CSEA439 Fall 2025 Week 13: Matrix Algebra and the SVD

What happens if we try to take the "inner product" of two m X n matrices A and B by first "unrolling"
them as vectors? Remembering to conjugate the entries of A, we get

(A,B)y = Y, Ali, 1Bli, jl.

i=1,m
j=1n

Now let C = A*B. Since A" isn X m, thisisann Xn square matrix. From

Clr, sl = EA [r, KB, s] Z ALk, 1BIk, ]
k=1 k=1

we get that the diagonal entries of C are C[r, 7] = 2?:1 Alk, r]B[k, r]. Hence the diagonal sum gives

Y.Clr,r1 = Y, Alk, rB[k,r] = (A, B)
r=1 k=1,m
r=1,n

as we defined it above. The diagonal sum at left is called the trace, with notation Tr(C). Now for a
vector v, the self inner-product (v, v) gives the squared Euclidean norm of v, written ||7| |§_, SO

[loll, = V{(v,v). The analogous concept for matrices is the Frobenius norm, named for Ferdinand
Georg Frobenius:

IIAllF = A/Tr(A%A).

Or you can simply say it's the Euclidean 2-norm of the vector obtained by "unrolling" the matrix. This
norm, however, overstates the action of the matrix in Euclidean space, which involves its m X n
dimensions. This is

[|All, = supll||Avl||,: vis a unit vector of length n}.

For some further remarks: Since our vectors are finite-dimensional, the "ball surface" of unit vectors is
compact, which actually means that there is a definite vector v that maximizes || Av||, rather than just
having a limit---so we can write "max" in place of "sup" for "supremum." The task of finding such a
vector v is the main algorithmic need of computing the singular value decomposition (SVD) as
treated below. It tumbles out of the SVD Theorem that ||A||, < ||A]||f for every matrix A. But the
inutition is that || A||, tells the most that A can "stretch" a vector along the fixed dimensions it operates
on, whereas || Al is the maximum amount of "stretch" that the entries of A could give under any
configuration of dimensions.



The SVD

A matrix S is (pseudo-)diagonal if it is (non-)square and S[i, j] = 0 whenever i # j. It follows that both
S5*S and SS§* are diagonal square matrices. Some of the diagonal entries may be 0.

SVD Theorem: For every m X n matrix A we can efficiently find:

« an m X m unitary matrix U,

« an m X n pseudo-diagonal matrix X with non-negative entries X[, i] = o;, and

« an n X n unitary matrix V,
such that A = UXV". Furthermore, we can arrange thatg; > 03 > *** > Opmingm,n)» @nd in
consequence:

Al = A/ 2.02.

« ||All, = o,
« AA = vETuruxzve

urv-veru-

|74 diag(of) V7, and

u diag(of) u,

so that the squares of the 0; and associated vectors give the spectral decompositions of the Hermitian
PSD matrices A*A and AA”, respectively.

- AAY

The o; are the singular values. The number r of positive ones equals the rank of A. Whereas some
of the A; can be negative in the Spectral Theorem---when the Hermitian matrix is not PSD---none of the
0; is negative. The first » columns of U form an orthonormal basis for the subspace W spanned by the
columns of A (called the column space of A), while the first 7 columns of V form an orthonormal basis
for the column space of A*. The latter is identical to the row space of A when A is a real matrix---and
in that case, U and V come out being real as well. The remaining m — r columns of U form an
orthonormal basis for the space W+, which is also the nullspace of A*. As with the Spectral
Theorem, the basis vectors are not unique when there is multiplicity or when we don't have r = m = n,
but the values o; are unique (when sorted in nonascending order, so we can say the matrix X is unique

too). Once U and V are specified, we get = = U*AV too.

Proof: The procedure works by recursion through subspaces and so resembles the proof of the
Spectral Theorem. The first and top-level step is most emblematic. It begins by finding a unit vector v,
that maximizes ||Avq||,. Then o1 = ||Avq||5 is the first and biggest singular value. It can't be zero
(unless A is the all-zero matrix, in which case we've "hit triviality"), so

A'Ul
U = —
01

is a unit vector. If there are more than one maximizing unit vectors v then we will get multiplicity, but let
us first suppose that the v; and associated 111 are unique. Before doing the recursion, we may



postulate that 1 is arbitrarily extended to an orthonormal basis U; of C™ (or of R" in the real case)
and v; to an orthonormal basis V; of C". In the resulting coordinates, we get

WAV, = l‘“ @1 ] =S
0 B
for some vector w; of length 7 — 1 and (m — 1) X (n — 1) matrix B. The red 0 stands for m — 1 zeroes
and is because Av; = 011 so there is no dependence on the other m — 1 coordinates. The goal is to
prove that w, must be all-zero too. Then recursing on B hammers out the (pseudo-)diagonal matrix 2.

0% + wiw;

]. Ignoring the Bw part, we get
Bw1

o
Letw = l ! ] as a column vector. Then Syw = w’ = [
w1

llw’]] = o2 +wjw,. The right-hand side equals ||w]||3. Dividing by ||w]||, hence gives us

151wl —
—— 2> ||lw||la = {07 + wjw;.
[lwl],

[1S1wl|2
Now if wq is nonzero, then wiwl is a positive real number, so W > 1. Under the definition of
Wil

the 2-norm for matrices, this means ||S{||, > o07. But
1S1ll2 = IUTAV[l2 = [IAll2

because U; and V are unitary. And ||A||», = o7 by how we defined 0. This is a contradiction
saying "0, > 04." The only way out is for w, to be a zero vector.

