
CSE439/510 Week 5: Building and Visualizing Quantum Circuits

Computing Functions

Let us view the 4-qubit Hadamard transform as a big matrix:

We have argued that the Hadamard transform is feasible: it is just a column of Hadamard gates, one n
on each qubit line. There is, however, one consequence that can be questioned. We observed that a
network of Toffoli gates suffices to simulate any Boolean circuit (of NAND gates etc.) that computes a C

function . The Toffoli network actually computes the reversible formf : 0, 1 0, 1{ }n → { }r Cf

 .F x , … , x , a , … , a = x , … , x , a ⊕ f x , … , a ⊕ f x(1 n 1 r) (1 n 1 ()1 r ()r)

The matrix of is a giant permutation martrix in the underlying coordinates. Yet if the Uf Cf 2n+r

Boolean circuit has gates, then we reckon that costs to build and operate. Now build the C s Cf O s()

following circuit, which is illustrated with and :n = 5 r = 4

H⊗4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1

1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v = -1⊗n[] ()u•v

1

4

What this circuit piece computes is the functional superposition of , defined asf

. = 𝛷f

1

2n

∑

x∈ 0,1{ }n
x f x()

The juxtaposition of two kets really is a tensor product, . The abbreviated form above is ⊗x f x()

"okayyy..." because and individually belong to the standard basis. The whole state , x f x() 𝛷f

however, is far from belonging to the standard basis, and it (IMHO) has several issues.

One of them is highlighted by Holevo's Theorem, which is not covered per se but can be given the
following informal statement:

A quantum state on qubits can store at most bits of classical information.n n

Let's think of this first about our -qubit graph states for -node graphs . (NB: Writing is n 𝛷G n G 𝛷G

OK but redundant since " " is not a basic attribute---likewise the ket in " " above just looks 𝛷G 𝛷f

"quantum-y".) can have up to edges. Thus itself can encode bits of G ∼ 0.5n
n

2
2 G 𝛩 n2

information, especially when the vertices are explicitly numbered . However, the graph state 1 … n

holds only bits. It follows that graph states are "lossy" for general graphs. They give full n = o n2

fidelity only for special classes of sparse or highly-regular/symmetrical graphs.

With , however, the state looks like attempting to store exponentially many bits of information about 𝛷f

the function ---as defined by its values on inputs . The sum has exponentially f 2n f x() x ∈ 0, 1{ }n

many terms. We can, however, get at most distinguishable bits out of the state from any n

measurement. This is commensurate with the fact that it is produced by a circuit of gates, O s + n()

especially when itself is s O n .()

0

0

0

0

0

0

0

0

0

H

H

H

H

H
Cf

https://en.wikipedia.org/wiki/Holevo's_theorem

Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the
creation of , instead of just for the Hadamard transform plus for the circuit. Or does the 𝛷f O n() O s()

fact of only gates mean that doesn't meaningfully reflect the exponentially many values O s + n() 𝛷f

taken by the function ?f x()

Let's ask this where the circuit is just a bunch of gates. On five qubits,Cf CNOT

computes the functional superposition

.
1

32

∑

x∈ 0,1{ }5

x x

This is not the same as , because that is the equal superposition over all basis ⊗+++++ +++++

states for -bit binary strings, including all the cases of where the binary strings and of length 10 xy x y

 are different. An analogy is that for any set of two or more elements, the Cartesian product of 5 A A

with itself includes ordered pairs with but , whereas the functional superposition is x, y() x, y ∈ A x ≠ y

like the diagonal of the Cartesian product, namely . The functional superposition is x, x : x ∈ A{() }

entangled, just as we first saw in the case .n = 1

If we replace the five gates by a subcircuit that prepares a general 5-qubit stateH

, = a + a + ⋯ + a + a𝜙 0 00000 1 00001 30 11110 31 11111

then the five gates produceCNOT

.D = a + a + ⋯ + a + a𝜙 0 0000000000 1 0000100001 30 1111011110 31 1111111111

0

0

0

0

0

0

0

0

0

H

H

H

H

H

0

This is not the same as , whose terms have coefficients for all and . IMHO the ⊗𝜙 𝜙 a ai j i j

notation or can be unclear about what is meant, though I've freely used etc. as 𝜙 𝜙 𝜙𝜙 ++

above. When is a basis element in the basis used for notation, then there is no difference: both x

 and have the single term with coefficient . ⊗x x D x xx 1 = 12

Feasible Diagonal Matrices (section 5.4)

