
CSE439, Fall 2024 Problem Set 3 Due Thu. 10/3, 11:59pm

Reading: For next week, read Chapter 8. This is the last chapter that will be covered by the
First Prelim Exam, which will be held in class period on Thursday, October 10. The
doman of the exam will be homeworks through this one and factual material such as found
on multiple-choice or true/false-type questions.

For a note on notation, I find it convenient to interchange general linear-algebra notation
such as e0 and e1 for standard-basis vectors and u for a general vector, with the equivalent Dirac
notation forms |0⟩, |1⟩, and |u⟩. Bolding the former, as e0, e1, and generally u, emphasizes
when they are unit vectors. Of course the Dirac ket forms can only be unit vectors. Similarly,
a general matrix may be written A, while A emphasizes that the matrix is unitary. Or bold
can be used for a non-unitary Hermitian matrix like the outer-product Jn = |+n⟩ ⟨+n|—we
will see much later a sense in which Hermitian and unitary matrices correspond to each other.
There are three contexts where I find Dirac notation best:

� To represent any conceptual attribute, like a binary string x or the spade suit in a deck
of playing cards, as a basis vector: |x⟩, |♠⟩.

� For outer products |u⟩ ⟨v|, so you can combine with inner products elsewhere, etc.

� For functional-superposition states
∑

x |x⟩ |f(x)⟩.

—————-Assignment 3, due Thu. 10/3 “midnight stretchy” on CSE Autolab—————-

(1) This question is about cases where the states on the two qubit lines before and after
a CNOT gate are both separable. Note that we have seen cases where the state coming in
(after one Hadamard gate on line 1) is |+⟩ ⊗ |0⟩, which is separable, but the state going out
is entangled. So for the exit state to be also separable in the form |u′⟩ ⊗ |w⟩, as shown in the
following diagram, is already fairly special.

We have seen cases where |u⟩ is the standard basis state e0. Then |w⟩ = |v⟩ so the gate is a
no-op, and also |u′⟩ = |u⟩ = e0 back on line 1. And if |u⟩ is the standard basis state e1, then
any |v⟩ = ce0 + de1 gets flipped around to |w⟩ = de0 + ce1.

(a) Find the only other case where |u′⟩ = |u⟩. Note that if you write |u⟩ = ae0 + be1, then
“other case” (meaning apart from |u⟩ = e0 and |u⟩ = e1) entails that both a and b are
nonzero. What happens to |v⟩ and |w⟩ in that case? (Show your scratchwork. 12 pts.)

(b) Now try |v⟩ = |−⟩ = 1√
2
[1,−1]T . Do you get |u′⟩ = |u⟩ in this case? Also take an initial

stab at trying to answer: Does this exhaust the possible cases in which the states before
and after the CNOT are both separable? (6+3+3=12 pts.)



(c) A vector x is an eigenvector of a general matrix A, with associated eigenvalue λ,
if Ax = λx. Use all the above discussion and figuring to produce four eigenvectors
of the CNOT matrix, and their eigenvalues, such that the four vectors are linearly
independent and orthogonal to each other. (12 pts.)

For some help on (c), consider A =

[
0 1
1 0

]
. Then x = [1, 1]T is an eigenvector with eigenvalue

1. Also y = [1,−1]T is an eigenvector with eigenvalue −1, since Ay = [−1, 1]T = −y. Dividing
x and y by any constants, such as by

√
2 to make them unit vectors, still leaves them as

eigenvectors with the same eigenvalue. Since x and y are orthogonal, the division by
√
2

produces an orthonormal eigenbasis.

(2) Text, problems 3.13–3.14 in Chapter 3, and then also problem 6.9 in chapter 6. (15+9+6
= 30 pts.)1

(3) (a) Draw the graph-state quantum circuit CG for the graphG = (V,E) with V = {1, 2, 3}
and E = {(1, 2), (2, 3), (1, 3), (1, 1)}. That is, G is the undirected triangle graph on three nodes
(thus far as shown in lecture) but with an extra self-loop on node 1. You may use a snip from
a simulator such as Davy Wybiral’s or Quirk or Qiskit showing the circuit instead.

(b) Use a “maze diagram” to compute ⟨000|CG |000⟩—at least to tell whether this amplitude
is zero. Recall from lecture that the “wavefront” after the initial stage H⊗3 will have all-
positive “mice,” and the final H⊗3 stage going back up to |000⟩ will not change the signs of
any mice after they get there. So you only need to draw the middle section of the diagram
for the three CZ gates and the one Z gate (which can be in any order) then count how many
mice end up still positive and how many end up negative.

(c) Now make G′ by adding a self-loop at node 3 too. What happens to ⟨000|CG′ |000⟩?
Tweak your trace from part (b) to show the answer. (18 pts. total, for 84 on the problem set)

1I am actually working on a version of problem 6.10 where the object is just to simulate the T gate on one
qubit line (identity or whatever on the other line). This can be done to any desired degree of approximation,
but I suspect it cannot be done exactly.


