CSE439/510 Fall 2025 Week 10: Details of Shor's Algorithm

Shor's Algarithm, Stating Its Backtack Points BP1 & BP2

Typent: M= pq, when p,q are n-bit primes. So log, M x 2n.

Guess a< M. If gcd(a, M) > 1 la Kni chance) we get a factor ngh'ang so suppose gcd is 1, ie. a is relatively prime to M [a & 6m].

Goal: Compute the true period: least r such that are get Hem instead.

Nok: Multiples of r are also period, and we may get Hem instead.

BP1: a may be unlucky in that even after getting an P, it is not true or otherwise the classically randomized pair fait. Optimal analysis makes it so this is at most a 50-50 chance of back tracking all the way here where you have to guess a different a.

Shows Plam, Stating Becktrack Points Bly and Bl2

Input: M=pg Mis an n-bit number, so long man.

Guess a < M. If gch(a, m) > 1, a tray chance, one got a

We may supper a is religible to M, i.e. a & Gm. r < |Gm|-1

Goal: Campute the true period = least r s.t. a = 1 mod M

[We may instead get a multiple of r, and will host that out later.)

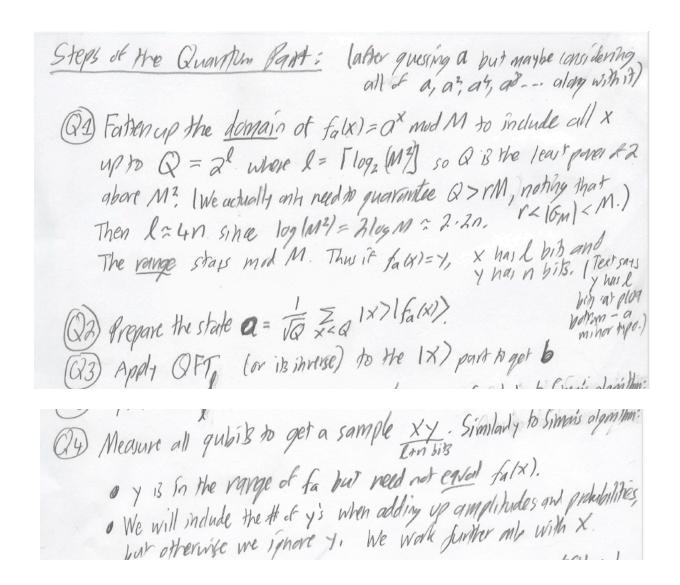
Bly: a may be unlinely in that even after getting (an) r

the classical part may fail.

Optimal analysis out this chance at most 50%.

Ken firm r, define r, to be the odd number obtained by dividing out all 25 fem.

Ken for r = 2 ro and a has period r, then a'= a has penild ro



The second backtrack point comes after the measurement. A quantum technote: Because the measurement "collapses" the quantum state \mathbf{b} , in the actual quantum algorithm, backtracking here requires rebuilding the whole functional superposition---i.e., redoing the whole circuit. But in my brute-force quantum simulator, it can do another sample without having to re-create all the Boolean formulas that simulate the superposed applications of $f_a(x) = a^x \mod M$.

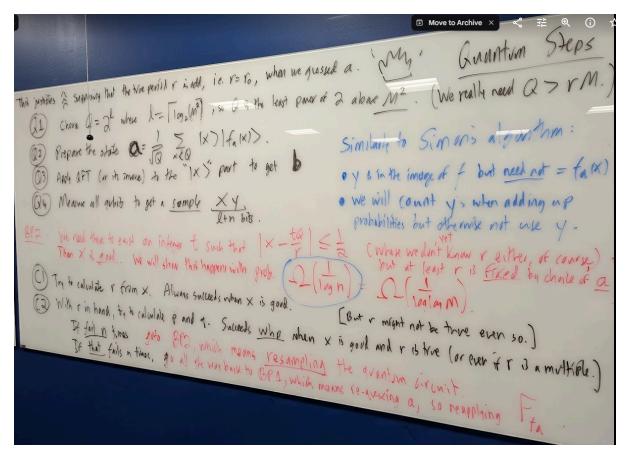
BPZ: We neld there to exist an integer t such that $|x-\frac{ta}{r}| \leq \frac{1}{2}$, where we don't know r either, it course, but r is fixed. We also need to be reliablely prime to r, so that tair does not simplify. Then <math>x is good to be not that x is good; we will show $\Omega(t_{agn})$. So we do under linearly Chance that x is good; we will show $\Omega(t_{agn})$, many packpacks to hope.