We can continue the progression , , by Z =
1 0

0 -1
CZ =

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 -1

, ,CCZ =

1
 1
 1

 1
 1
 1

 1
 -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([])

and so forth. These are examples of a different kind of conversion of a Boolean function besides the f

reversible form called or above. This is the matrix defined for all indices byF Cf Gf u, v

.G u, v = f[]

0 if u ≠ v

-1 if u = v ∧ f u = 1()

1 if u = v ∧ f u = 0()

The above are for the -ary AND function. The stands for "Grover Oracle", though here I G AND n G

would rather emphasize that it is a concretely feasible operation. This ultimately leads to a theorem
whose statement doesn't appear until chapter 6:

Theorem (6.2): If is computable by a Boolean circuit with gates, thgen can be computed by a f s Gf

quantum circuit of gates.O s()

When is polynomial in , this makes a big contrast to being a -sized diagonal matrix. s = s n() n Gf 2n

We can also summarize a relationship to the previous definition of which was based on BQP

languages, i.e., on yes/no decision problems.

Theorem (not stated as such): If the language belongs to , then for every L = x, y : f x ≤ yf { () } BQP

 and all there are circuits of size (with as many output gates needed to write 𝜖 > 0 n Cn,𝜖 s n = n() O 1()

values for), the probability that correctly outputs after measurement of its f x() x ∈ 0, 1{ }n C xn,𝜖() f x()

output gates is at least . This is true for both the " " and " representations of .1 - 𝜖 Ff "Gf f

The nub of the proof is the---completely classical---fact that binary search using the language Lf

works in polynomial time even though there are exponentially many values to sift through. f x()

Universal Gate Sets

The above theorems allow us to solidify our intuition about the power of quantum gates.

Definition. A set of basic quantum gates is universal if every language/function in can be S BQP

computed by polynomial-sized circuits that use only gates in .S

Definition. The set is metrically universal if for every unitary operation on some number of S U m

qubits, and , there is a circuit on qubits using finitely many gates from such that for all -𝜖 > 0 C m S m

qubit quantum states , . (The norm is the sup-norm, aka. -norm.)𝛷 ||C𝛷 - U𝛷|| < 𝜖 ∞

Theorem. The following gate sets are universal:

1. Hadamard, CNOT, and . T

2. Hadamard and . CS

3. Hadamard and Toffoli.
The first two sets are metrically universal. The third is not---simply because it doesn't use any complex
numbers at all.

These facts are stated but not proved in the text; a key idea of the third is in the solved exercise 3.8 in
chapter 3. But given the third fact, universality of follows by the circuit equation for Toffoli H+CS

gates given before, because can be written as . And the simulation of by CZ CS ⋅CS CS

 could be homework... This doesn't prove metric universality, however. Indeed, the H+CNOT+ T
only source I know for gate set 2 being metrically universal is the exercise section of lecture notes by
John Preskill: https://www.preskill.caltech.edu/ph219/chap5_13.pdf (start on page 47). Those of you
who are sharp on logic may not be convinced that "metrically universal" implies "universal" the way I
worded it, because -errors on single gates might compound themselves when the gates are 𝜖

composed in a circuit---and also, how large is that "finitely many gates from " part when can grow S m

with rather than be fixed? The connection is enforced by the Solovay-Kitaev theorem and its efficient n

underlying algorithm, which shows that only extra overhead in gates is needed---not even n(log)O 1()

linear or polynomial overhead.

Another important fact to bear in mind is that the gate set is not metrically H,CNOT,CZ,X,Y,Z, S{ }
universal. Every circuit of these gates is simulatable in classical polynomial time. This is called the
Gottesman-Knill theorem. My graduated PhD student Chaowen Guan and I improved the running time
of this theorem in 2019 using a new analysis of (essentially) graph-state circuits. These gates and their
ordinary and tensor products generate the Clifford gate set. One other notable member is . V = HSH

 Note: . So is called the "square root of NOT" and is V = HSHHSH = HSSH = HZH = X2 V

https://www.preskill.caltech.edu/ph219/chap5_13.pdf
https://en.wikipedia.org/wiki/Solovay%E2%80%93Kitaev_theorem
https://en.wikipedia.org/wiki/Gottesman%E2%80%93Knill_theorem

also written as SRN or as SRNOT or as in various sources. Its matrix is . Note this X1/2 1

