
CSE439 Fall 2025 Week 13: Matrix Algebra and the SVD
 
What happens if we try to take the "inner product" of two  matrices  and  by first "unrolling" m × n A B
them as vectors?  Remembering to conjugate the entries of , we getA
 

⟨A, B⟩ =  B i, j .∑
 

i=1,m
j=1,n

A i, j⏨⏨⏨[ ] [ ]

 
Now let .  Since  is , this is an  square matrix.  From C = A B* A* n × m n × n

C r, s = A r, k B k, s  =  B k, s[ ] ∑
m

k=1

*[ ] [ ] ∑
m

k=1

A k, r⏨⏨⏨[ ] [ ]

we get that the diagonal entries of  are .  Hence the diagonal sum givesC C r, r = B k, r[ ] ∑
m

k=1
A k, r⏨⏨⏨[ ] [ ]

C r, r  =  B k, r  =  ⟨A, B⟩∑
n

r=1

[ ] ∑
 

k=1,m
r=1,n

A k, r⏨⏨⏨[ ] [ ]

as we defined it above.  The diagonal sum at left is called the trace, with notation .  Now for a Tr C( )

vector , the self inner-product  gives the squared Euclidean norm of , written , so v ⟨v, v⟩ v ||v||2
2

.  The analogous concept for matrices is the Frobenius norm, named for Ferdinand ||v||  =  2 ⟨v, v⟩
Georg Frobenius:
 

.||A||  =  F Tr A A*

 
Or you can simply say it's the Euclidean 2-norm of the vector obtained by "unrolling" the matrix.  This 
norm, however, overstates the action of the matrix in Euclidean space, which involves its  m × n
dimensions.  This is
 

.   ||A||  =  ||Av|| :  v is a unit vector of length n2 sup{ 2 }
 
For some further remarks: Since our vectors are finite-dimensional, the "ball surface" of unit vectors is 
compact, which actually means that there is a definite vector  that maximizes  rather than just v ||Av||2

having a limit---so we can write "max" in place of "sup" for "supremum."  The task of finding such a 
vector  is the main algorithmic need of computing the singular value decomposition (SVD) as v
treated below.  It tumbles out of the SVD Theorem that  for every matrix .  But the ||A||  ≤  ||A||2 F A
inutition is that  tells the most that  can "stretch" a vector along the fixed dimensions it operates ||A||2 A
on, whereas  is the maximum amount of "stretch" that the entries of  could give under any ||A||F A
configuration of dimensions.
 
 

 

 

 



The SVD
 
A matrix  is (pseudo-)diagonal if it is (non-)square and  whenever .  It follows that both S S i, j = 0[ ] i ≠ j

 and  are diagonal square matrices.  Some of the diagonal entries may be .S S* SS* 0
 
SVD Theorem: For every  matrix  we can efficiently find:m × n A

• an  unitary matrix ,m × m U
• an  pseudo-diagonal matrix  with non-negative entries , andm × n 𝛴 𝛴 i, i = 𝜎[ ] i

• an  unitary matrix ,n × n V
such that .  Furthermore, we can arrange that , and in A =  U𝛴V

* 𝜎 ≥ 𝜎 ≥  ⋯  ≥ 𝜎1 2 m,nmin( )

consequence:

• .||A||  =  F 𝜎∑
 

i
2
i

• ,||A||  =  𝜎2 1

• , andA A =  V𝛴 U U𝛴V  =  V diag 𝜎 V* T * * 2
i

*

• ,AA  =  U𝛴V V𝛴 U  =  U diag 𝜎 U* * T * 2
i

*

so that the squares of the  and associated vectors give the spectral decompositions of the Hermitian 𝜎i

PSD matrices  and , respectively. A A* AA*

 
The  are the singular values.  The number  of positive ones equals the rank of .  Whereas some 𝜎i r A
of the  can be negative in the Spectral Theorem---when the Hermitian matrix is not PSD---none of the 𝜆i

 is negative.  The first  columns of  form an orthonormal basis for the subspace  spanned by the 𝜎i r U W

columns of  (called the column space of ), while the first  columns of  form an orthonormal basis A A r V
for the column space of .  The latter is identical to the row space of  when  is a real matrix---and A* A A
in that case,  and  come out being real as well.  The remaining  columns of  form an U V m - r U
orthonormal basis for the space , which is also the nullspace of .  As with the Spectral W

⟂ A*

Theorem, the basis vectors are not unique when there is multiplicity or when we don't have , r = m = n
but the values  are unique (when sorted in nonascending order, so we can say the matrix  is unique 𝜎i 𝛴

too).  Once  and  are specified, we get  too.U V 𝛴 =  U AV
*

 
Proof: The procedure works by recursion through subspaces and so resembles the proof of the 
Spectral Theorem.  The first and top-level step is most emblematic.  It begins by finding a unit vector  v1

that maximizes .  Then  is the first and biggest singular value.  It can't be zero ||Av ||1 2 𝜎 = ||Av ||1 1 2

(unless  is the all-zero matrix, in which case we've "hit triviality"), soA
 

u  =  1

Av

𝜎

1

1

 
is a unit vector.  If there are more than one maximizing unit vectors  then we will get multiplicity, but let v
us first suppose that the  and associated  are unique.  Before doing the recursion, we may v1 u1

 

 



postulate that  is arbitrarily extended to an orthonormal basis  of  (or of  in the real case) u1 U1 C
m

R
m

and  to an orthonormal basis  of .  In the resulting coordinates, we getv1 V1 C
n

 

U AV  =   =  S*
1 1

𝜎1 w
*

1

0 B
1

 
for some vector  of length  and  matrix .  The red  stands for  zeroes w1 n - 1 m - 1 × n - 1( ) ( ) B 0 m - 1

and is because  so there is no dependence on the other  coordinates.  The goal is to Av = 𝜎 u1 1 1 m - 1

prove that  must be all-zero too. Then recursing on  hammers out the (pseudo-)diagonal matrix .w1 B 𝛴

 

