This notation , , ,00 01 10 11
was invented circa 1930 by the physicist Paul Dirac, so is called Dirac notation.  It is defined in the 
posted excerpt of Chapter 14 of the text, which we will read in parallel starting next week.  Here are the 
two notations side-by-side:
 

 =  e  =  1, 0, 0, 0  =  1, 0 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  00 00 ( ) ( ) ( ) 0 0 0 0 0 0

 =  e  =  0, 1, 0, 0  =  1, 0 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  01 01 ( ) ( ) ( ) 0 1 0 1 0 1

 =  e  =  0, 0, 1, 0  =  0, 1 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  10 10 ( ) ( ) ( ) 1 0 1 0 1 0

 =  e  =  0, 0, 0, 1  =  0, 1 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  11 11 ( ) ( ) ( ) 1 1 1 1 1 1

 
Now we can picture this example as a case of the general rule for when  is a 2-vector  and A a , a[ 1 2]T

.  Here I'm using the superscript  for "transpose" just to avoid typing column vectors, B = b , b[ 1 2]T T

which are bulkier with vertical space.  (Actually, you can apply the tensor rule to two row vectors without 
transposing; then you get a longer row vector.)

 
An -qubit quantum state is denoted by a unit vector in  where .  Thus, a 2-qubit state is n C

N N =  2n

represented by a unit vector in .   That takes up  real dimensions.  There are tricks that get this C
4 8

 

 



down to a 6-dimensional hypersurface in , but until we have a Hyper-Zoom able to help us visualize R
7

7-dimensional space, we have to rely on linear algebra and some general ideas about Hilbert Spaces 
(that don't care whether they are real or complex).
 
There is an even more immediate "left-right" issue to get to.  What the text in chapter 2 calls the 
canonical numbering of strings is actually a choice.  For two qubits, the above amounts to:
 

00 =  0

01 =  1

10 =  2

11 =  3.
 
This is indeed canonical in being how we write binary numbers.  It also orders the (same-length) binary 
strings in lexicographical order, as used by ASCII.  However, this makes column 1 (which we will 
soon call "qubit 1") the most significant bit.  This is big-endian.  The other way is to make the leftmost 
column be the least significant bit:  
 

00 =  0

10 =  1

01 =  2

11 =  3.
 
This is little endian.  Here are the comparisons for length-3 strings:
 

 
An important curveball with little endian is that the relation to tensor product of basis elements does not 
work---it needs another reversal.  For instance:
 

 is still  in little-endian, because the order of  and  by themselves is the same.e0
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0
0 1
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Big End ian
000 = 0

001 = 1
010 = 2
011 = 3

100 = 4
101 = 5

110 = 6
111 = 7

Little End ian

000 = 0
100 = 1
010 = 2

110 = 3
001 = 4
101 = 5

011 = 6
111 = 7



 

 which alas is not the index for .  You have e  ⊗  e  =  ⊗    =     =   0 01
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to flip the tensor product too, using a revised definition:
 
Definition: The "little endian" tensor product of two "aggregate objects"  and  is obtained by A B

multiplying every element of by a whole copy of , and adjusting dimensions accordingly.B A

 
Applied to  and  as above, we instead form:A = e0 B = e01
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Looking back in the Little Endian table, this is the index for  as we want.  Thinking about the flipped e001

definition a little more, it turns out to be the same as doing .  Note that like with matrix product---B⊗A
and more pertinently, like with string concatenation---tensor product is not usually commutative.  But if 
we import the details of reversing the tensor product into our mental mindscape, confusions that we 
already have to deal with could get mushroomed.  
 
Happily, there is a "visual" way to handle the reversals and read diagrams from little-endian web apps 
such as Quirk and Qiskit while staying inside big-endian notation---which is used by the most 
immediately user-friendly app, Davy Wybiral's Quantum Circuit Simulator.  All of them portray quantum 
circuits the same way, rather like notes on a musical staff, e.g.:

 

 

https://algassert.com/quirk
https://www.ibm.com/quantum/qiskit
https://wybiral.github.io/quantum/


 
In little-endian, the qubits might not themselves be labeled woth  and  on the bottom, but the little-x1 y1

endian matrix representations of the gates would look that way.  However, we can mentally convert if 
we imagine rotating the diagram 90 degrees right and reading across-and down, so that  is in x4

the leftmost column and gets read as if it were " ", etc.  Some other discussion:x1

 
https://quantumcomputing.stackexchange.com/questions/8244/big-endian-vs-little-endian-in-qiskit
https://pasqal-io.github.io/qadence/v1.5.2/content/state_conventions/
 
We will use Big Endian officially in this course---needing Little Endian only to read optional quantum 
circuit widgets that use it.
 
 
Tensor products can be repeated---but they get exponentially big when you do so.  Simply for instance:
 
e ⊗  e  ⊗  e  =  e ⊗ e ⊗ e  =  1, 0, 0, 0 ⊗  e  =  1, 0, 0, 0, 0, 0, 0, 0  =  e0 0 0 ( 0 0) 0 ( )T 0 ( )T 000

 
e  ⊗  e  ⊗  e  ⊗  e  =  e ⊗ e  =  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  =  e0 0 0 0 000 0 ( )T 0000

 
a  followed by 255 s .e   =  e  =  ⊗8

0 00000000 ( 1 0 )

 
 
Time Complexity and O-Notation
 
The number  will generally stand for "the total number of unit-size data points."  The concepts "time at n
most order-of", "time proportional to", and "vanishingly smaller than" are necessarily rough.  We can, 
however, give a precise mathematical definition of them in a way that incorporates their roughness:
 
The key definition is: Given two numerical functions  and ,f n( ) g n( )
 

•  if there are constants  and  such that for all , .f n  =  O g n( ) ( ( )) c n0 n ≥  n0 f n  ≤  c ⋅ g n( ) ( )

•  if  and .f n  =  𝛩 g n( ) ( ( )) f n  =  O g n( ) ( ( )) g n  =  O f n( ) ( ( ))

•  if the limit of  goes to 0 as  goes to infinity.f n  =  o g n( ) ( ( )) f n / g n( ) ( ) n

 

 

https://quantumcomputing.stackexchange.com/questions/8244/big-endian-vs-little-endian-in-qiskit
https://pasqal-io.github.io/qadence/v1.5.2/content/state_conventions/


 

 

 



 
More examples of curves, tradeoffs, and the role of the leading constant are in the graphs of Jim 
Marshall from a course at Sarah Lawrence:
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html
 
 
Some useful instances:
 

which is still  exponential in . =   = 2  =  2  N 2n n 1/2 n/2 2𝛩 n( ) n

 

But .2  =  2  =  n  =  polynomialO n(log ) n(log ) O 1( ) O 1( )

 

Concretely with 3 as the "constant in the ":  .O 2  =  2  =  n  =  polynomial3 n(log ) n(log ) 3 3

 
 
[Computational complexity classes will be introduced later alongside chapters 4 and 5, where they are 
more technically relevant.]

 

 

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html