The recursion then takes place on the perpendicular subspace of v1, or in general, the perpendicular
subspace of the span of the orthogonal unit vectors v; chosen thus far. The final point is that the
corresponding vectors 1 also come out orthogonal. This is because, when i # j (and at stages where
o; and 0; are both nonzero---else we are in the base case of completing orthonormal bases on the
nullspaces):

oi0i{ui|ujy = (oumi|ou;y = (Avi|Av;) = v;A*Av; = v;a?vj = 0]2<vi|v]-> = 0,

finally using the orthogonality of the v; vectors. The fourth equality happens because v; is an

eigenvector of A* A with eigenvalue 012. The reason given by the (short!) proof in the MIT notes
(https://math.mit.edu/classes/18.095/20161AP/lec2/SVD_Notes.pdf) is that

A'A = (UuzZv?) (Usv) = vETuruzv: = veTzve,


https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

which in turn converts to the way we have been writing the spectral decomposition since V' is unitary.

However, substituting U*U = I strikes me as assuming what one is trying to prove about the u;
vectors.

To tie up the loose end, we choose to restart the proof. We apply the original Spectral Theorem to the
Hermitian PSD matrix A* A to get nonnegative eigenvalues A1, ..., A,--listed in nonincreasing order---
and orthonormal eigenvectors v, ..., 0, such that

A*A = M|viy{v| + -+ Ap|va ) v, | = V'diag(Ai)V,

taking V' as the matrix with the eigenvectors as its columns. Now define ¢; to be the nonnegative
square root of A; for each i. Since the rank r of A equals the rank of A*A, we geto; > Qfori=1tor.
For these 1, define

AUi

o,

u, =

Now the above demonstration that <ui | u]-> = 0 is logically valid, because we arranged that 01-2 =A;is

an eigenvalue of A* A with eigenvector v; in advance. What we've lost, however, is the original proof's
definition of 0; so that u; is a unit vector. We recover it, however, this way:

AUZ'

(oF}

Cuiluiy :<

Avl 1 * * 1 * *
= —zviA Av; = —zviAivi = vjv; = L
Oj 0; 0;

And u; is an eigenvector of AA* because

AU,‘ 1 1
AA'u; = AA— = —A(A"A)v; = —Ad?v; = 0iAv; = olu,.
(OF] o; (O8]

For i > r, we can arbitrarily complete the basis by choosing orthonormal vectors that span the
nullspace.

So now the only thing we've "lost" compared to the first proof strategy is the fact that at the first and
each later step of the recursion, the choice of unit vector v; maximizes || Av;||,. However, now we can
appeal to the uniqueness of the A; and "quasi-uniqueness" of the eigenvectors up to the flex of
multiplicity. The squares of the ¢; and the A; must coincide. What comes out is a deep fact that the
largest eigenvalues of A* A naturally pick out the directions in which A stretches the most.

Corollary: For a square matrix A already of the form E*E (and that goes for any Hermitian PSD
matrix), the SVD and spectrum of E coincide with U = V.



Proof. The diagonal form E = UAU" has the specified properties; because E is PSD, the A; are
nonnegative, and we can arrange U so that the diagonal is in nonincreasing order.

In all other cases where A is diagonalizable, there are reasons for saying the SVD gives more
information than the diagonalization. This is especially so with upper or lower triangular matrices---see
example below. And of course, there are many square matrices that can't be diagonalized...to say
nothing of non-square matrices...for which the SVD is the only game in town.

Our two-pronged proof suggests two different algorithms for computing the SVD of a matrix A:

Av;
+ Diagonalize A*Atoget A;'sand V, theno; = \/A; and u; = O—U

i

« Find a unit vector v maximizing || Av||, and recurse.

Other methods come into play when A has certain particular features. Niloufer Mackey developed new
methods in her 1993 UB CS PhD dissertation under Patricia Eberlein. Other remarks:

* The version giving A = UX V™ with U and V both unitary, is called the full SVD.

« When the m X n matrix A has rank r < min(m, 1), then we can also do A = UXV" with X
being an r X r matrix with positive values on the main diagonal, U being m X r, and V being
n X r. This is called the reduced or compact SVD.

» Some sources give a third version where U is m X r but X is r X n and V' is n X n (and unitary).
Let's call this the semi-reduced version.

Our proof and notes use the style of diagonalizing A* A, getting V from the unit eigenvectors v; of that,
and then getting u; = Av;, dividing by ¢; to normalize u;. There is also a symmetrical style of

diagonalizing AA" instead, forming its orthogonal unit eigenvectors as the columns of U, and getting V
at the end. The nicely verbose applet

https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/

does that. The most portable applets handle real numbers only, so they write AT instead of A* (or A™).
There are some Java applets that allow complex numbers (but | haven't tried them). They all have
limitations on m, n, and/or the magnitudes of matrix entries. The applet

https://www.omnicalculator.com/math/svd#is-singular-value-decomposition-unique

seems to do things the AT A way, with V first, but only does up to 3 X 3 and doesn't show intermediate
steps. There are also differences in output caused by not sorting the singular values in nonascending
order (so with the largest one at upper left) and the non-uniqueness of V and U.


https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/
https://www.omnicalculator.com/math/svd#is-singular-value-decomposition-unique

Examples and Applications

In any upper or lower triangular matrix A, the elements of the diagonal are the eigenvalues. They are
thus independent of all the off-diagonal entries at upper right. Those entries have information that does
get picked up by the SVD. The two examples in the MIT notes are good for this.