(2) Try to calculate v from X. This always sulleds when X is good.

(2) With true rih hard, calculate p and q (or least & sulless each shot)

If fail n times — 90 to BP 2, which means resampling,
ie revynning quantum part

If fail n resamples — 90 all way back to BP1. Por that fails nothing



Analysis of the Quantum Part: (In a different order from the teet)

(a) If the measurement gives a good x, then we get the true pensal r.

(b) The perobability of an individual good x and ye Rantt) is $\Omega/\frac{1}{r^2}$.

(c) There are Ω (ration) good x's, times |Ran(f)| = r many y's. Thus any one run and measurement has an Ω (rappy) chance of gething a good x.

Let's not mention (d) that at least half the guessed $\alpha < M$ enable, factoring M = pg when you obtain the true period y of fa(x) = $\alpha \times M$ and M. The at worst voughly 1/2 chance of failure and forced vertave (at "BP1") Still leaves Ω (rappy) = Ω (rappy) chance of success in any one go, and poly(n) trials give almost certain final success

Proof of \mathbb{O} : Recall good means for some t relatively prime to the true possibly $t \in \mathbb{C} \setminus \{1, 2, 3, 5\}$. Now any such t gives a good t because: Let us "recenter! the destribition of "t = 0 and t = 0 give $t = 1, 2, 3 \le 0 < 1, 3 \le 0$ realther than t = 0 to t = 0. Thus mod' t = 0 give range t = 0 to t = 0 to t = 0. Then we simply let t = t = 0 mod' t = 0. This implies t = 0 and t = 0 then t = 0 to t = 0. This implies t = 0 and t = 0 when t = 0 and we thus get t = 0 and t = 0. Thus t = 0 then t = 0 that t = 0 then t = 0 that t = 0 then t = 0 then t = 0 that t = 0 then t = 0 then t = 0 then t = 0 that t = 0 then t

Proof A(a): "God" also means $|\frac{t}{r} - \frac{x}{a}| \le \frac{1}{2Q}$ with the fraction $\frac{t}{r}$ in lowest terms. Suppose these were a different fraction $\frac{t}{r}$, that also makes $|\frac{t}{r}| - \frac{x}{a}| \le \frac{1}{2a}$. Then by the triggingle inequality, $|\frac{t}{r} - \frac{t}{r}| \le \frac{1}{a}$. Then $|r|t - t'r| \le \frac{x}{a}$. But by r, r' < m and $m^2 \le Q$, the RHS is < 1. Since the LHS is an integer, it must be Q, which makes r't = t'r, so t'/r = t/r.

Within \$\frac{1}{2} \alpha of the Valve \alpha, which you get from the measurement. There are several efficient ways to find this fraction:

By integer programming

By continued fraction expansion

By other methods of Appreximation theory Diophantine Analysis.

Whichever you use, your code R(x,Q)=(r,t) will also often give outputs (r',t) when x is not good. You wan't find out until you try using r' in the classical part (Ch-12) and keep failing, Land even then, continued failure of Bp from repealed that of fa might malle you remind to Bg with another a. The only way you get certainty is when you get p, g such that pq=M. But what we can say is that with \(\Omega(\text{ing})\) chance on any that, you do get saccess.

[And sometimes an untrue p' dry work answer in part (D.)]

Footnote:

My simulater adapts the continued fraction routine from liberantum. It shares the same weirdness of often stating it got r (arr') bigger than M-this uses other tricks that improve the one-shot success probability. We'll keep things simple by only considering the true r, r<M, and we'll skedwais of R.