Let  as a column vector.  Then  .  Ignoring the  part, we get w =
𝜎1

w1

S w =  w' =1
𝜎 + w w2

1
*
1 1

Bw1

Bw

.  The right-hand side equals .  Dividing by  hence gives us||w'|| ≥  𝜎 + w w2
1

*
1 1 ||w||2

2 ||w||2

 

. ≥  ||w||  =  
||S w||

||w||

1 2

2
2 𝜎  +  w w2

1
*
1 1

 

Now if  is nonzero, then  is a positive real number, so .  Under the definition of w1 w w*
1 1  >  𝜎

||S w||

||w||

1 2

2
1

the 2-norm for matrices, this means  .  But ||S ||  >  𝜎1 2 1

 
||S ||  =  ||U AV ||  =  ||A||1 2

*
1 1 2 2

 
because  and  are unitary.  And  by how we defined .  This is a contradiction U1 V1 ||A||  =  𝜎2 1 𝜎1

saying " ."  The only way out is for  to be a zero vector.𝜎 > 𝜎1 1 w1

 
The recursion then takes place on the perpendicular subspace of , or in general, the perpendicular v1

subspace of the span of the orthogonal unit vectors  chosen thus far.  The final point is that the vj

corresponding vectors  also come out orthogonal.  This is because, when  (and at stages where uj i ≠ j
 and  are both nonzero---else we are in the base case of completing orthonormal bases on the 𝜎i 𝜎j

nullspaces):
 

,𝜎 𝜎  =   =   =  v A Av  =  v 𝜎 v  =  𝜎  =  0i j ui uj 𝜎 ui i 𝜎 uj j Avi Avj
*
i

*
j

*
i

2
j j

2
j vi vj

 
finally using the orthogonality of the  vectors.  The fourth equality happens because  is an vi vj

eigenvector of  with eigenvalue .  The reason given by the (short!) proof in the MIT notes A A* 𝜎2
j

(https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf) is that
 

,A A =  U𝛴V U𝛴V  =  V𝛴 U U𝛴V  =  V𝛴 𝛴V* *
*

* T * * T *

 

 

https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


 
which in turn converts to the way we have been writing the spectral decomposition since  is unitary.  V
However, substituting  strikes me as assuming what one is trying to prove about the  U U = I* ui

vectors.  
 
To tie up the loose end, we choose to restart the proof.  We apply the original Spectral Theorem to the 
Hermitian PSD matrix  to get nonnegative eigenvalues ---listed in nonincreasing order---A A* 𝜆 , … , 𝜆1 n

and orthonormal eigenvectors  such thatv , … , v1 n

 
,A A =  𝜆  +  ⋯  +  𝜆  =  V diag 𝜆 V*

1 v1 v1 n vn vn
* ( i)

 
taking  as the matrix with the eigenvectors as its columns.  Now define  to be the nonnegative V 𝜎i

square root of  for each .  Since the rank  of  equals the rank of , we get  for  to . 𝜆i i r A A A* 𝜎 > 0i i = 1 r
 For these , definei

.u   =   i

Av

𝜎

i

i

 
Now the above demonstration that  is logically valid, because we arranged that  is = 0ui uj 𝜎  = 𝜆2

i i

an eigenvalue of  with eigenvector  in advance.  What we've lost, however, is the original proof's A A* vi

definition of  so that  is a unit vector.  We recover it, however, this way:𝜎i ui

 

.= = v A Av  =  v 𝜆 v  =  v v  =  1ui ui

Av

𝜎

i

i

Av

𝜎

i

i

1

𝜎2
i

*
i

*
i

1

𝜎2
i

*
i i i

*
i i

 
And  is an eigenvector of  becauseui AA*

 

.AA u = AA  =  A A A v  =  A𝜎 v  =  𝜎 Av  =  𝜎 u*
i

*
Av

𝜎

i

i

1

𝜎i

*
i

1

𝜎i

2
i i i i

2
i i

 
For , we can arbitrarily complete the basis by choosing orthonormal vectors that span the i > r
nullspace.
 
So now the only thing we've "lost" compared to the first proof strategy is the fact that at the first and 
each later step of the recursion, the choice of unit vector  maximizes .  However, now we can vi ||Av ||i 2

appeal to the uniqueness of the  and "quasi-uniqueness" of the eigenvectors up to the flex of 𝜆i

multiplicity.  The squares of the  and the  must coincide.   What comes out is a deep fact that the 𝜎i 𝜆i

largest eigenvalues of  naturally pick out the directions in which  stretches the most.  A A* A ☒
 
Corollary: For a square matrix  already of the form  (and that goes for any Hermitian PSD A E E*

matrix), the SVD and spectrum of  coincide with .E U = V

 

 



 
Proof. The diagonal form  has the specified properties; because  is PSD, the  are E = U𝛬U* E 𝜆i

nonnegative, and we can arrange  so that the diagonal is in nonincreasing order. U ☒
 
In all other cases where  is diagonalizable, there are reasons for saying the SVD gives more A
information than the diagonalization.  This is especially so with upper or lower triangular matrices---see 
example below.  And of course, there are many square matrices that can't be diagonalized...to say 
nothing of non-square matrices...for which the SVD is the only game in town.
 
Our two-pronged proof suggests two different algorithms for computing the SVD of a matrix :A

• Diagonalize  to get 's and , then  and .A A* 𝜆i V 𝜎 =i 𝜆i u =i
Av

𝜎

i

i

• Find a unit vector  maximizing  and recurse.v ||Av||2

 
Other methods come into play when  has certain particular features.  Niloufer Mackey developed new A
methods in her 1993 UB CS PhD dissertation under Patricia Eberlein.  Other remarks:
 

• The version giving  with  and  both unitary, is called the full SVD.  A = U𝛴V* U V

• When the  matrix  has rank , then we can also do  with  m × n A r < m, nmin( ) A = U𝛴V* 𝛴

being an  matrix with positive values on the main diagonal,  being , and  being r × r U m × r V
.  This is called the reduced or compact SVD.  n × r

• Some sources give a third version where  is  but  is  and  is  (and unitary).  U m × r 𝛴 r × n V n × n
Let's call this the semi-reduced version.

