
CSE439/510 Week 3: Operations on Quantum States and Computations (chs. 3 into 4)
 
The first part has been seen before.  In Fall 2025 I zipped over it but reminded how we showed 

, which we called , and , which we called  because of the  He = 1, 10
1

2
[ ]T + He = 1, -11
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[ ]T - -

sign.  The Hadamard matrix thus does a change of basis operation---from the standard basis to the 
 basis, which is also an orthonormal basis.  Also, I did parts on the blackboard that are ,+ -

reviewed in the section of "reversals and..." below.
 
 
Unitary Operations
 
Getting just a little bit ahead for visualizing qubits, here is a diagram:

 
Well,  was our "Schrödinger's Cat" state where we spoke of superposition.  Maybe that seemed +

mysterious.  Now  carries the standard basis onto the  basis.  It also maps that basis back to H ,+ -
the standard one, because , the  identity matrix.  Thus, a vector that looks superposed in H  =  I2 2 × 2

the standard basis can be simple when viewed in the changed basis.  Thus superposition is relative---
"in the eye of the beholder" one might say---but in many concrete cases the observer is Nature.
 

The matrix  is one of four named after the quantum phsyicist Wolfgang Pauli.  The others Y =
0 -i
i 0

are 

,        , X =  
0 1

1 0
Z =  

1 0

0 -1

 

and the identity .  Note that  and similarly, .  Thus I X  =   =   =  0
0 1

1 0

1

0

0

1
1 X =1 0

applying  negates the bit label of a standard basis state, and this functions just like the Boolean NOT X

operation.  Moreover,  is a permutation matrix.  In upcoming lectures we will show how permutation X
matrices used in quantum circuits confer exactly the power of classical Boolean circuit gates.  The extra 
quantum power starts coming in with the Hadamard gate.  
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Now for two key definitions (which apply to any size matrices, not just ):2 × 2

 
 
Definition: A matrix  is unitary if .  A A A =  I*

 
Note, incidentally, that  must be invertible, and furthermoreA

.AA  =  AA AA  =  A A A A  =  AIA  =  AA  =  I* * -1 * -1 -1 -1

This also works vice-versa: if , then .  So an equivalent definition of unitary is that AA = I* A A = I*

.AA  =  I*

 
 A A =  A A A A =  A AA A =  A I A =  I* -1 * -1 * -1( )

 
Definition: A matrix  is Hermitian if .A A  =  A*

 
The Pauli matrices are all both Hermitian and unitary.  So is the Hadamard matrix.  
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If we took away the factor , the resulting matrix  is Hermitian but not unitary.  The matrix 1

2

1 1

1 -1

 is unitary but not Hermitian.  S =  
1 0

0 i
 
In Part I of the text we toe the line of identifying unitary matrices with "legal quantum operations."  
When we dabble into Chapter 14, we will encounter the view that Hermitian operators are the 
"physically actual" ones.  Most in particular:
 
Proposition: For any unit vector , the outer product  is a Hermitian matrix.c C = c c
 
Proof: It is a general fact that if , then .  So C =  AB C  =  AB  =  B A* ( )* * *

 

C  =   =  ⋅  =  ⋅  =  C* c c
*

c
*

c
*

c c

 
back again.  ☒
 

 

 



Now we can use the reversal rule for adjoints to give a shorter and snappier proof of Lemma 3.1 than 
what the text gives:
 
Lemma 3.1: If  is a unitary matrix and  is a vector then .  U a ||Ua|| =  ||a||

 

Proof: .  ||Ua|| = = = = = = ||a||||Ua||2 Ua Ua( )*( ) a U Ua* * ( ) a U U a* * a a* ☒
 
The proof became a one-liner.  Thus a unitary matrix always preseves the lengths of vectors, and in 
particular, it always maps a unit vector to a unit vector.  This is what makes it "legal" from the quantum 
probability point of view.  
 
The fact works the other way: if a matrix  always preserves the lengths of vectors, then it must be U
unitary.  
 