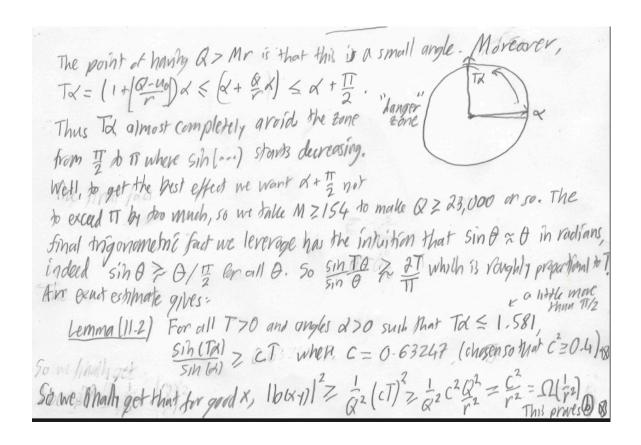
Now to set up the main quantum analysis:

Proof of B: This is the true "grantim analysis". Given a grantim state a of ling qubits, its Founder transform on the first liquidity gives the grantim state be whose definition is 2000 nivest with the text, indexing north the text indexing north the leve x and u do double duty as l-bit strings and as integers in the range [0 - -Q-1] where Q = 2^l. So xu means numerical multiplication not concatenation of strings — but xy and up are encate nations with the N-bit string Y. And w = e^{2 Ti}/Q = e^{2 Ti}/2^{l-1} has the property that w = 1 but no smaller power is 1 - so it is a principal complex Q the root of unity.

[The Tuesday 10/28 lecture ended here.]

The Quantum Apalysis: We apply QFT to the functional superposition $\alpha(uy) = \sqrt{\alpha}$ if $y = f_{\alpha}[u]$, 0 otherwise. So $\alpha(uy) = \sqrt{\alpha}$ if $y = f_{\alpha}[u]$, $\alpha(uy) = \sqrt{\alpha}$ is $\alpha(uy) = \sqrt{\alpha}$ instantly infer that if $y \notin Randa$ then the amplitude $\alpha(uy) = 0$ for all x. For any one $y \in Randa$, let $\alpha(uy) = 0$ for all x. For any one $y \in Randa$, let $\alpha(uy) = 1$ for $\alpha(uy) = 1$ such that $\alpha(uy) = 1$. Then $\alpha(uy) = 1$ for $\alpha(uy) =$

This, makes $T = 1 + \frac{Q-w_0}{V}$. By the injectivity condition again, there are the only arguments that go to Y, so $f^{-1}(Y) = \frac{1}{2} u_{0}$, $u_{0} + v_{1} + v_{0}$. This enables us to group the sum as: $\sum_{v \in f_{0}^{-1}(Y)} w^{v} = \sum_{v = 0} w^{v} (u_{0} + kr) = w^{v} u_{0} \sum_{v = 0}^{T-1} w^{v} k k$ This is a classic finite geometric series: $\sum_{v = 0} z^{v} = \sum_{v = 0}^{T-1} w^{v} u_{0}$ So: $|v| = \frac{1}{2} w^{v} u_{0} \left(\frac{w^{T \times r}}{w^{v} r^{-1}} \right)$. That we only need the probability helps simplify this directive and we haven't used the property of x being good yet. $|v| = \frac{1}{2} (u^{v} u_{0} - v_{0}) \left(\frac{w^{T \times r}}{w^{T \times r}} \right) = \frac{1}{2} \left(\frac{1 - w^{T \times r}}{1 - w^{T \times r}} \right) = \frac{1}{2} \frac{1}{2} \left(\frac{1 - w^{T \times r}}{1 - w^{T \times r}} \right) = \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} Re(w^{T \times r})$



And that completes the proof that the one-shot success probability of getting the *actual true period* r is $\Omega\left(\frac{1}{\log\log r}\right)$. (Individual runs of the algorithm may give you multiples of r, and those may work fine.

Even non-good x results in the measurement will sometimes work. But we get a bedrock minimum probability from the cases where x is good and the r we get is minimum.]

Classical Part of Shor's Algorithm (skim coverage of chapter 12)

The top-down goal is to find a number X such that $X^2 \equiv 1 \mod M$ but X is not $X \equiv 1 \mod M$ or $X \equiv 1 \mod M$. Then $X^2 - 1 = (X - 1)(X + 1)$ is a multiple of $X \equiv 1 \mod M$ but neither factor is zero. When $X \equiv 1 \mod M$ with $X \equiv 1 \mod M$ prime, this means $X \equiv 1 \mod M$ and $X \equiv 1 \mod M$ will find $X \equiv 1 \mod M$ as opposed to just giving $X \equiv 1 \mod M$ back again. Thus we want to guess $X \equiv 1 \mod M$ back again. Thus we want to guess $X \equiv 1 \mod M$ back again.