 
Our proof and notes use the style of diagonalizing , getting  from the unit eigenvectors  of that, A A* V vi

and then getting , dividing by  to normalize .  There is also a symmetrical style of u = Avi i 𝜎i ui

diagonalizing  instead, forming its orthogonal unit eigenvectors as the columns of , and getting  AA* U V
at the end.  The nicely verbose applet 
 
https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/
 
does that.  The most portable applets handle real numbers only, so they write  instead of  (or ). AT A* A†

 There are some Java applets that allow complex numbers (but I haven't tried them).  They all have 
limitations on , , and/or the magnitudes of matrix entries.  The appletm n
 
https://www.omnicalculator.com/math/svd#is-singular-value-decomposition-unique
 
seems to do things the  way, with  first, but only does up to  and doesn't show intermediate A AT V 3 × 3
steps.  There are also differences in output caused by not sorting the singular values in nonascending 
order (so with the largest one at upper left) and the non-uniqueness of  and .V U
 
 

 

 

https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/
https://www.omnicalculator.com/math/svd#is-singular-value-decomposition-unique


Examples and Applications
 
In any upper or lower triangular matrix , the elements of the diagonal are the eigenvalues.  They are A
thus independent of all the off-diagonal entries at upper right.  Those entries have information that does 
get picked up by the SVD.  The two examples in the MIT notes are good for this.
 
Example 1:
 

              A =  
3 0

4 5
A  =  A  =  * T 3 4

0 5
 

                  .A A =  =* 9 + 16 20
20 25

25 20
20 25

AA  =  =* 9 12
12 16 + 25

9 12
12 41

 

Abstracting this, consider .  The eigenvalues are  and  with  as one of the A =
a 0
b c

a c 1, 0[ ]T

eigenvectors.  This has no dependence on the entry .  How much  can stretch a (unit) vector does b A
depend on .  The SVD employs this information.  We haveb
 

A A =  ⋅  =   =  .* a* b*

0 c*

a 0

b c
a a + b b* * b c*

cb* c c*

|a| + |b|2 2 cb⏨

bc⏨ |c|2

 
In the real case we can drop all the stars and bars.  Then, solving  givesA A - xI = 0det *

 
.0 =  a + b - x c - x - b c  =  x  -  a + b + c x +  a c2 2 2 2 2 2 2 2 2 2 2

 
The two solutions given by

x =  a + b + c  ±   
1

2
2 2 2 a + b + c  -  4a c2 2 2

2
2 2

 
do not simplify further in general.   In the example , , and , the expression under the a = 3 b = 4 c = 5

square root becomes , so  or just .  Notice also that 50 - 30 = 402 2 2 x =  50 ± 40  =  45
1

2
( ) 5

 
.Tr A A  =  |a| + |b| + |c|  =  9 + 16 + 25 =  50 =  𝜆 + 𝜆* 2 2 2

1 2

 

The singular values are the square roots, so  and .  The  matrix is formed from the = 345 5 5 V
eigenvectors of , so we solve:A A*

 

,     .⋅ = =
25 20

20 25

y
z

25y + 20z
20y + 25z

45y
45z

⋅ = =
25 20

20 25

y'

z'

25y' + 20z'

20y' + 25z'

5y'

5z'

 

 



 

This gives  for the vector  and  as one of a couple orthogonal =
y
z

1

2

1

1
v1 =

y'

z'

1

2

1

-1
choices for the vector .  Then  becomes the Hadamard matrix.  The  matrix is obtained by v2 V U

normalizing the columns of .  We can normalize  columnwise as AV ⋅  =  
3 0

4 5

1 1

1 -1

3 3

9 -1

, so .  1 / 10 3 / 10

3 / 10 -1 / 10
U =

1

10

1 3

3 -1

 
As a final check, U𝛴V  =*

 

,= H = =
1

20

1 3

3 -1
3 5 0

0 5

1 1

1 -1

1

20

3 5 3 5

9 5 - 5

1

2

3 3

9 -1

1 1

1 -1

1

2

6 0

8 10

 

which equals .  We also get  and .  A ||A||  =  2 45 ||A||  =   =   =  5F 45 + 5 50 2

 
 

To see that  is not unique, we could have chosen  as the second eigenvector V =
y'
z'

1

2

-1
1

instead.  Then we'd get , which Assignment 4 (in Fall 2024) called the "Damhard V =
1

2

1 -1

1 1
matrix ."  The  matrix changes too: it comes by normalizing each column of H4 U

 to get .  Note that this  is not Hermitian, so we have ⋅ =
3 0
4 5

1 -1
1 1

3 -3
9 1

U =
1

10

1 -3
3 1

V

to remember to transpose it when we do the check that U𝛴V  =*

 

 =  =  =  A
1

20

1 -3
3 1

3 5 0

0 5

1 1
-1 1

1

2

3 -3
9 1

1 1
-1 1

1

2

6 0
8 10

 

as before.  (Nor does  square to the identity; , so this  is another square root of the V V =2 0 -1
1 0

V

matrix .)B = -iY
 
 
Low-Rank Approximation By SVD Truncation
 

Last, let's see what happens if we simply wipe out the smaller entry of , which is :𝛴 𝜎 =2 5

 

.= = =
1

20

1 3
3 -1

3 5 0
0 0

1 1
1 -1

1

20

3 5 0

9 5 0

1 1
1 -1

1

2

3 3
9 9

1.5 1.5
4.5 4.5

 

 



 
Is the resulting  a reasonable approximation to ?  Note that  stretches the first  vector  by the A' A A' V v1

same amount: , whose -norm is .  But the second A' =
1

2

1
1

1

2

3
9

2  =   =  𝜎
1

2
3 + 92 2 45 1

dimension  gets zeroed out. v2

 

We can also preserve the trace by using  instead, which gives .  Then 𝛴' = 4 5 0
0 0

A' =
2 2
6 6

 over-stretches, but in other contexts it may give better results.  Or we might prefer to preserve the A'v1

Frobenius norm by using  instead, conserving .  Well, the whole 𝛴'' =  5 2 0
0 0

𝜎 + 𝜎2
1

2
2

approximation idea looks better when the matrices are much larger to begin with.
 