 
Reversal, Adjoint, and Duality.
 
[In Fall 2025, I covered the meat of this a different way on the blackboard, so will skim here.]
 
The reversal  of a string  just means writing it "backwards": , FACED  = DECAF, xR x 01001  =  10010R R

and so on.  A string  is a palindrome if , for instance .  The empty string  counts as a x x  =  xR 1001 𝜖

palindrome since .  The rule for reversal and concatenation is that for any strings  and ,𝜖 = 𝜖R x y
 

.xy  =  y x( )R R R

 
For example,
 

.PUCK FACED  =  FACED PUCK  =  DECAF KCUP-
R

( )R -
R

-

 
Actually, if the minus sign is a  factor which could go anywhere, this would be equivalent to say -1

"DECAF K-CUP" meaning a certain pod for a Keurig coffee-maker.  
 
This gives intuition for how matrix transpose, matrix adjoint, and matrix inverse all work like reversal 
with regard to matrix product.  The rules for any (invertible) matrices  and  are:A B
 

1. AB  =  B A( )T T T

2. AB  =  B A( )* * *

3. .AB  =  B A( )-1 -1 -1

 
Rule 2 follows from rule 1 because the only difference with  is doing complex conjugates of individual *

entries.  Rule 3 follows since .  So why does rule 1 AB B A  =  ABB A  =  AA  =  I( ) -1 -1 -1 -1 -1

 

 



hold?  Here our functional view might help: The transpose  is the function with the two index AT

arguments reversed: .  So:A j, i  =  A i, jT( ) ( )

 

AB i, j = AB j, i = A j, k B k, i = B k, i A j, k = B i, k A k, j = B A i, j( )T( ) ( )( ) ∑
 

k
( ) ( ) ∑

 

k
( ) ( ) ∑

 

k
T( ) T( ) T T( )

 
for all arguments (i.e., indices)  and , so .  (Note that the switch i j AB  =  B A( )T T T

 in the middle step was just ordinary multiplication of numbers.)A j, k B k, i = B k, i A j, k( ) ( ) ( ) ( )

 
Also note that transpose, reversal, inverse, and adjoint all have the "self-dual" property that applying 

them twice gives the original back again: , , , and .x = xR R
A = AT T

A = A-1 -1
A = A* *

 
Now we can review some other basic useful rules, with-and-without Dirac notation:
 

1. Dot product is commutative: .  This is implicit in the step in red above.x ⋅ y =  y ⋅ x
2. Complex inner product is "not quite" commutative:

 by the reversal rule.  So the  = ⋅  =  ⋅  =  ⋅  =  y x y x y
*

x
*

x y
*

x y
*

flipped-around inner product  is just the complex conjugate of the scalar .  But often y x x y
the difference caused by the conjugate is minimal.

3. Outer product is not commutative.  But:  by the reversal rule, and by the  =  y x
*

x
*
y

*

definitions of "ket" and "bra" that becomes .  So flipping the outer product around creates x y
the adjoint of the matrix.  This is another reason why taking the outer product of a vector with 
itself always creates a self-adjoint (i.e., Hermitian) matrix.  

4. Tensor product is not commutative: generally .  But here's a real curveball: A⊗ B ≠ B⊗A

 is NOT the same as .  Instead, it equals .  The intuitive reason, A⊗ B( )* B ⊗A* * A ⊗ B* *

which we'll picture soon when we visualize quantum circuits, is that elements of tensor products 
"stay in their lane" when it comes to the indexing scheme.