2

1 + i 1 - i

1 - i 1 + i

equals , and if you multiply it by the unit scalar you get the nicer-looking matrix 1

2

ei𝜋/4 e-i𝜋/4

e-i𝜋/4 ei𝜋/4
ei𝜋/4

. Like Hadamard, this is a source of quantum nondeterminism. Multiplying a whole unitary 1

2

i 1
1 i

matrix by a unit scalar, even by , is not considered to change the quantum operation it represents. -1

Thus, using does not really help us "break out" from the realm of the Pauli gates . Using S I,X,Y,Z T

does, however. We can get a taste by composing and . HTHT H* HTHT HTHT H* *

The most particular takeaway for (philosophical issues in) this course, however, concerns the extended
series of gates we've mentioned before:

, , , , , ...Z =
1 0

0 -1
S =

1 0

0 i
T =

1 0

0 ei𝜋/4
T =𝜋

8

1 0

0 ei𝜋/8
T =𝜋

16

1 0

0 ei𝜋/16
T =𝜋

32

1 0

0 ei𝜋/32

Can we really engineer these super-fine angles? By (metric) universality, we don't have to: we can
combine with (and , but only is needed for these particular gates) to emulate them. T H CNOT X

There is a web app for this. A useful technote: if you multiply by the unit scalar you getT e-i𝜋/8

.e-i𝜋/8 0

0 ei𝜋/8

This sets up some confusing nomenclature: itself, not what I've called , is often called "the T T𝜋/8 𝜋 / 8

gate". The web app calls this " " with . The Wybiral applet has "R2" as a redundant R 𝜃z() 𝜃 = 𝜋 / 4

name for , "R4" for , but at least gives "R8" for the gate .S T T𝜋/8

The Quantum Fourier Transform

Super-tiny angles are in the definition of the QFT itself. For any , it takes where n 𝜔 = en

2𝜋i/N

. With and , the matrix together with its quantum coordinates is:N = 2n n = 3 𝜔 = ei𝜋/4

https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://www.mathstat.dal.ca/~selinger/newsynth/

The above " series"---and their controlled versions , gives us a recursive way to Rz CS,CT,CT , …𝜋/8

build the -qubit QFT using only unary and binary gates. This is already evident from the four-n O n2

qubit illustration in the textbook (where the two gates on the left are swap gates):

For the next bank uses , then uses angles of of a circle, and so on. Soon the n = 5 1 / 32 n = 6 1 / 64
angles would be physically impossible so the gates could never be engineered. But:

• The metric universality of says you only need to engineer "pieces of eight" for H+CNOT+ T
angles---and the Solovay-Kitaev algorithm shows you how to build the approximating circuits
with only extra multiplicative overhead. Such "polylog" factors are often ignored n(log)O 1()

under the notation of saying the whole simulation of the -qubit QFT needs only gates.n nO
2

• Doing this with instead needs only quarter-circle angles---that is, and .H+CS i -i

• With Hadamard + Toffoli the only angles involved are and . You wind up simulating the real 0 𝜋
and imaginary parts of QFT computations under two separate binary encodings.

I retain, however, a "meta-physical" objection that the inherent instability in tiny angles still infects these
circuits when attempts are made to engineer them physically and keep them free of noise. One can
cite LIGO as a supreme success case where tiny physical displacements are magnified and detected in
a roughly analogous manner. But that has a fixed physical limit of resolution, whereas the Shor's
algorithm application of wants to grow at least linearly with the overall problem instance size QFTm m

. Well, if the obstacle is actually physical, not just "meta-", it will entail the discovery of a new physical n
law that modulates quantum mechanics.

 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 1 1
001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i

011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1

101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1

5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j = 𝜔[] ij

https://en.wikipedia.org/wiki/LIGO

Maybe isn't impossible. We can show, however, that a simpler-looking task---one we take for QFTn

granted in classical computing---is really impossible in the quantum realm. This also exemplifies how
interpreting quantum circuits can be tricky unless you apply the principle of linearity strictly.

The No-Cloning Theorem

It's good enough to prove this in the case of copying one qubit in a two-qubit circuit.