Example 1:
A:[:%o A*_AT:[34l
4 5 05
A _ |9+16 20| _[25 20 .9 12 | ]9 12
AA = [ 20 25]‘[20 25] AT = l12 16 + 25 _l12 41]'

Abstracting this, consider A = [ Z 0 ] The eigenvalues are a and c with [1,0]” as one of the
c

eigenvectors. This has no dependence on the entry b. How much A can stretch a (unit) vector does
depend on b. The SVD employs this information. We have

A:(—A — |:a* b*]'|a O] —
0 ¢* b ¢

In the real case we can drop all the stars and bars. Then, solving det(A*A - xl) = 0 gives

a'a+bb b*c] _ [|a|2+|b|2 cE}
cb* ' °b lc|? |

0= (a2+b2—x)(c2—x) —b%c? = x* - (a2+b2+c2)x + a%c?.

The two solutions given by

1
X = §[a2+b2+cz + \/(a2+b2+c2)2 - 4a2c2]

do not simplify further in general. Inthe examplea = 3, b = 4, and ¢ = 5, the expression under the

square root becomes 50% — 302 = 402, sox = %(50 +40) = 45 orjust5. Notice also that
Tr(A*A) = lal>+b]®+]c|> = 9+16+25 = 50 = Ay +4,.

The singular values are the square roots, so Y45 = 35 and \/g The V matrix is formed from the

eigenvectors of A*A, so we solve:
[25 20] _ ly] _ [25y+202 _ [453/] l25 20] _ ly] _ [25y’+202’] _ [Sy’]
45z | 20 25 z’ 20y” + 25z’ 5z" |

20 25] [z 20y + 25z




This gives [y] = L[ 1 ] for the vector v1 and [y, ] = L[ 11 ] as one of a couple orthogonal
Z —_

Va1 z V2

choices for the vector v,. Then V becomes the Hadamard matrix. The U matrix is obtained by

normalizing the columns of AV. We can normalize [ 30 ] . l 11 ] = [3 3 ] columnwise as

45|11 -1 9 -1
1/V10 3/V10 ol = L [1 3]_
3/1/ 10 —1/\/ V10 3 -1

As a final check, UXV* =
SRR O BV v ] B H BRI

which equals A. We also get ||A||, = V45and ||Allr = V45+5 = V50 = 5\/5.

-1

1 ] as the second eigenvector

’ 1
To see that V is not unique, we could have chosen ly, ] = —|
z

V2
instead. Thenwe'dget V = \/LE[ 1 _11 ] which Assignment 4 (in Fall 2024) called the "Damhard
matrix H4." The U matrix changes too: it comes by normalizing each column of

30 1 -1 3 -3 111 -3 R "
. = toget U = — . Note that this V' is not Hermitian, so we have
[45“1 1][91]9 \/El31]
to remember to transpose it when we do the check that UXV™ =

S R EHEE ) BHE HHEE

0

1 -1 ] so this V' is another square root of the

as before. (Nor does V square to the identity; V? = [

matrix B = —iY.)

Low-Rank Approximation By SVD Truncation

Last, let's see what happens if we simply wipe out the smaller entry of X, which is 0, = \/g:

= S RS v B R HH R b



Is the resulting A” a reasonable approximation to A? Note that A’ stretches the first V' vector v, by the

same amount: A’é[ i ] = é[ g ] whose 2-norm is \/LE \/32 +9%2 = V45 = 04. Butthe second

dimension v, gets zeroed out.

22
6 6

A’vq over-stretches, but in other contexts it may give better results. Or we might prefer to preserve the

We can also preserve the trace by using X’ = [4?)/5_’ 8 ] instead, which gives A" = l ] Then

Frobenius norm by using X" = [5?)/5 8] instead, conserving 07 + 03. Well, the whole

approximation idea looks better when the matrices are much larger to begin with.

[The Tue. 12/2 lecture ended here. | began Thursday with a challenge question:
What are the singular values of an n X n unitary matrix U? Step 1 of our algorithm is:
1. Diagonalize U U and get the eigenvalues A;.
2. The o, are the positive square roots of the A;.
The answer is that since U"U = I, they are all 1. No 0s. This also stands to reason from the rule that
[|Ux||>, = ||x||, for all vectors x, which means U does unit stretching in all directions.]

(Pseudo-)Inversion

In the invertible 7 X 1 Hermitian case where we get orthonormal diagonalization A = UAU" with all
(1
diagonal entries A; being nonzero, then using A’ = diag (7) makes UA’U* = A~!. We can partly

emulate this for any matrix by taking the reciprocals of the positive singular values.