 
All of these products are, however, linear on both sides.  That is, they obey the distributive law for 
addition on either side, and (hence) constant multiples also can "come out" or "go inside".  Here are the 
cases for linearity on the right-hand side, assuming the vectors and matrices being added have 
compatible dimensions and  is a (possibly complex) scalar:a
 

• .u ⋅ av + w  =  a u ⋅ v  +  u ⋅w( ) ( )

• .   =  a +u av + w u v u w
• But note on the left: , because  is implicitly conjugated  =  a +au + v w * u w v w a

"inside the bra".
• And furthermore, this time on the right: .  Same reason  =  a  +  u av + w * u v u w

coming from inside the "bra".  This is a common cause of typos.
• .A ⋅ aB + C  =  aA ⋅ B +  A ⋅C( )

• .A⊗ aB + C  =  a A⊗ B + A⊗C( ) ( ) ( )

 

 



• because scalars commute with matrices.  Ditto with vectors.  Using bar aC  =  C a  =  a C( )* * * * *

instead of star: if   where  and  are numeric vectors and  is a (possibly complex) z =  ax x z a
scalar, then we have the rule .  We have to remember to conjugate any factor we pull z  =  x* a⏨ *

out of the adjoint.  
 
Super-weeny point: A Khan Faculty video writes the rules  and , but you  =  aa𝜓 𝜓  =  aa𝜓 * 𝜓

have to be careful that  stands for a numeric vector here.  It makes no sense to say e.g. that 𝜓

 when the  is the binary-bit attribute, nor that  if the "7" is the rank of a 3  =  1 3 1 3  =  7 21

playing card. This is one reason I used card-suit symbols and "honor/spot-card", to get away from the 
temptation of treating the insides of  and  as if they were numbers rather than attributes.0 1

 
Two consecutive kets as in  is a gray area.  Equating it to  is AOK when manipulating x y ⊗x y
standard basis vectors, e.g. .  Likewise,=  1 0 0 1 0 10010

 

 =   1, 1 ⊗  1, 1  =   1, 1, 1, 1  =  + +
1

2
[ ]

1

2
[ ]

1

2
[ ]T ++

 
is kosher as nomenclature, likewise writing  as  and so on.  But the product of two column + - +-
vectors is not really defined, and in general cases of  where " and " " are not what I have x y x" y
been calling "attributes", combo-ing it as " " may not make sense.  What might bail you out of doubt xy
is if you have a bra  before .  Then it becomes , where the  is now the same w x y ⋅w x y ⋅

as ordinary multiplication.  But  may not make sense off the top---because inner product ⋅w xy
wants the dimensions to agree.  (??)
 
 
Unitary Versus Stochastic (section 3.6)
 
A (doubly) stochastic matrix has the property that its rows (and columns) are nonnegative real 
numbers that sum to .  A simple example is1

 

J  =   
0.5 0.5

0.5 0.5

 
However, while  is Hermitian (like any symmetric real matrix), it is not unitary: , not the J JJ = J = J* 2

identity.  There are doubly stochastic matrices that are not Hermitian either when we go up to , 3 × 3

e.g.:
1 / 2 1 / 3 1 / 6

1 / 2 1 / 6 1 / 3

0 1 / 2 1 / 2

 
However, every permutation matrix is both doubly stochastic (in the trivial manner of having a single  1

in each row and column) and unitary.  A less trivial example of symmetric (Hermitian) doubly stochastic 

 

 



matrices arise from undirected graphs  that are regular---meaning every vertex in  has the same G G
degree (meaning: number of edges connecting to it).  The text in section 3.6 gives an example where 
negating some of the entries does create a unitary matrix.  However, this is not a regular phenomenon 
as far as I know.
 
The upshot of all this is:
 

• Legal quantum states are identified with unit vectors.
• Legal quantum operations are identified with unitary matrices.

 
Now we will define computations using these objects.
 
 
Quantum Computations
 
[The flow of Chapter 4 as written is to take the classical notion of computations by machines as given.  
When CSE396 was a required course at UB, everyone saw Turing machines (TMs); those may have 
been talked about briefly in CSE331, but otherwise the "random-access machine" concept of executing 
algorithms from that course is fine.  (The one advantage of TMs is that you can say that their tape cells 
numbered 1,2,3,... represent "classical bits" that evolve over time, in analogy to the way we will speak 
of qubits evolving over time.)  Now, however, we will take the classical Boolean circuit model as 
fundamental while contrasting it directly to quantum circuits.  The strongest linkage is that the quantum 
Toffoli gate can simulate NAND and hence do all classical Boolean operations by itself.  This is shown 
in section 5.3, though.  Section 5.1 has the -fold tensor product  of the basic  Hadamard n H⊗n 2 × 2

matrix , which we have already seen, anyway.  So please read all the above as one block.]H
 