[The Tue. 12/2 lecture ended here.  I began Thursday with a challenge question:
What are the singular values of an  unitary matrix ?  Step 1 of our algorithm is:n × n U

1. Diagonalize  and get the eigenvalues .U U* 𝜆i

2. The  are the positive square roots of the .𝜎i 𝜆i

The answer is that since , they are all .  No .  This also stands to reason from the rule that U U = I* 1 0s

 for all vectors , which means  does unit stretching in all directions.]||Ux||  =  ||x||2 2 x U
 
 
(Pseudo-)Inversion
 
In the invertible  Hermitian case where we get orthonormal diagonalization  with all n × n A = U𝛬U*

diagonal entries  being nonzero, then using  makes .  We can partly 𝜆i 𝛬' = diag 1

𝜆i
U𝛬'U = A* -1

emulate this for any matrix by taking the reciprocals of the positive singular values.
 
Definition: The (Moore-(Bjerhammer)-Penrose) pseudoinverse of an arbitrary  matrix  with m × n A
SVD  is the  matrix given by , where  transposes  and then A = U𝛴V* n × m A = V𝛴 U+ + * 𝛴+ 𝛴

replaces every nonzero  by .  𝜎i 1 / 𝜎i

 
If we specified that  is the reduced SVD, then  would be an  diagonal matrix with A = U𝛴V* 𝛴 r × r
positive diagonal entries, and we would simply get .  Saying it this way, however, would A = V𝛴 U+ -1 *

hide a highly important "pseudo" aspect.  You might expect that for sake of continuity, a zero  would 𝜎i

be replaced by some large value, if not by (the IEEE representation of) inf.  However, what happens 
more often instead is that when  for some threshold  (e.g.,  where  is 𝜎 < 𝜖i 𝜖 𝜖 = 𝜖 m, n, 𝜎0 max( 1) 𝜖0

the least positive hardware value), it is treated as zero and blipped---rather than put the large value 
 into the inverse.  The rationale for this is that the dimensions and singular vectors associated E = 1 / 𝜖

to small  can often be "cropped out" with minimal effect---as in the image compression application 𝜎i

noted below.  But blipping large  betrays the fact of numerical instability lurking in applications.  E

 

 



 
The pseudoinverse obeys the rule , and if  is invertible, then .  ThusAB = B A( )+ + + A A = A+ -1

 

A  =  V𝛴 U  =  U 𝛴 V  =  U 𝛴V  =  U𝛴V  =  A+
+

+ *
+

*
+

+
+

+ *
-1 -1 *

 
back again, so this is a viable concept of inversion.  However,  reduces to AA  =  U𝛴V V𝛴 U+ * + *

 but not necessarily to the identity matrix---because zeroes can occur in  from having U𝛴𝛴 U+ * 𝛴𝛴+

 even when all singular values are positive.  It also obeys the rules:m < n
 

• ;AA A =  U𝛴V V𝛴 U U𝛴V  =  U𝛴𝛴 𝛴V  =  U𝛴V  =  A+ * + * * + * *

• ;A AA  =  A+ + +

•  and  are both Hermitian.AA+ A A+

 
Indeed,  is generally the unique matrix obeying these rules.  Here are some more examples of A+

SVDs and the resulting (pseudo-)inverses.  Back to our  example:2 × 2
 

, soA =   =  U𝛴V  =  
3 0
4 5

* 1

10

1 3
3 -1

3 5 0

0 5

1

2

1 1
1 -1

 

,A = V𝛴 U = = =+ -1 * 1

2

1 1

1 -1

1

3 5
0

0
1

5

1

10

1 3

3 -1

1

30

1

10
1

30

-1

10

1 3

3 -1

1

3
0

-4

15

1

5

 
which is the same as .  Of course,  is invertible by virtue of being square and having nonzero A-1 A
determinant, and we could have made life much easier using the adjugate formula 

.  A  =   =  -1
1

Adet( )

5 -4

0 3

T 1

15

5 0

-4 3
 

How about the pseudo-inverse of the matrix ?  .  We get B =
0 0
1 0

B B = =T 0 1
0 0

0 0
1 0

1 0
0 0

 with eigenvalue  and can choose  (orthonormal to ) for the eigenvalue .  Then v =1
1
0

1 v =2
0
1

v1 0

, while for  we choose an orthonormal vector since ;  is the u = Bv =1 1
0
1

u2 Bv = 02 u =2
1
0

natural choice.  So we have , , and .  This makes U =
0 1

1 0
𝛴 = = 𝛴

1 0

0 0
+ V = I

.  Then  while .B = V𝛴 U  =   =  + + * 1 0

0 0

0 1

1 0

0 1

0 0
B B =+ 1 0

0 0
BB =+ 0 0

0 1

 

 



 
 
A Second Example, With Numerical Instability

Now let's try the second MIT notes example: .  We get .  Then A =

0 1 0 0

0 0 2 0
0 0 0 3
0 0 0 0

A A =T

0 0 0 0

0 1 0 0
0 0 4 0
0 0 0 9

 is the identity matrix again while  and  (ignoring the sorting V U =

0 1 0 0
0 0 1 0

0 0 0 1
1 0 0 0

𝛴 =

0 0 0 0
0 1 0 0

0 0 2 0
0 0 0 3

order).  So .  And A = V𝛴 U  =  ⋅  =  + + *

0 0 0 0

0 1 0 0
0 0 1 / 2 0
0 0 0 1 / 3

0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0

1 0 0 0
0 1 / 2 0 0
0 0 1 / 3 0

 while .A A =  +

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 0

AA  =  +

0 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

 
Regarding numerical instability, the MIT notes point out that if you make  a small value  so that A 4, 1[ ] 𝛿

 becomes invertible, the eigenvalues grow by more than expected.  With  the singular A 𝛿 = 1 / 60000

values stay , , , and  but the eigenvalues become , as seen at 1 2 3 1 / 60000 , , ,
1

10

i

10

-1

10

-i

10

https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/
The reason for using  is that the determinant becomes (negative) , and that 60000 1 / 10000 =  1 / 104

neatly spreads a factor of  among four eigenvalues.  The fact that the eigenvalues have equal 1 / 10
magnitude is weird, given how the singular values match the sizes of the four positive matrix entries.
 