Definition: The (Moore-(Bjerhammer)-Penrose) pseudoinverse of an arbitrary m X n matrix A with
SVD A = UXV* is the n X m matrix given by A™ = VX*U"*, where X" transposes X and then
replaces every nonzero ¢; by 1/ ;.

If we specified that A = UX V™ is the reduced SVD, then X would be an r X r diagonal matrix with
positive diagonal entries, and we would simply get A* = VX ~1U*. Saying it this way, however, would
hide a highly important "pseudo" aspect. You might expect that for sake of continuity, a zero o; would
be replaced by some large value, if not by (the IEEE representation of) inf. However, what happens
more often instead is that when o; < € for some threshold € (e.g., € = €y max(m, nn, 01) where € is
the least positive hardware value), it is treated as zero and blipped---rather than put the large value

E = 1/¢€into the inverse. The rationale for this is that the dimensions and singular vectors associated
to small 0; can often be "cropped out" with minimal effect---as in the image compression application
noted below. But blipping large E betrays the fact of numerical instability lurking in applications.



The pseudoinverse obeys the rule (AB)™ = BT A™, and if A is invertible, then A* = A™!. Thus
-1
(A" = (vzru)' = (W) ' (z)'vr = (W) Zv! = usv = A

back again, so this is a viable concept of inversion. However, AA* = UXV*VX*U" reduces to

UXX* U but not necessarily to the identity matrix---because zeroes can occur in XX from having
m < n even when all singular values are positive. It also obeys the rules:

« AATA = UXVVXTUruxXvy = UxxtxXv: = uxv: = A;
« ATAAT = AT;
+ AAT and A" A are both Hermitian.

Indeed, A™ is generally the unique matrix obeying these rules. Here are some more examples of
SVDs and the resulting (pseudo-)inverses. Back to our 2 X 2 example:

I R P S

45 Viols -1]] o 5[l
L 1 1 1
A+=vz-1u*=i[1 1] 3V5 ;[1 3]: 30 10 [1 3]: 3
Val1 -1 1 |viol3 -1 1 -1z 1] 7 [-4 1
NG 30 10 15 5

which is the same as A~'. Of course, A is invertible by virtue of being square and having nonzero
determinant, and we could have made life much easier using the adjugate formula

A L[5 —4]T _ l[ 5 0]
det(A)L0 3 150-4 3/

' _ 00 T 01100
H h ~ fth = ? = =
ow about the pseudo-inverse of the matrix B [1 0] B'B [0 0“1 0] [

10

0 0]. We get

U1 = [(1)] with eigenvalue 1 and can choose v, = [(1) ] (orthonormal to v4) for the eigenvalue 0. Then

u; = Boy = [(1)] while for 1, we choose an orthonormal vector since Bu, = 0; u, = [(1)] is the

natural choice. So we have U = [0 1 ] X = [1 0] = X% and V = I. This makes

10 00

B* = VIt = [1 0“0 1] = lo 1]. ThenB*lel O]whileBB*z[O 0].
0ooll1o0 00 00 01



A Second Example, With Numerical Instability

0100 0000
Now let's try the second MIT notes example: A = 00240 . Weget ATA = 0100 . Then
0003 0040
000O 0009
0100 00O00O
V is the identity matrix again while U = 0010 and X = 0100 (ignoring the sorting
0001 0020
1000 0003
00 O 0 0001 0O O 0 O
order). SOAT = VXTU" = 010 O 1. jro000p_ 11 0 0 O.And
001/2 O 0100 01/2 0 O
00 0 1/3 0010 0O 0 1/3 0
1000 00O00O0
ara = |91 000 e aar = [0 100
0010 0010
00O00O 0001

Regarding numerical instability, the MIT notes point out that if you make A[4, 1] a small value 6 so that
A becomes invertible, the eigenvalues grow by more than expected. With 6 = 1 /60000 the singular

. 1 i -1 —i
values stay 1, 2, 3, and 1 /60000 but the eigenvalues become {1—0, 0’ 70’ 10

}, as seen at
https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/

The reason for using 60000 is that the determinant becomes (negative) 1/10000 = 1/10%, and that
neatly spreads a factor of 1 /10 among four eigenvalues. The fact that the eigenvalues have equal

magnitude is weird, given how the singular values match the sizes of the four positive matrix entries.

Applications to Solving Equations

Approximately Solving Linear Systems: When a matrix A is invertible, the solution to Ax = b is
x = A7'b. When A is not invertible, or not even square (thus denoting an overspecified or
underspecified system), we can still use z = A*b as an "ersatz" solution.

How good a solution? It follows from the SVD theorem that ||Az —b||, < ||Ax —Db|| for all vectors x.

So this is the best approximation. When the system is underspecified, so that exact solutions exist, z
will be one of them---and moreover, all exact solutions have the form

zZ + (I - A*A)w


https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/

for arbitrary vectors w. This follows from the identity ATAA* = A* given in the "rules" above. Least
squares fitting is essentially the same process, since we are using the || - ||,-norm.

In some cases we can combine A and b into a matrix E such that Ex measures the error in an
attempted solution x. Then we want to find the z that minimizes ||Ez||,. This z is given by the column
of V that corresponds to the least singular value. (If 0 is a singular value of E, so that Ez = 0, this just
means that z is an exact solution.)

