

Open book, open notes, closed neighbors, 170 minutes after a 10-minute read-through period. The exam totals 267 pts., subdivided as shown. Do *all seven problems* on these exam sheets. em Always show your work—this may help for partial credit. Use of a quantum circuit simulation app—whether online or downloaded—or matrix calculator is forbidden. You may use—and cite—theorems and facts from lectures and homeworks without further justification.

Notation: You may freely mix “standard linear algebra notation” and “Dirac *bra-ket* notation” for quantum states. For example, e_{10} means the same thing as $|10\rangle$ and is represented (in big-endian notation) by the unit column vector $[0, 0, 1, 0]^T$. Non-unit vectors should only use the standard notation. For matrix outer-products the *ket-bra* form typified by $|+\rangle\langle-|$ is standard. The notation $\langle u | v \rangle$ is the same as $\langle u, v \rangle$ for inner product. Quantum state vectors use big-endian notation by default; if you switch to little-endian you must say so.

[Your actual final exam will use exam booklets. Its formatting will be close to this but will differ somewhat.]

(1) (3 × 15 = 45 pts.) *Short-answer questions.* A single pithy sentence may suffice; general expectation is a paragraph of 2–4 sentences. (This is technically the same as **true/false with justifications** but with longer questions.)

- If A and B are unitary matrices, must $\frac{1}{\sqrt{2}}(A + B)$ be unitary? If you say yes, prove it; if you say no, give a concrete counterexample.
- Suppose you know in advance that a Grover search problem has exactly one solution $y \in \{0, 1\}^n$. The Grover oracle reflects about the “miss vector” $\mathbf{m}_{\{y\}}$, and the “hit vector” $\mathbf{h}_{\{y\}}$ is a simple linear combination of $\mathbf{m}_{\{y\}}$ and the all-1s vector \mathbf{j} (which is easily computed via $\mathbf{H}^{\otimes n}|0^n\rangle$). Explain as best you can why Grover’s algorithm cannot simply jump to $\mathbf{h}_{\{y\}}$ in one iteration step and then measure to give y with virtually 100% probability.
- Suppose $M = pq$ is a product of two odd primes and a is relatively prime to M with $1 < a < M$. Then $z = a^2 \pmod{M}$ is a quadratic residue modulo M . Find a different number $b < M$ such that $b^2 \pmod{M} = z$, show this, and say why $b \neq a$.

(2) (9+6+15 = 30 pts. total)

Make a quantum circuit of two qubits—both initialized to $|0\rangle$ —with the following gates:

1. A Hadamard on line 1 only.
2. A CNOT gate with control on line 1 and target on line 2.
3. An **S** gate on line 1. (This is also called the *phase gate* and has matrix $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.)
4. Another CNOT gate with control on line 1 and target on line 2.

- (a) Calculate the resulting two-qubit state ϕ .
- (b) Is ϕ entangled? Prove your answer.
- (c) Now replace the second CNOT gate by a **CZ** gate on the same two qubits. Calculate the final state ϕ' now and again say whether it is entangled.

(3) (12 + 6 + 9 + 9 + 6 = 42 pts. total)

Make a quantum circuit C on three qubits by placing the following gates:

1. Hadamard gates on all three lines.
2. A CZ gate between lines 1 and 2.
3. A CNOT gate with control on line 1 and target on line 3.
4. A CZ gate between lines 2 and 3.
5. Hadamard gates on all three lines again.

This differs from a graph-state circuit only in having the CNOT gate.

- (a) Compute $\langle 0^n | C | 0^n \rangle$ without resorting to 8×8 matrix multiplications. Using a “maze diagram” is fine, but there are methods even shorter than that.
- (b) Compute the state ϕ that was present before the final three Hadamard gates—that is, after the second **CZ** gate. (This might already be part of your answer to part (a).)
- (c) Compute the density matrix $\rho = |\phi\rangle\langle\phi|$. (OK, this is tedious—but you get 9 pts. for it.)
- (d) Trace out qubit 3 from ρ .
- (e) Does the resulting 2-qubit density matrix ρ' represent a pure state? a completely mixed state? a mixed state but not completely mixed? Justify your answer.

(4) (36 pts. total)

Let A be the Hermitian PSD matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

- (a) Find its spectral decomposition $A = \lambda_1 |u_1\rangle\langle u_1| + \lambda_2 |u_2\rangle\langle u_2|$.
- (b) Calculate $U = e^{i\pi A}$ by replacing λ_1 with $e^{i\pi\lambda_1}$ and ditto for λ_2 .
- (c) Say briefly why U is unitary. What quantum operation (if any) does it represent?

