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The second backtrack point comes after the measurement.  A quantum technote: Because the 
measurement "collapses" the quantum state , in the actual quantum algorithm, backtracking here b

requires rebuilding the whole functional superposition---i.e., redoing the whole circuit.  But in my brute-
force quantum simulator, it can do another sample without having to re-create all the Boolean formulas 
that simulate the superposed applications of .f x  =  a  Ma( ) x mod

 

 

 



 

 

 



 
 

 
 

 

 



 
Footnote:

 
Now to set up the main quantum analysis:

 

 



 
[The Tuesday 10/28 lecture ended here.]
 

 

 

 



 

 

 



 
And that completes the proof that the one-shot success probability of getting the actual true period  is r

.  (Individual runs of the algorithm may give you multiples of , and those may work fine.  𝛺
1

rlog log
r

Even non-good  results in the measurement will sometimes work.  But we get a bedrock minimum x

probability from the cases where  is good and the  we get is minimum.]x r
 
 
 
Classical Part of Shor's Algorithm (skim coverage of chapter 12)
 
The top-down goal is to find a number  such that  modulo  but  is not  or  X X ≡ 12 M X ≡ 1 ≡ -1

modulo .  Then  is a multiple of  but neither factor is zero.  When M X - 1 =  X - 1 X + 12 ( )( ) M

 with  prime, this means  and  each divide one or both factors.  We need to split them M = pq p, q p q

across the factors, so that  and/or  will find  and  as opposed to just X - 1, Mgcd( ) X + 1, Mgcd( ) p q

giving  back again.  Thus we want to guess  such that:M a
 

1. The period  of  is even, so that  is defined;r a r / 2

2.  modulo .X =  a  ≢  M- 1r/2 M

3. Either  or  is a multiple of one of  but not both.X - 1 X + 1 p, q
 
If our value of  fails any of these ("unlucky"), we just try again from the start of guessing anothera

.  a <  M

 

 



 
Our treatment (blog post and chapter 12) also desires  to be a multiple of  or .  It can be r p - 1 q - 1

shown that many  give this "helpful" property, which requires .  a r ≥   ≈  p - 1 q - 1( )( ) M
 
(This comes out of the wash of the above requirements, together with the "important fact" noted earlier 
about periods of  and , so that most  have large enough periods.  It uses arguments modulo and a a2k a p 

modulo  separately that might not be clear in the chapter.  It could be an exercise: Consider numbers  q r

that divide a product  of two nearly-equal composite numbers.  Conditioned on , give mn r ≥ m, nmin{ }

a lower bound for the proportion that are a multiple of  or a multiple of .  Note that  and  need not m n m n

be themselves relatively prime;  and  are both even, for instance.  It would still need to be p - 1 q - 1

argued that most  give such an .  But I am also not sure that the "helpful" property is needed after all--a r

-most other treatments just omit it.  But also incidentally, the closer  is to  as opposed to being r M

order-of , the more challenging for a potential classical simulation of Shor's algorithm.)M
 
Chapter 12 does handle the argument in property 3, given that  is "helpful"---which also subsumes r

issue 1 since  and  are even.  Item 2 is handled by a random argument. We will skim over p - 1 q - 1
these and instead focus on examples of the particular numerical properties.
 
One thing to observe is that when  is a Blum integer, meaning that  and  are both congruent to  M p q 3

modulo , then  is divisible by  but no higher even number.  There are always four 4 p - 1 q - 1( )( ) 4

square roots of modulo , so we need to argue that the 's such that  is one of the good 1 M = pq a ar/2

ones are as plentiful as the bad ones.  (Note that  depends only on .)  Here is an example for the r a

smallest Blum integer: .  The quadratic residues are:21 =  3*7
 
Mod 7: 1, 4, 2
Mod 3: 1
Eligible numbers: 2, 10, 11, 13
 
Quadratic residues modulo 21:
1 : 1,      2 : 4,   3 : 9,   4 : 16,     5 : 4,    6 : 15,     7 : 7,  8 : 1,    9 : 18,    10 : 16,  

20 : 1,  19 : 4,  18 : 9,  17 : 16,  16 : 4,  15 : 15,  14 : 7,  13 : 1,  12 : 18,  11 : 16 
 
Now .  The numbers , , , and  all give a factor via p - 1 q - 1 = 12( )( ) Y = 8 - 1 8 + 1 13 + 1 13 - 1

.21, Ygcd( )
 

: ; of course doesn't work.a = 1 r = 1

.    Worksa = 2 :  2, 4, 8, 16, 11, 1

  (period  is odd)a = 4 :  4, 16, 1 3

; doesn't work because .a = 5 :  5, 4, 20, 16, 17, 1 20 ≡ -1

.  Period  is "helpful" with regard to , and  is not .  So works.a = 8 :  8 ≡ 12 r = 2 p = 3 8 = 8r/2 -1

.  Worksa = 10 :  10, 16, 13, 4, 19, 1

 

 

https://rjlipton.com/2011/12/10/a-lemma-on-factoring/


.  Worksa = 11 :  11, 16, 13, 4, 19, 1

a = 13 : 13, 1
The other values are mirror images.
 
A more interesting Blum integer IMHO is .  Then .  "Helpful" means the 77 = 7*11 p - 1 q - 1 = 60( )( )

period is a multiple of  or of .  Note:  is a nontrivial square root of  and 6 10 34 = 1156 = 77*15 + 12 1

is the other one.  Does  work?43  = 1849 =  77*24 + 1 2 2
 

etc.: yes.2 : 4, 8, 16, 32, 64, 51, 25, 50, 23, 46, 15, 30, 60, 43, 9, 18, 36, 72, 67, 57, 37, 74,
 
Let's try the Blum integer 33 = 3*11.  Then .  Whenever  is a factor, every even p - 1 q - 1 = 20( )( ) 3

period length  is "helpful."  Let's see what we get:r
 

:  --- which ≡  modulo 33, so we can already tell this "shouldn't" work.a = 2 2, 4, 8, 16, 32 -1

:  --- which has an odd period (but maybe we can tweak it to work).a = 4 4, 16, 31, 25, 1

: .  Works.  (Note relation to reverse of  series.)a = 5 5, 25, 26, 31, 23, 16, 14, 4, 20, 1 a = 4

: .  Works.a = 7 7, 16, 13, 25, 10, 4, 28, 31, 19, 1

:  --- Cannot work.a = 8 8, 31, 17, 4, 32

: .  This counts as working.a = 10 10, 1

: .  Works.a = 13 13, 4, 19, 16, 10, 31, 7, 25, 28, 1

: .  Works.a = 14 14, 31, 5, 4, 23, 25, 20, 16, 26, 1

.  Odd period, should not work (but might with tricks).a = 16 : 16, 25, 4, 31, 1
 
 
 
 
 

 

 