 
Applications to Solving Equations
 
Approximately Solving Linear Systems: When a matrix  is invertible, the solution to  is A Ax = b

.  When  is not invertible, or not even square (thus denoting an overspecified or x = A b-1 A
underspecified system), we can still use  as an "ersatz" solution.z = A b+

 
How good a solution?  It follows from the SVD theorem that  for all vectors .  ||Az - b||  ≤  ||Ax - b||2 x

So this is the best approximation.  When the system is underspecified, so that exact solutions exist,  z
will be one of them---and moreover, all exact solutions have the form
 

z  +   I -  A A w+

 

 

 

https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/


for arbitrary vectors .  This follows from the identity  given in the "rules" above.  Least w A AA = A+ + +

squares fitting is essentially the same process, since we are using the -norm.|| ⋅ ||2

 
In some cases we can combine  and  into a matrix  such that  measures the error in an A b E Ex
attempted solution .  Then we want to find the  that minimizes .  This  is given by the column x z ||Ez||2 z

of  that corresponds to the least singular value.  (If  is a singular value of , so that , this just V 0 E Ez = 0

means that  is an exact solution.)z

 
 
Succinct Approximation
 
This IMHO is the "signature" application of the SVD and will lead us back to quantum computing.  
Given a pseudodiagonal matrix  with  positive entries (in sorted order), define  to be the result 𝛴 r > k 𝛴k

of zeroing out all but the  largest entries.  If  has SVD , then define .  k A U𝛴V* A = U𝛴 Vk k
*

 
Eckart-Young-Mirsky Theorem:  minimizes both  and  over all matrices  of Ak ||A - B||F ||A - B||2 B
rank (at most) .k
 
The reason is that choosing the  largest singular values is both the way to maximize the sum of their k
squares (relevant to the Frobenius norm) and the way to minimize the size of any leftover singular 
value, i.e., of  in sorted order (relevant to the 2-norm).  𝜎k+1

 
How good is the approximation?  It depends on the size of  (and their squares) in relation 𝜎 , … , 𝜎k+1 r

to the sizes of (the sum of squares of) the first  singular values.  If the first  have the bulk of the k k
magnitude, then the approximation can be quite good.
 

Example: .  Think of the rows as movies and the columns as users.  Notice that A =

1 1 1 1 1

1 1 1 0 0
1 1 0 0 0
1 0 0 0 1

0 0 0 1 0
movie 1 is seen by everyone and user 1 is the most active.  The emathhelp.net applet sorts the 
singular values in reverse order, giving (rounded to five places):
 

𝛴 ≈

0.29257     
 0.72361    

  1.16633   
   1.33095  

    3.04287​  
 
This has one distinctly low singular value and another one under .  Its SVD comes with1
 

 

 



U ≈

−0.48209 −0.23434 0.13187 0.44906 0.70258

0.55100 −0.34647 0.30727 −0.47362 0.50757
−0.25405 0.76276 −0.01555 −0.45976 0.37687
0.34853 0.03548 −0.86833 0.15420 0.31541

0.52722 0.49191 0.36599 0.58213 0.08507
and

V ≈

0.55847 0.30049 -0.38132 -0.24803 0.62521

-0.63280 0.25146 0.36318 -0.36389 0.52155
0.23554 -0.80265 0.37652 -0.01845 0.39770
0.15425 0.35595 0.42687 0.77478 0.25885

-0.45650 -0.27481 -0.63143 0.45326 0.33455
 
Now suppose we delete the two smallest singular values at upper left.  Then we also don't need the 
first two columns of  and , the latter becoming the top two rows of .  We first computeU V V*

 

≈

0.13187 0.44906 0.70258
0.30727 −0.47362 0.50757
−0.01555 −0.45976 0.37687

−0.86833 0.15420 0.31541
0.36599 0.58213 0.08507

1.16633 0 0
0 1.33095 0

0 0 3.04287

0.15381 0.59768 2.13787
0.35838 -0.63036 1.54446
-0.01814 -0.61191 1.14676

-1.01276 0.20523 0.95976
0.42687 0.77478 0.25885

 
Then multiplication with  givesV*

 

A  ≈  3

1.12973 0.95339 0.89712 1.08212 0.88901

0.67261 0.70630 0.73754 1.04116 0.57612
0.55827 0.38202 0.45161 0.77868 0.64955
0.16296 0.79370 0.75923 0.83976 -0.22538

-0.19311 0.00810 0.24937 0.84951 0.16823
 

Is this a reasonable approximation to ?   The first and last rows are good.  

The 

A =

1 1 1 1 1

1 1 1 0 0
1 1 0 0 0
1 0 0 0 1

0 0 0 1 0

entry in row 4, column 5 is way off, as are some others.  But overall, not too shabby?  Another reason 
this looks silly is that we not only need  but the relevant elements of  and  as well, which are all 𝛴k U V
more complicated numbers than  has.  However, the total number of entries isA
 

   as compared with       entries in .km + k + kn2 mn A
 
When  this is a major savings.  And when  are of order in the 1000s,  often gives k ≪ m, n m, n k = 100
a nice approximation.  

 

 



 
Image Compression Examples.  Companies that store user views of media content may have 
dimensions in the millions---and an even bigger motive to calculate with reduced dimensions.  Then the 
approximations reflect the relative popularities of movies and other media content---while over in the 
column space of users, they indicate the patterns of frequent consumers.
 
We are most interested in compressing density-matrix representations of large quantum states.
 
 
Quantum Applications
 
(These notes draw on https://www.math3ma.com/blog/understanding-entanglement-with-svd)
 
First and simplest, SVD ideas give an easy way to tell whether a pure quantum state vector  is 𝜙

entangled.  It finally leverages the relation between tensor product and outer product: Reshape  into 𝜙

the matrix  that would occur if we really had  =  from qubits held by Alice and Bob, A𝜙 𝜙 ⊗𝜙A 𝜙B

respectively.  Then we would have  be of rank .  So:A = 𝜙A 𝜙B r = 1
 

 is entangled between Alice and Bob if and only if  has more than one nonzero singular 𝜙 A𝜙

value.  The number of nonzero singular values quantifies the entanglement.
 