Theorem: There is no unitary operation such that for any single-qubit quantum state 4 × 4 U

, .𝜙 = ae + be0 1 U 𝜙 ⊗ e = 𝜙⊗ 𝜙(0)

Proof: Suppose existed. Then and . So by linearity,U U e ⊗ e = e ⊗ e(0 0) 0 0 U e ⊗ e = e ⊗ e(1 0) 1 1

U 𝜙 ⊗ e = U ae + be ⊗ e = U a e ⊗ e + b e ⊗ e(0) ((0 1) 0) ((0 0) (1 0))

.= aU e ⊗ e + bU e ⊗ e = a e ⊗ e + b e ⊗ e = ae + be(0 0) (1 0) (0 0) (1 1) 00 11

But is supposed to equal , which U 𝜙 ⊗ e(0) 𝜙⊗ 𝜙

.= ae + be ⊗ ae + be = a e + abe + abe + b e(0 1) (0 1) 2
00 01 10

2
11

The only way these quantities can be equal is if . That boils down to saying that the only single-ab = 0
qubit states that can be copied are the two standard basis states. (Note that this is a much stronger
conclusion than the theorem stated.) ☒

And indeed there is a unitary matrix that can do this, namely . This leads to the next topic.4 × 4 CNOT

The Copy Uncompute Trick

Suppose we know in advance that at a certain point in a quantum circuit on a particular input (that C x

is to say,), some set of qubit lines will be in a standard basis state . Then we can insert ex r ey CNOT

gates between each of those lines and one of fresh qubit lines to make a copy of :r ey

If we then follow up with the inverse of , then we also restore the input lines to what they U* U x ⋯ x1 n

were:

Note: this works only when it really is true that the selected lines have separated basis state values at
that juncture. An example where it fails is with and , the circuit H 1 CNOT 1 2 H 1 which n = 1 r = 1

creates the operation we called . E

[Show H CNOT H example in Quirk (little-endian) (flipped).]

x1

x2

x3

x4

x5

x6

0

0

0

(We will later
mirror the gates
except the last
one giving the
function value d
in order to reset
the ancilla qubits
7--9 to , so0
that all qubits
except the last
keep their given
basis values.)

y1

y2

y3

y1

y2

y3

U

x1

x2

x3

x4

x5

x6

0

0

0

y1

y2

y3

y1

y2

y3

U U*

x1

x2

x3

x4

x5

x6

https://algassert.com/quirk#circuit={%22cols%22:[[%22H%22],[%22%E2%80%A2%22,%22X%22],[%22H%22]],%22init%22:[1]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22X%22,%22%E2%80%A2%22],[1,%22H%22]]}

The Deferred Measurement Principle (section 6.6)

In a picture:

What this does is legitimize the policy of having measurements only at the end of a circuit.

U U

≡

An Interesting Unitary Operation

Let stand for the all-1s matrix of qubits. itself is . As an example with , Jn n Jn 2 × 2n n n = 2

J = 2

1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

This is Hermitian but not unitary---far from it. Actually, it equals the outerproduct but ++ ++

multiplied by . If we write in boldface , then where . With this 4 J = n +n +n J = Jn
1

N n N = 2n

normalization, we have (ordinary matrix multiplication, not tensoring)

J = ⋅ = = ⋅ 1 ⋅ = J .2
n +n +n +n +n +n +n +n +n +n +n

n

(Math Jargon: this means is idempotent.) Now defineJn

,R = 2J - In n n

where is the identity matrix, same as the identity matrix tensored with itself times. In N × N 2 × 2 n

For we get:n = 2

.R = - = 2

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

1

2

-1 1 1 1

1 -1 1 1
1 1 -1 1

1 1 1 -1

Now we can verify that the matrix on the right is unitary. It resembles the matrix we earlier called but E

that had the entries going southwest to northeast instead. Now let's apply to a generic vector -1

u = a , a , a , a :[1 2 3 4]T

R u = 2J u - I u = 1, 1, 1, 1 - u2 2 2

a + a + a + a

2

1 2 3 4
[]T

Is this unitary? Note: R = 2J - I 2J - I = 4J - 2J - 2J + I = I .2

n (n n)(n n) 2
n n n n n

So is a square root of the identity operator, and this is enough to make it unitary. Thus if we apply R2

n

 a second time (and generally with), we get back again. Thus gives a reflection of around R2 Rn u Rn u

the all-1s vector (that is, around). We will use a version of this in Grover's algorithm later.+n