Succinct Approximation

This IMHO is the "signature" application of the SVD and will lead us back to quantum computing.
Given a pseudodiagonal matrix X with » > k positive entries (in sorted order), define X to be the result
of zeroing out all but the k largest entries. If A has SVD UX V", then define A, = UX, V™.

Eckart-Young-Mirsky Theorem: A; minimizes both ||A — B||r and ||A — B||, over all matrices B of
rank (at most) k.

The reason is that choosing the k largest singular values is both the way to maximize the sum of their
squares (relevant to the Frobenius norm) and the way to minimize the size of any leftover singular
value, i.e., of 0,1 in sorted order (relevant to the 2-norm).

How good is the approximation? It depends on the size of 0,1, ..., 0, (and their squares) in relation
to the sizes of (the sum of squares of) the first k singular values. If the first k have the bulk of the
magnitude, then the approximation can be quite good.

Example: A = . Think of the rows as movies and the columns as users. Notice that

NN
O = =
OO R -
SO O -
—_ o o -

[0 001 0]
movie 1 is seen by everyone and user 1 is the most active. The emathhelp.net applet sorts the
singular values in reverse order, giving (rounded to five places):

[ 0.29257
0.72361
P 1.16633
1.33095

3.04287 |

This has one distinctly low singular value and another one under 1. Its SVD comes with



and

[ 055847 0.30049 -0.38132
—0.63280 0.25146 0.36318
V=] 023554 -0.80265 0.37652
0.15425 0.35595 0.42687 0.77478
[ -0.45650 -0.27481 -0.63143 0.45326

—-0.47362
—0.45976
0.15420
0.58213

—0.24803
—-0.36389
—-0.01845

[ —0.48209 -0.23434 0.13187 0.44906 0.70258 |
0.55100 -0.34647 0.30727
U= |[-0.25405 0.76276 —0.01555
0.34853 0.03548 -0.86833
| 0.52722  0.49191 0.36599

0.50757
0.37687
0.31541
0.08507

0.62521 |
0.52155
0.39770
0.25885
0.33455 |

Now suppose we delete the two smallest singular values at upper left. Then we also don't need the
first two columns of U and V, the latter becoming the top two rows of V*. We first compute

0.95339 0.89712 1.08212 0.88901 |
0.70630 0.73754 1.04116 0.57612
0.38202 0.45161 0.77868 0.64955

[ 0.13187 0.44906 0.70258 |
0.30727 —0.47362 0.50757 |[ 1.16633 0
—0.01555 -0.45976 0.37687 0  1.33095
—0.86833 0.15420 0.31541 0 0
| 0.36599 0.58213 0.08507 |
Then multiplication with V™ gives

[ 1.12973

0.67261

A; = | 0.55827
0.16296

Is this a reasonable approximation to A =

The

. .
O R

0.79370 0.75923 0.83976 -0.22538
[ -0.19311 0.00810 0.24937 0.84951 0.16823 |

OO R R
O OO = =
-0 O O =

[ 0.15381 0.59768 2.13787 |

0 0.35838 -0.63036 1.54446
0 =~ [ -0.01814 -0.61191 1.14676
3.04287 -1.01276  0.20523 0.95976

| 0.42687 0.77478 0.25885 |

? The first and last rows are good.

SO kR OO -

entry in row 4, column 5 is way off, as are some others. But overall, not too shabby? Another reason
this looks silly is that we not only need X but the relevant elements of U and V' as well, which are all
more complicated numbers than A has. However, the total number of entries is

km +k*+kn as compared with mn entries in A.

When k < m, n this is a major savings. And when 11, 11 are of order in the 1000s, k = 100 often gives

a nice approximation.



Image Compression Examples. Companies that store user views of media content may have
dimensions in the millions---and an even bigger motive to calculate with reduced dimensions. Then the
approximations reflect the relative popularities of movies and other media content---while over in the
column space of users, they indicate the patterns of frequent consumers.

We are most interested in compressing density-matrix representations of large quantum states.

Quantum Applications

(These notes draw on https://www.math3ma.com/blog/understanding-entanglement-with-svd)

First and simplest, SVD ideas give an easy way to tell whether a pure quantum state vector |gb> is
entangled. It finally leverages the relation between tensor product and outer product: Reshape |qb> into
the matrix A, that would occur if we really had |¢) = ¢4 ) ® |¢p) from qubits held by Alice and Bob,
respectively. Then we would have A = |4 ){¢pp | be of rank r = 1. So:

|¢) is entangled between Alice and Bob if and only if A, has more than one nonzero singular
value. The number of nonzero singular values quantifies the entanglement.

L[1, 0,0,1]7 gives A¢ = 10 ] The matrix has rank r = 2.

1
V2 V2 [ 01
So Alice and Bob are entangled. For vectors of length 4, this use of rank is equivalent to the "ratio test"
that some of you have cited on homeworks---while for longer vectors and other possible divisions of
qubits between "Alice" and "Bob", the use of rank is more general. In any event, when you give "Bob"
the least signifnicant (qu)bits---rightmost in big-endian form---the "rolling up" of the state vector is
always in row-major order.