For the simplest example,  gives .    The matrix has rank .  = 1, 0, 0, 1𝜙
1

2
[ ]T A =𝜙

1

2

1 0

0 1
r = 2

So Alice and Bob are entangled.  For vectors of length 4, this use of rank is equivalent to the "ratio test" 
that some of you have cited on homeworks---while for longer vectors and other possible divisions of 
qubits between "Alice" and "Bob", the use of rank is more general.  In any event, when you give "Bob" 
the least signifnicant (qu)bits---rightmost in big-endian form---the "rolling up" of the state vector is 
always in row-major order.
 

For example, the state  gives the vector  (ignoring the e + e + e - e
1

2
( 000 001 110 111) 1, 1, 0, 0, 0, 0, 1, -1[ ]T

).  If Alice holds the first two qubits, it re-shapes as .  This matrix has rank .  But the state 1

2

1 1

0 0
0 0
1 -1

2

 becomes  which has rank just  and so is not entangled.  It is e + e + e + e
1

2
( 000 001 110 111)

1

2

1 1
0 0

0 0
1 1

1

 with  as above.  But if we gave Alice only the first qubit, then the shape would be 𝜙 + 𝜙

.  This does have rank , so qubit is collectively entangled with Bob's "system" of 1 1 0 0

0 0 1 1
r = 2 1 

qubits 2 and 3.

 

 

https://medium.com/@moh.hussain06/applying-singular-value-decomposition-svd-in-image-compression-ba63a2c558de
https://www.math3ma.com/blog/understanding-entanglement-with-svd


 
Believe-it-or-else, the following theorem is equivalent to one on the syllabus of MTH 309, but there it is 
not stated in our present quantum context.  We may gloss over the statement and proof, since the 
applications can be understood by themselves.
 
Theorem: Let  be a pure state in the product  of two Hilbert spaces of dimensions  𝜙 H ⊗HA B dA

and , respectively.  Then we can find orthonormal bases  of  and dB :  0 ≤ i < diA A A HA

 of  and positive numbers  where  such that:  0 ≤ i < diB B B HB 𝜎 , … , 𝜎0 r-1 r ≤ d , dmin{ A B }

 

. =  𝜎𝜙 ∑
r-1

i=0

i iA iB

 

It follows that  and that if we define  and , to be 𝜎  =  1∑
 

i
2
i 𝜌 := TrA B 𝜙 𝜙 𝜌 := TrB A 𝜙 𝜙

the density matrices resulting from tracing out , respectively tracing out , thenHB HA

 

   and   .𝜌 = 𝜎A ∑
r-1

i=0

2
i iA iA 𝜌 =  𝜎B ∑

r-1

i=0

2
i iB iB

 
The state  is separable over  if and only if this happens with .  Otherwise,  is 𝜙 H ⊗HA B r = 1 𝜙

entangled with respect to , which is equivalent to  and to .H ⊗HA B Tr 𝜌 < 12
A Tr 𝜌 < 12

B

 
We've numbered from  because  and  are powers of  when we talk about "Alice" 0 d = 2A

m d = 2B
n 2

holding  qubits and "Bob" holding  qubits, and while we've been numbering qubits from , we've m n 1

been numbering the standard basis from  to leverage the correspondence between binary strings and 0

binary numbers.  It is less usual to number singular values from , but this serves to emphasize that we 0

may have exponentially many of them when  and  get large.  Also bear in mind that the dimension of m n

 is  with times, not  as it would be with an ordinary Cartesian product.  The H ⊗HA B d ⋅ dA B d + dA B

whole representation is called the Schmidt decomposition of .𝜙
 
To visualize the theorem statement, it helps to say what happens when  really is a tensor product 𝜙

 with  and .  Then, as we observed when the parital trace ⊗𝜓A 𝜓B ∈ H𝜓A A ∈ H𝜓B B

("traceout") was introduced in week 13, we get  and Tr =B 𝜙 𝜙 𝜓A 𝜓A

.  Since we can trivially extend the pure state  to an orthonormal Tr =A 𝜙 𝜙 𝜓B 𝜓B 𝜓A

basis of all of  and  likewise for , we get the theorem conclusion by taking  and HA 𝜓B HB r = 1

.  Moreover, if the theorem conclusion happens with , then we must have  to 𝜎 = 10 r = 1 𝜎 = 11

normalize, and so we get  and , from which it follows (these being pure 𝜌 =A 0A 0A 𝜌 =B 0B 0B

states, so that  and ) that .  This proves the conclusion about 𝜌 = 𝜌2
A A 𝜌 = 𝜌2

B B = ⊗𝜙 0A 0B

entanglement without having to invoke the SVD.  But the general proof is really crisp doing so.

 

 



 
Proof: The state vector of  has length , so we can reshape it into a  matrix  as 𝜙 d ⋅ dA B d × dA B A𝜙

done above---so that entry  equals entry  of  (again, numbering from .  Take the A i, j𝜙[ ] d i + jB 𝜙 0)

full SVD  with  and  unitary and  in nonincreasing order.  Then the columns of  form A =: U𝛴V𝜙
* U V 𝛴 U

the desired orthonormal basis for , the columns of  likewise for , and taking  to be the rank of HA V HB r

 gives the reduced SVD representation  as well.  Then  is a diagonal matrix, so the A𝜙 A = U 𝛴 V𝜙 r r
*
r 𝛴r

only nonzero terms  are those with .  So  follows.  u 𝜎 vi i
T
j j = i  =  𝜎𝜙 ∑r-1

i=0 i iA iB

 