- 1. The period r of a is even, so that r/2 is defined;
- 2. $X = a^{r/2} \not\equiv M 1 \mod M$.
- 3. Either X 1 or X + 1 is a multiple of one of p, q but not both.

If our value of a fails any of these ("unlucky"), we just try again from the start of guessing another a < M.

Our treatment (<u>blog post</u> and chapter 12) also desires r to be a multiple of p-1 or q-1. It can be shown that many a give this "helpful" property, which requires $r \geq \sqrt{(p-1)(q-1)} \approx \sqrt{M}$.

(This comes out of the wash of the above requirements, together with the "important fact" noted earlier about periods of a and $a2^k$, so that most a have large enough periods. It uses arguments modulo p and modulo q separately that might not be clear in the chapter. It could be an exercise: Consider numbers r that divide a product mn of two nearly-equal composite numbers. Conditioned on $r \ge \min\{m,n\}$, give a lower bound for the proportion that are a multiple of m or a multiple of n. Note that m and n need not be themselves relatively prime; p-1 and q-1 are both even, for instance. It would still need to be argued that most a give such an a. But I am also not sure that the "helpful" property is needed after all-most other treatments just omit it. But also incidentally, the closer a is to a0 as opposed to being order-of a1, the more challenging for a potential classical simulation of Shor's algorithm.)

Chapter 12 does handle the argument in property 3, given that r is "helpful"---which also subsumes issue 1 since p-1 and q-1 are even. Item 2 is handled by a random argument. We will skim over these and instead focus on examples of the particular numerical properties.

One thing to observe is that when M is a **Blum integer**, meaning that p and q are both congruent to p modulo p, then p and p are both congruent to p modulo p, then p modulo p

```
Mod 7: 1, 4, 2
Mod 3: 1
Eligible numbers: 2, 10, 11, 13
```

Quadratic residues modulo 21:

```
1:1, 2:4, 3:9, 4:16, 5:4, 6:15, 7:7, 8:1, 9:18, 10:16, 20:1, 19:4, 18:9, 17:16, 16:4, 15:15, 14:7, 13:1, 12:18, 11:16
```

Now (p-1)(q-1) = 12. The numbers Y = 8-1, 8+1, 13+1, and 13-1 all give a factor via gcd(21, Y).

```
a=1: r=1; of course doesn't work. a=2: 2,4,8,16,11,1. Works a=4: 4,16,1 (period 3 is odd) a=5: 5,4,20,16,17,1; doesn't work because 20\equiv -1. a=8: 8^2\equiv 1. Period r=2 is "helpful" with regard to p=3, and 8^{r/2}=8 is not -1. So works. a=10: 10,16,13,4,19,1. Works
```

```
a = 11: 11, 16, 13, 4, 19, 1. Works a = 13: 13, 1
```

The other values are mirror images.

A more interesting Blum integer IMHO is 77 = 7*11. Then (p-1)(q-1) = 60. "Helpful" means the period is a multiple of 6 or of 10. Note: $34^2 = 1156 = 77*15 + 1$ is a nontrivial square root of 1 and $43^2 = 1849 = 77*24 + 1$ is the other one. Does 2 work?

```
2:4,8,16,32,64,51,25,50,23,46,15,30,60,43,9,18,36,72,67,57,37,74, etc.: yes.
```

Let's try the Blum integer 33 = 3*11. Then (p-1)(q-1) = 20. Whenever 3 is a factor, every even period length r is "helpful." Let's see what we get:

```
a=2:2,4,8,16,32 --- which \equiv -1 modulo 33, so we can already tell this "shouldn't" work. a=4:4,16,31,25,1 --- which has an odd period (but maybe we can tweak it to work). a=5:5,25,26,31,23,16,14,4,20,1. Works. (Note relation to reverse of a=4 series.) a=7:7,16,13,25,10,4,28,31,19,1. Works. a=8:8,31,17,4,32 --- Cannot work. a=10:10,1. This counts as working. a=13:13,4,19,16,10,31,7,25,28,1. Works. a=14:14,31,5,4,23,25,20,16,26,1. Works. a=16:16,25,4,31,1. Odd period, should not work (but might with tricks).
```