For the simplest example, |¢) =

For example, the state %(eooo +ego1 + €110 — €111) gives the vector [1,1,0,0,0,0,1, 1] (ignoring the

11
%). If Alice holds the first two qubits, it re-shapes as 8 8 . This matrix has rank 2. But the state
1 -1
11
1 1o o
2(8000 + ego1 + €110 + €111) becomes 5 0 0 which has rank just 1 and so is not entangled. It is

|p){+]| with |¢) as above. But if we gave Allce only the first qubit, then the shape would be
[ 1100

0011
qubits 2 and 3.

]. This does have rank r = 2, so qubit 1 is collectively entangled with Bob's "system" of


https://medium.com/@moh.hussain06/applying-singular-value-decomposition-svd-in-image-compression-ba63a2c558de
https://www.math3ma.com/blog/understanding-entanglement-with-svd

Believe-it-or-else, the following theorem is equivalent to one on the syllabus of MTH 309, but there it is
not stated in our present quantum context. We may gloss over the statement and proof, since the
applications can be understood by themselves.

Theorem: Let |qZ)> be a pure state in the product H 4 ® IHy of two Hilbert spaces of dimensions d 4

and dp, respectively. Then we can find orthonormal bases {|iA> :0<ip< dA} of H4 and

{|i3> :0<ig< dB} of Hg and positive numbers o, ..., 0,.; where ¥ < min{d 4, dg} such that

r—1
6> = Dailia)lis).
i=0

It follows that Ziaiz = 1 and that if we define p4 := Trz(|dY{¢|) and pg := Tr,(|¢p){¢]), to be

the density matrices resulting from tracing out IHp, respectively tracing out IH 4, then

r—1 r—1
pa= 2302iad{ia] and pp= Dj02|ip){ip|.
=0 i=0

The state |(j)> is separable over IH 4 ® Hj if and only if this happens with ¥ = 1. Otherwise, |(p> is
entangled with respect to H 4 ® Hp, which is equivalent to Tr(pi) <landto Tr(pé) <1

We've numbered from 0 because d 4, = 2" and dgz = 2" are powers of 2 when we talk about "Alice"
holding m qubits and "Bob" holding 7 qubits, and while we've been numbering qubits from 1, we've
been numbering the standard basis from 0 to leverage the correspondence between binary strings and
binary numbers. It is less usual to number singular values from 0, but this serves to emphasize that we
may have exponentially many of them when m and 7 get large. Also bear in mind that the dimension of
H, ® Hy is d 4 - dg with times, not d 4, + dp as it would be with an ordinary Cartesian product. The
whole representation is called the Schmidt decomposition of | ).

To visualize the theorem statement, it helps to say what happens when |qb> really is a tensor product
|[Ya)®| gy with |14y € Hy and |¢p) € Hg. Then, as we observed when the parital trace

("traceout”) was introduced in week 13, we get Try (| Y{¢|) = |4 Y¢ 4| and

Tra(|oY@|) = |¥5){¥s]|. Since we can trivially extend the pure state |14 ) to an orthonormal
basis of all of IH,4 and |¢B> likewise for IHg, we get the theorem conclusion by taking r = 1 and

oo = 1. Moreover, if the theorem conclusion happens with ¥ = 1, then we must have ; = 1 to
normalize, and so we get p4 = |04 ){04]| and pg = |05 <0z |, from which it follows (these being pure
states, so that p% = p4 and pj = pp) that [¢p) = |04 ) ®|0p). This proves the conclusion about
entanglement without having to invoke the SVD. But the general proof is really crisp doing so.



Proof: The state vector of ) has length d 4 - dp, so we can reshape it into a d 4 X dp matrix A, as
done above---so that entry A[i, j] equals entry dpi + j of |¢) (again, numbering from 0). Take the
full SVD A¢) =: UX V™ with U and V unitary and X in nonincreasing order. Then the columns of U form
the desired orthonormal basis for H 4, the columns of V likewise for IHg, and taking r to be the rank of
Ay gives the reduced SVD representation A, = U, 2,V as well. Then Z, is a diagonal matrix, so the

only nonzero terms 1,0;0! are those with j = i. So |¢p) = >

| O,|1A>|ZB> follows.

=0
For the rest, the mere fact that |(¢)> is a unit vector forces 21-012 = 1. Now when we trace out Bob from

| »{ | under this representation we get a 1 entry left over from each of his submatrices on the main

diagonal only---but the o; becomes a7 in |pY{¢ | so we get p4 = ZZ.:; 01.2|iA><iA | - note that

EZUZZ = 1 is exactly what's needed for this to have unit trace and so be a legal density matrix.

Likewise for pg. The final fact is that whenever a sum of squares is 1, the sum of the corresponding
fourth powers is less than 1 unless the sum is just a single 1 and the rest zeroes.