For the rest, the mere fact that  is a unit vector forces .  Now when we trace out Bob from 𝜙 𝜎 = 1∑
 

i
2
i

 under this representation we get a  entry left over from each of his submatrices on the main 𝜙 𝜙 1

diagonal only---but the  becomes  in  so we get  - note that  𝜎i 𝜎2
i 𝜙 𝜙 𝜌 = 𝜎A ∑r-1

i=0

2
i iA iA

 is exactly what's needed for this to have unit trace and so be a legal density matrix.  𝜎 = 1∑
 

i
2
i

Likewise for .  The final fact is that whenever a sum of squares is , the sum of the corresponding 𝜌B 1

fourth powers is less than  unless the sum is just a single  and the rest zeroes. 1 1 ☒
 
 
A simple example that also resonates with our idea of truncating SVDs of quantum states is at
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf
 

Let .  This is a pure state of a = , , , , , , ,𝜙 .17 .17 .125 .125 .125 .125 0.08 0.08
T

3-qubit system we'll call Alice, Charlie, and Bob in that order.  This state has the form  for ⊗𝜓 +

some 2-qubit state  of Alice Charlie alone.  We can see this by "rolling" it into a  matrix 𝜓 ⊗ 4 × 2
where Alice and Charlie have the row space and Bob has the column space:
 

A'  =  𝜙

.17 .17

.125 .125

.125 .125

0.8 0.8
 
This has rank 1; you could also say it passes the "ratio test" with a ratio of 1 over all four rows.  
However, we are going to group it the other way:  representing Alice by herself and  H = CA

2
H = CB

4

for Charlie linked with Bob.  Is it separable that way?  Well, "reshaping" with two rows for Alice and four 
columns for  givesHB

 

.A  =  𝜙
.17 .17 .125 .125

.125 .125 0.08 0.08
 

 

 

https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf


It is easy to see that this has full rank---the second row is not a scalar multiple of the first row---so the 
Schmidt rank is , and so  is not separable as an Alice (Charlie+Bob) system.  However, we will 2 𝜙 ⊗

develop a sense in which it comes weirdly close to being separable that way after all, indeed three-way 
separable.  We will do this via the SVD of  (in passing, the SVD of  above is relatively boring).  A𝜙 A'𝜙
The emathhelp applet actually allows entering square roots explicitly---and makes a link from what you 
enter:

 
The exact calculations get quite freaky with nested radicals, but the numerics come out the same as in 
the first source.  With  for the reduced SVD, we get:r = 2
 

𝛴 =2
0. 99985947 0

0 0. 01676428
 
Wow:  has almost all the bulk.  (These rounded numbers' squares sum to 1.0000000008325993 on 𝜎0

my Windows calculator.)  This asymmetry isn't obvious if you just look at the  and  matrices:U V
 

,U =  
0. 7681475 -0. 6402729
0. 6402729 0. 7681475

 

V =* 0. 5431623 0. 5431623 0. 4527413 0. 4527413
0. 4527413 0. 4527413 -0. 5431623 -0. 5431623

 
Yes, the squares of a column of  sum to 0.99999996823066 and squares in columns of  sum to U V
0.99999993773396 on my calculator.  Now let us truncate by zeroing out the  entry.  Since 0. 01676428

we want to preserve the property that the sum of  is , we also replace  simply by .  𝜎2
i 1 0. 99985947 1

This also allows us to discard the second column of  and the second row of :U V*

 

= U 𝛴 V  =  𝜙1 1 1
*
1

0. 7681475
0. 6402729

0. 5431623, 0. 5431623, 0. 4527413, 0. 4527413

 
.= 0.417229, 0.417229, 0.347772, 0.347772, 0.347772, 0.347772, 0.289878, 0.289878[ ]

 
Rounded to six decimal places, these entries' squares sum to 1.000000042586, so this is legal like

 (also to = 0.412310, 0.412310, 0.353553, 0.353553, 0.353553, 0.353553, 0.282843, 0.282843𝜙 [ ]

 

 

https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/?i=%5B%5Bsqrt%28.17%29%2Csqrt%28.17%29%2Csqrt%281%2F8%29%2Csqrt%281%2F8%29%5D%2C%5Bsqrt%281%2F8%29%2Csqrt%281%2F8%29%2Csqrt%280.08%29%2Csqrt%280.08%29%5D%5D
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf


six decimal places).  The differences in the second or third decimal place between entries of  and 𝜙1

those of the original  are similar to how we truncated-and-rounded the singular values.  But to 𝜙

compare probabilities, we need the entries' squares, which are under the square-root signs in  =𝜙1

, , , , , , ,.174080 .174080 .120945 .120945 .120945 .120945 .084029 .084029

versus the original .  This is also not , , , , , , ,.17 .17 .125 .125 .125 .125 0.08 0.08

bad.  The property of "Alice+Charlie" not being entangled with "Bob" is clear when we reshape  as 𝜙1

0.417229 0.417229
0.347772 0.347772
0.347772 0.347772

0.289878 0.289878
 

since the columns are identical. For our drumroll conclusion---that Alice is not entangled wiyth 
Bob+Charlie either---we also get separability under the reshaping
 

0.417229 0.417229 0.347772 0.347772

0.347772 0.347772 0.289878 0.289878
 

because  So we have approximated the entangled state by  =   =  1.199720...
0.417229

0.347772

0.347772

0.289878
the completely separable state
 

. =   ⊗   ⊗  𝜙
0.543162

0.839628

0.768148

0.640272
+

 
The relationship to  and to one of the entries of  (equality up to the six-place rounding) is striking. U V
Note also that the approximation did not affect Bob's qubit at all---it was separate and stayed separate.
 