 
Operations: Joint and Entangled
 
Here is a statement that uses a lot of notational fuss to express the simplest of ideas:
 
Proposition: For any  matrix ,  matrix , -vector  and -vector , m × n A p × q B n x q y
 

. Ax ⊗ By  =  A⊗ B ⋅ x⊗ y( ) ( ) ( ) ( )

 
Proof.  The dimensions are consistent: both sides give a column vector of  entries.  Showing mp
equality is where our effort to interpret vectors  as functions  of their indices in binary notation may x x u( )

help.  Under this view,  gives the function , where  means z =  x⊗ y z uv  =  x u y v( ) ( ) ( ) uv
concatenation of binary strings, while the right-hand side is an ordinary numeric product.  And a matrix 

 gives the two-argument function .  A A u, w  =  a( ) u,w

 
0.5, 0.5, - 0.5, 0.5 ⊗ 0.6, 0.8   =   0.3, 0.4, 0.3, 0.4, - 0.3, - 0.4, 0.3, 0.4[ ] [ ] [ ]

Indices:   : 000, 001, 010, 011, 100, 101, 110, 111[ ] 100 = 10 ⋅ 0 -0.3 =  -0.5 0.6 .( )( )

 

 



 
Silly? style note: When we think of vector and matrix entries the way we usually do, we will use square 
brackets like in the text, e.g.: , .  When the indices are regarded as binary strings rather than x i[ ] A i, j[ ]

numbers, we will write things like  and  below, where .A u,w[ ] C uv,wt[ ] C = A⊗ B
 

The vector  becomes the function mapping a row-index  to .  Thus, x' = Ax u x' u  = A u, w x w( ) ∑
 

w ( ) ( )

putting , the right-hand side is the functionz' = Ax ⊗ By( ) ( )

 

z' uv  =  x' u y' v  =  A u, w x w ⋅ B v, t y t( ) ( ) ( ) ∑
 

w ( ) ( ) ∑
 

t ( ) ( )

 
Now by usual rules of re-ordering summations, the right-hand side of this can be rearranged as
 

A u, w B v, t x w y t∑
 

w
∑

 

t ( ) ( ) ( ) ( )

 
With , we can already recognize that the  part is the same as .  And z =  x⊗ y x w y t( ) ( ) z wt( )

 is the same as .  So the whole thing becomesA u, w B v, t( ) ( ) A⊗ B uv, wt( )( )

 

,A⊗ B uv, wt ⋅ x⊗ y wt∑
 

w,t
( )( ) ( )( )

 
which is exactly the meaning of .  So the two sides are equal.  A⊗ B ⋅ x⊗ y( ) ( ) ☒
 
The simple idea is that  does the  operation on  side-by-side with  doing its A⊗ B ⋅ x⊗ y( ) ( ) A x B
operation on , but with no connection at all between them.  We will soon have diagrams like this---y

 
---note that we picture the inputs coming in from the left but when writing them as matrix arguments 
they will swing around to the right.  As a tandem, this is formally the tensor product  coming in to x⊗ y

. But really---and locally---it is just  happening in one place and  happening A⊗ B( ) Ax By
independently in another place.  The upshot is this:
 

When we have entanglement, not independence, between the  part and the  part, then the x y
notation will stay the same but the interpretation will change a whole lot.
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Multi-Qubit Matrices and Gates
 
The tensor product of two basic Hadamard gates is 
 

.H  =  H ⊗H =  ⊗  =⊗2
1

2

1 1

1 -1

1 1

1 -1

1

2

1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

 
This matrix carries the orthonormal two-qubit standard basis , , ,  onto the four e00 e01 e10 e11

combinations of tensoring the  and  states, namely (transpose  omitted):+ - { }T
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 =  ⊗  =  1, -1 ⊗ 1,   1   =  1,  1, -1, -1 =- + - +
1
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 =  ⊗  =  1, -1 ⊗ 1, -1  =  1, -1, -1,  1 =- - - -
1