(5) (12 + 6 + 24 = 42 pts.)

Make a quantum circuit of two qubits—both initialized to $|0\rangle$ —by placing the following gates:

1. A Hadamard gate on line 1 only.
2. Then a **T**-gate on line 1 only.
3. A CNOT gate with control on line 1 and target on line 2.
4. Another Hadamard gate on line 1.

(a) Calculate the final quantum state ϕ of two qubits.

(b) Show that ϕ is entangled.

(c) Use the SVD truncation technique to approximate ϕ by a separable state $\alpha \otimes \beta$.

(6) (36 pts. total)

Design a quantum circuit C of 3 qubits that on input $|000\rangle$ prepares the pure state

$$\frac{1}{2} (|001\rangle - |011\rangle - |100\rangle + |111\rangle).$$

(7) (6 × 6 = 36 pts. total) *Multiple choice*—no justifications are required but may help for partial credit:

1. If a one-qubit quantum state $|\phi\rangle$ is measured in an orthonormal basis $B_1 = \{|u_1\rangle, |v_1\rangle\}$ versus another orthonormal basis $B_2 = \{|u_2\rangle, |v_2\rangle\}$, then:
 - (a) The probability of outcome $|u_1\rangle$ using B_1 will be the same as that of outcome $|u_2\rangle$ using B_2 .
 - (b) The probability of outcome $|u_1\rangle$ using B_1 will either be the same as that of the outcome $|u_2\rangle$ using B_2 or the outcome $|v_2\rangle$ using B_2 , because the basis could be listed either way.
 - (c) One could have the probability of outcomes $|u_1\rangle$ versus $|v_1\rangle$ be 50-50 while the probability of outcomes $|u_2\rangle$ versus $|v_2\rangle$ could be 75% versus 25%.
 - (d) It is possible for both the probability of getting $|u_2\rangle$ and the probability of getting $|v_2\rangle$ to be zero when the basis B_2 is used.
2. A three-qubit quantum circuit C with the property that for any single-qubit pure state $|\phi\rangle$, C on input $|\phi\rangle \otimes |0\rangle \otimes |0\rangle$ outputs $|0\rangle \otimes |\phi\rangle \otimes |\phi\rangle$ is:

- (a) Built simply by placing Hadamard on line 1, then two CNOT gates with controls on line 1 and targets on lines 2 and 3, respectively, and finally another Hadamard gate on line 1.
- (b) Buildable by modifying the circuit in the text for “teleporting” an arbitrary qubit $|\phi\rangle$.
- (c) Impossible, as shown by the No-Cloning Theorem.
- (d) Impossible, by Holevo’s theorem that n qubits can yield only n bits of classical information.

3. A unitary 4×4 matrix:

- (a) Always has positive real eigenvalues.
- (b) May have 0 as an eigenvalue.
- (c) Has only eigenvalues of the form $e^{i\theta}$ for some angle θ , $0 \leq \theta < 2\pi$.
- (d) Has eigenvalues whose squares sum to 1.

4. A Hermitian 4×4 matrix:

- (a) Always has positive real eigenvalues.
- (b) May have 0 as an eigenvalue.
- (c) Has only eigenvalues of the form $e^{i\theta}$ for some angle θ , $0 \leq \theta < 2\pi$.
- (d) Has eigenvalues whose squares sum to 1.

5. The CHSH Game is significant because:

- (a) It proves that faster-than-light communication is possible.
- (b) No physical system that operates only locally—without using non-local quantum entanglement—can achieve success probability over 75% in the long run of repeated trials.
- (c) Experiments have achieved success probability over 80%—nearing the theoretical 85.3...%—by quantum means (winning a Nobel Prize, incidentally).
- (d) Two of the above statements are true but the other is not true.

6. Shor’s Algorithm:

- (a) Has been used to factor integers of over 1,000 digits of the kind used in RSA encryption with consistent success.
- (b) Solves a problem in quantum polynomial time that classical computers have been proved not to be able to solve in deterministic polynomial time.
- (c) Challenges the assertion that natural processes can always be modeled precisely and efficiently in a computer language like C++.
- (d) Cannot be executed using quantum circuits that have only Hadamard, CNOT, and T-gates.