We can conclude that although there is entanglement between Alice and (Charlie+Bob), as shown 
qualitiatively by the rank of  being 2, it is quantitatively weak.  The appropriate metric for this is the A𝜙

von Neumann entropy of the squares of the singular values:
 

.- 𝜎 𝜎∑
r

i=1

2
i ln 2

i

 
(I am cutting corners here---the metric is really defined on the eigenvalues  of density matrices that 𝜆i

are Hermitian and PSD.)   A term of this sum is near zero when  is near zero or when  is near 1.  𝜎i 𝜎i

That is the case with both our singular values in  above.  So the entanglement in this case is near 𝛴2

zero.  For two-party breakdowns like "Alice" versus "Bob+Charlie", this metric, called entanglement of 
formation (EF, when properly formalized) is recognized as the unique best measure.  But for multi-
partite entanglement---when you don't specify a binary division---there is as yet no such consensus.  
(I've tried to develop the idea that an "algebraic-geometric invariant" of -qubit circuits  that produce n Cn

 

 



these states from input  can furnish such a measure---and also embody a complexity measure of 0n

the effort required to operate  coherently that is bigger than , where  is the count of gates Cn O s + n( ) s
in ---but have not gotten it to work.)Cn

 
 
Entanglement and Traceout (in Graph States)
 
For the graph on Assignment 7, let us suppose that qubit  is held by "Alice" (in big-endian order), qubit 1
2 by "Bob", qubit 3 by "Charlie", and qubit 4 by "Donna":
 

 
This is set up to do traceouts neatly for the divisions A versus B+C+D, A+B versus C+D, and A+B+C 
versus D.  To handle the other three divisions, one must either take traces of non-contiguous square 
sub-matrices or permute the rows and columns so that the parties being traced out occupy the least 
significant (qu)bits.  Likewise if you want to trace out A while leaving B+C+D intact, and so on.  And 
actually, we will do that---so the labeling changes to
 

 

The graph state  is  (before the second 𝛤 1, 1, 1, -1, 1, -1, -1, -1,  1, -1, -1, -1, 1, 1, 1, -1
1

4
[ ]T

Hadamard transform) and the whole  self-outerproduct density matrix  is 16 × 16 𝛤 𝛤

 

 

Alice

BobCharlie

Donna

Alice

Bob

Charlie Donna

Alice Bob

Charlie Donna

which is equivalent to



𝜌 =  
1

16

1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1

1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1
1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1
-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1

1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1
-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1

-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1
-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1
1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1

-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1
-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1
-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1

1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1
1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1

1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1
-1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1

 
For the first case where we trace out all of Bob, Charlie, and Donna, we make four  quadrants and 8 × 8

take the trace of each.  This yields .  This is the matrix of the completely 

mixed 

 =  
1

16

8 0

0 8

0.5 0

0 0.5

state on one qubit.  This does imply that Alice is entangled with the others in this state.  We can also 
see this insofar as  is not a tensor product of a  matrix with an  matrix.𝜌 2 × 2 8 × 8
 
For Alice+Bob versus Charlie+Donna, tracing the latter two out, we divide into sixteen  blocks.  4 × 4
Taking the trace of each gives

. 𝜌  =  Tr 𝜌  =   =  A,B C,D( )
1

16

4 0 0 4

0 4 4 0
0 4 4 0
4 0 0 4

1

4

1 0 0 1

0 1 1 0
0 1 1 0
1 0 0 1

 
This is not a pure state: If you square it, you get  not  in the upper-left corner, so .  1 / 8 1 / 4 𝜌 ≠ 𝜌2

A,B A,B

It is not a directly separable matrix.  It is, however, a sum (that is, a mixture) of separable pure states:

.𝜌  =   +   =   +  A,B
1

8

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1

1 -1 -1 1
-1 1 1 -1
-1 1 1 -1

1 -1 -1 1

1

2
++ ++

1

2
-- --

 
A classical mixture of separable states counts as separable. The context needs parsing out:
 

• The fact that  is a mixed state traced out from a pure state---technically that 𝜌A,B

---means that Alice+Bob are entangled with Charlie and Donna.Tr 𝜌 < Tr 𝜌2
A,B ( A,B)

• But Alice and Bob are not entangled between themselves.

 

 



 
The second point leads to an ultimarte subtlety.  It is best viewed if we transform back to the standard 
basis and consider the state
 

.𝜏 =   +   =  
1

2
00 00

1

2
11 11

0.5 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0.5

 

This is not the same as the self-outerproduct of , which has  also in the 𝛷  =  ++ 1

2
00 11 0.5

upper-right and lower-left corners.  It is not a separable matrix---and its Schmidt rank is 2 not 1.  Its 
singular values are  twice then  twice.  If you think of Alice and Bob each having a classical coin, it 0.5 0
sure seems the coins are entangled by dint of saying that either they both get heads or both get tails.  
But as a mixture, it is a single coin that either comes up "double heads" or "double tails." 
 
Well, there are other ways to get the matrix  as a mixture involving entangled states, namely as 𝜏
 

.𝛷  +  𝛷   =   +   
1

2
+

1

2
- 1

2

1 0 0 1
0 0 0 0

0 0 0 0
1 0 0 1

1 0 0 -1
0 0 0 0

0 0 0 0
-1 0 0 1

 
But the fact that there is a way to get it as a mixture of states that are separable (with the same division 
of qubits) makes it separable.  
 
Definition. A mixed state is separable if it can be written as a distribution over pure states that are 
separable the same way.
 
The fact that a pure state cannot be written as a proper mixture (proof for 1-qubit states and general 
intuition: all proper mixtures are within the Bloch sphere, not on its surface) makes this definition self-
consistent.   It would be nice to have a simple criterion by which we could decide whether an arbitrary 
legal density matrix of a mixed state is separable or entangled---the way we can do with the "rolled-up" 
matrices from a vector of a pure state.  However, there likely isn't one: the general problem of 
determining whether a density matrix  is separable is -hard.  There are cases where you can 𝜌 NP

prove separability, such as  being a tensor product already or finding a separating mixture.  There are 𝜌

also cases where one can prove entanglement.  The Peres-Horodecki criterion says to divide  into 𝜌
blocks as if you were going to ``trace out Bob,'' but instead transpose each of the sub-matrices (without 
conjugating them) to get a matrix .  If  has a negative eigenvalue, then  is entangled.  For two-𝜌' 𝜌' 𝜌

qubit systems (and ones of a qubit and a three-way qutrit), this is an "only if" as well.  So the fact that  𝜏
above is unchanged upon transposing its  "Bob blocks" and has all eigenvalues  means it is 2 × 2 ≧ 0
separable.  But for more qubits, no such simple criterion is known and the whole question devolves into 
teh mysteries of computational complexity.

 

 

https://en.wikipedia.org/wiki/Peres%E2%80%93Horodecki_criterion