2
( ) ( )

1

2
( )

 -  -  + 

2

00 01 10 11

 
These four vectors are linearly independent and mutually orthogonal, so they form an orthonormal 
basis.  We can see the mapping because forming the target vectors into a matrix (as column vectors) 
gives us exactly .H⊗2

 
Well, this is the case  of the Hadamard transform .  Also note the following tensor products m =  2 H⊗m

of  matrices:2 × 2

,H ⊗  I =   ⊗  =
1

2

1 1

1 -1

1 0

0 1

1

2

1 0 1 0

0 1 0 1

1 0 -1 0

0 1 0 -1

 

.I ⊗  H =    ⊗   =
1 0

0 1

1

2

1 1

1 -1

1

2

1 1 0 0

1 -1 0 0

0 0 1 1

0 0 1 -1

 
Some examples of states you can produce with these matrices are:
 

 =  ⊗  =  1, 1 ⊗ 1, 0  = 1, 0, 1, 0 =+0 + 0
1

2
( ) ( )

1

2
( )

 + 00 10

2

 =  ⊗  =  1, 0 ⊗ 1, 1  =  1, 1, 0, 0 =0 + 0 +
1

2
( ) ( )

1

2
( )

 + 00 01

2

 

 



 
Meanwhile,

 

 =  ⊗  =  1, 1 ⊗ 0, 1  = 0, 1, 0, 1 =+1 + 1
1

2
( ) ( )

1

2
( )

 + 01 11

2

 
can be gotten as  applied to the column vector .  However, the state H ⊗  I 0, 1, 0, 0  =  ( )T 01

, which we saw in the last lecture is entangled, cannot be gotten this way.  1, 0, 0, 1  =  
1

2
( )

 + 00 11

2

Instead, it needs the help of a  unitary matrix that is not a tensor product of two smaller matrices.  4 × 4

The most omnipresent one of these is:
 

.  CNOT =  

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 
Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis, 
the values are: , , CNOTe  =  CNOT  =  00 00 00 CNOTe  =  CNOT  =  01 01 01

, and .  We can get these CNOTe  =  CNOT  =  10 10 11 CNOTe  =  CNOT  =  11 11 10

from the respective columns of the  matrix, and we can label the quantum coordinates right on it:CNOT
 

.  CNOT =  

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Because we multiply column vectors, the co-ordinates of the argument vector come in the top and go 
out to the left.  If the first qubit is , then the whole gate acts as the identity.  But if the first qubit is , 0 1

then the basis value of the second qubit gets flipped---the same action as the NOT gate .  Hence the X

name Controlled-NOT, abbreviated : the NOT action is controlled by the first qubit.  The action CNOT

on a general 2-qubit quantum state  is even easier to picture:𝜙 =  a, b, c, d( )

 

 

 

 00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0

x1

x2

z1

z2

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



.CNOT  =  

a
b
c
d

a
b
d
c

 
All it does is switch the third and fourth components---of any 4-dim. state vector.  Hence,  is a CNOT
permutation gate and is entirely deterministic.  Permuting these two indices is exactly what we need to 

transform the separable state  into the entangled state .  Since we got the 1, 0, 1, 0
1

2
( ) 1, 0, 0, 1

1

2
( )

former state from  applied to , the matrix we want isH ⊗  I e00

 

.CNOT ⋅  H ⊗  I  =  ⋅( ) 00

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =  =
1

2

1 0 1 0

0 1 0 1

1 0 -1 0

0 1 0 -1

1

2

1 0 1 0

0 1 0 1

0 1 0 -1

1 0 -1 0

1

0

0

0

1

2

1

0

0

1

 
We can see the result coming from the first column.  
 
 

 

 