A simple example that also resonates with our idea of truncating SVDs of quantum states is at
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf

Let|¢p) = [‘\/ 17,V .17, \/.125, \/.125, \/.125, \/.125, \/0.08, \/O.OSJT. This is a pure state of a

3-qubit system we'll call Alice, Charlie, and Bob in that order. This state has the form |1)) ® |+) for
some 2-qubit state | 1) of Alice ® Charlie alone. We can see this by "rolling" it into a 4 X 2 matrix
where Alice and Charlie have the row space and Bob has the column space:

VAVARVAY,
V| VI Vi
N VAT IRVAT T

This has rank 1; you could also say it passes the "ratio test" with a ratio of 1 over all four rows.
However, we are going to group it the other way: IH 4 = C? representing Alice by herself and [Hg = c*
for Charlie linked with Bob. Is it separable that way? Well, "reshaping" with two rows for Alice and four
columns for Hy gives

V17 V17 Va5 V25
\/125 V125 0.08 V0.08|



https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf

It is easy to see that this has full rank---the second row is not a scalar multiple of the first row---so the
Schmidt rank is 2, and so | ¢) is not separable as an Alice ® (Charlie+Bob) system. However, we will
develop a sense in which it comes weirdly close to being separable that way after all, indeed three-way
separable. We will do this via the SVD of A¢ (in passing, the SVD of AQP above is relatively boring).
The emathhelp applet actually allows entering square roots explicitly---and makes a link from what you
enter:

Size of the matrix: 2 % | 4

Matrix:
sqrt(.17) sqri(.17) sqri(1/8) sqri(1/8)
sqri(1/8) sqri(1/8) sqri(0.08) sqrt(0.08)

The exact calculations get quite freaky with nested radicals, but the numerics come out the same as in
the first source. With r = 2 for the reduced SVD, we get:

. [0.99985947 0
2 0 0. 01676428

Wow: 0y has almost all the bulk. (These rounded numbers' squares sum to 1.0000000008325993 on

my Windows calculator.) This asymmetry isn't obvious if you just look at the U and V matrices:

_ [0.7681475 —0.6402729]
0.6402729 0.7681475 |

. _ |0. 5431623 0.5431623 0.4527413 0. 4527413
0.4527413 0.4527413 -0.5431623 -0. 5431623

Yes, the squares of a column of U sum to 0.99999996823066 and squares in columns of V' sum to
0.99999993773396 on my calculator. Now let us truncate by zeroing out the 0. 01676428 entry. Since

we want to preserve the property that the sum of o7 is 1, we also replace 0. 99985947 simply by 1.

This also allows us to discard the second column of U and the second row of V*:

0.7681475

0.6402729][0.5431623, 0.5431623, 0.4527413, 0.4527413 ]

|p1) = UhZ, V] = [

= [0.417229, 0.417229,0.347772,0.347772,0.347772,0.347772, 0.289878, 0.289878].

Rounded to six decimal places, these entries' squares sum to 1.000000042586, so this is legal like
| qb) = [0.412310, 0.412310, 0.353553, 0.353553, 0.353553, 0.353553, 0.282843, 0.282843] (also to


https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/?i=%5B%5Bsqrt%28.17%29%2Csqrt%28.17%29%2Csqrt%281%2F8%29%2Csqrt%281%2F8%29%5D%2C%5Bsqrt%281%2F8%29%2Csqrt%281%2F8%29%2Csqrt%280.08%29%2Csqrt%280.08%29%5D%5D
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf

six decimal places). The differences in the second or third decimal place between entries of |qb1> and
those of the original |q§> are similar to how we truncated-and-rounded the singular values. But to
compare probabilities, we need the entries' squares, which are under the square-root signs in |q§1> =

| V174080, v/.174080, V120945, 4/ 120945, /.120945, /120945, 1/ .084029, /.084029 |

versus the original | V.17, V.17, V/125,v/.125,/.125,V/.125,4/0.08,4/0.08|. This is also not

bad. The property of "Alice+Charlie" not being entangled with "Bob" is clear when we reshape |¢1> as
0.417229 0.417229
0.347772 0.347772
0.347772 0.347772
0.289878 0.289878

since the columns are identical. For our drumroll conclusion---that Alice is not entangled wiyth
Bob+Charlie either---we also get separability under the reshaping

[0.417229 0.417229 0.347772 0.347772]
0.347772 0.347772 0.289878 (.289878

0.417229 0.347772
because = = 1.199720... So we have approximated the entangled state by
0.347772 0.289878

the completely separable state

0.543162 0.768148
oy = | 0583162 | g | 076148 |
0.839628 0.640272

The relationship to U and to one of the entries of V' (equality up to the six-place rounding) is striking.
Note also that the approximation did not affect Bob's qubit at all---it was separate and stayed separate.

We can conclude that although there is entanglement between Alice and (Charlie+Bob), as shown
qualitiatively by the rank of A¢ being 2, it is quantitatively weak. The appropriate metric for this is the
von Neumann entropy of the squares of the singular values:

_2’: 01.2 ln(oiz).
i=1

(I am cutting corners here---the metric is really defined on the eigenvalues A; of density matrices that
are Hermitian and PSD.) A term of this sum is near zero when ¢; is near zero or when ¢; is near 1.
That is the case with both our singular values in X, above. So the entanglement in this case is near
zero. For two-party breakdowns like "Alice" versus "Bob+Charlie", this metric, called entanglement of
formation (EF, when properly formalized) is recognized as the unique best measure. But for multi-
partite entanglement---when you don't specify a binary division---there is as yet no such consensus.
(I've tried to develop the idea that an "algebraic-geometric invariant" of n-qubit circuits C,, that produce



these states from input |O”> can furnish such a measure---and also embody a complexity measure of

the effort required to operate C,, coherently that is bigger than O(s + 1), where s is the count of gates
in C,,---but have not gotten it to work.)

Entanglement and Traceout (in Graph States)

For the graph on Assignment 7, let us suppose that qubit 1 is held by "Alice" (in big-endian order), qubit
2 by "Bob", qubit 3 by "Charlie", and qubit 4 by "Donna":

Alice

Charlie Bob

Donna

This is set up to do traceouts neatly for the divisions A versus B+C+D, A+B versus C+D, and A+B+C
versus D. To handle the other three divisions, one must either take traces of non-contiguous square
sub-matrices or permute the rows and columns so that the parties being traced out occupy the least
significant (qu)bits. Likewise if you want to trace out A while leaving B+C+D intact, and so on. And
actually, we will do that---so the labeling changes to

Alice which is equivalent to
Alice Bob
Charlie Donna M
g Charlie Dorna

The graph state I" is 31[1, 1,1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1, —1]T (before the second
Hadamard transform) and the whole 16 X 16 self-outerproduct density matrix |I'){I"| is




1 11-11-1-1-11-1-1-11 1 1 -1
11 1-11-1-1-11-1-1-11 1 1 -1
1 11-11-1-1-11-1-1-11 1 1 -1

1 11-11-1-1-11-1-1-11 1 1 -1
11 1-11-1-1-11-1-1-11 1 1 -1
1 11-11-1-1-11-1-1-11 1 1 -1
l-1-1-11-1111-1111-1-1-1 11

For the first case where we trace out all of Bob, Charlie, and Donna, we make four 8 X 8 quadrants and
05 0

]. This is the matrix of the completely
0 05

take the trace of each. This yieldsi 80 =
16| 0 8

mixed
state on one qubit. This does imply that Alice is entangled with the others in this state. We can also
see this insofar as p is not a tensor product of a 2 X 2 matrix with an 8 X 8 matrix.

For Alice+Bob versus Charlie+Donna, tracing the latter two out, we divide into sixteen 4 X 4 blocks.
Taking the trace of each gives

4004 1001
110440 o110

:T = — = - .
PaB renlP) = Telo 4 4 0 42l0110
4004 1001

This is not a pure state: If you square it, you get 1/8 not 1 /4 in the upper-left corner, so pi/B * PAB-
It is not a directly separable matrix. It is, however, a sum (that is, a mixture) of separable pure states:

1111 1 -1 -1 1
111111 -1 1 1 -1 1 1
= - + = —[++){++| + =|—){—|.
PAB sll1111 11 1 -1 2| > ++] 2| ==
1111 1 -1 -1 1

A classical mixture of separable states counts as separable. The context needs parsing out:

* The fact that p 4 g is a mixed state traced out from a pure state---technically that
Tr (pi,B) < Tr(p 4,)-—means that Alice+Bob are entangled with Charlie and Donna.

* But Alice and Bob are not entangled between themselves.



The second point leads to an ultimarte subtlety. It is best viewed if we transform back to the standard
basis and consider the state

0500 O
1 1 0 00 O
T = —[00)<00]| + =11 )<11| =
Hoox<ool + 21| = | 9 000
0 00 05
This is not the same as the self-outerproduct of @* = L (|00> + |11>) , which has 0.5 also in the

NG

upper-right and lower-left corners. It is not a separable matrix---and its Schmidt rank is 2 not 1. Its
singular values are 0.5 twice then 0 twice. If you think of Alice and Bob each having a classical coin, it
sure seems the coins are entangled by dint of saying that either they both get heads or both get tails.
But as a mixture, it is a single coin that either comes up "double heads" or "double tails."

Well, there are other ways to get the matrix T as a mixture involving entangled states, namely as

N | =
O O =

2 2

_ O O -
o O O O
o O OO
—_0 O =
o O O O
o O O O
—_ O O

But the fact that there is a way to get it as a mixture of states that are separable (with the same division
of qubits) makes it separable.

Definition. A mixed state is separable if it can be written as a distribution over pure states that are
separable the same way.

The fact that a pure state cannot be written as a proper mixture (proof for 1-qubit states and general
intuition: all proper mixtures are within the Bloch sphere, not on its surface) makes this definition self-
consistent. It would be nice to have a simple criterion by which we could decide whether an arbitrary
legal density matrix of a mixed state is separable or entangled---the way we can do with the "rolled-up"
matrices from a vector of a pure state. However, there likely isn't one: the general problem of
determining whether a density matrix p is separable is NP-hard. There are cases where you can
prove separability, such as p being a tensor product already or finding a separating mixture. There are
also cases where one can prove entanglement. The Peres-Horodecki criterion says to divide p into
blocks as if you were going to ““trace out Bob," but instead transpose each of the sub-matrices (without

conjugating them) to get a matrix p’. If p” has a negative eigenvalue, then p is entangled. For two-
qubit systems (and ones of a qubit and a three-way quitrit), this is an "only if" as well. So the fact that T
above is unchanged upon transposing its 2 X 2 "Bob blocks" and has all eigenvalues = 0 means it is
separable. But for more qubits, no such simple criterion is known and the whole question devolves into
teh mysteries of computational complexity.


https://en.wikipedia.org/wiki/Peres%E2%80%93Horodecki_criterion

