
CSE439/510 Week 5: Building and Visualizing Quantum Circuits
 
 
Computing Functions
 
Let us view the 4-qubit Hadamard transform as a big matrix:
 

 
We have argued that the Hadamard transform is feasible: it is just a column of  Hadamard gates, one n
on each qubit line.  There is, however, one consequence that can be questioned.  We observed that a 
network of Toffoli gates suffices to simulate any Boolean circuit  (of NAND gates etc.) that computes a C

function .  The Toffoli network  actually computes the reversible formf : 0, 1 0, 1{ }n → { }r Cf

 
 .F x , … , x , a , … , a  =  x , … , x , a ⊕ f x , … , a ⊕ f x( 1 n 1 r) ( 1 n 1 ( )1 r ( )r)

 
The matrix  of  is a giant permutation martrix in the  underlying coordinates.  Yet if the Uf Cf 2n+r

Boolean circuit  has  gates, then we reckon that  costs  to build and operate.  Now build the C s Cf O s( )

following circuit, which is illustrated with  and :n = 5 r = 4

 

 

H⊗4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1

1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v  =  -1⊗n[ ] ( )u•v

1

4



 
What this circuit piece computes is the functional superposition of , defined asf
 

.     =    𝛷f

1

2n

∑
 

x∈ 0,1{ }n
x f x( )

 
The juxtaposition of two kets really is a tensor product, .  The abbreviated form above is ⊗x f x( )

"okayyy..." because  and  individually belong to the standard basis.  The whole state , x f x( ) 𝛷f

however, is far from belonging to the standard basis, and it (IMHO) has several issues.
 
One of them is highlighted by Holevo's Theorem, which is not covered per se but can be given the 
following informal statement:
 

A quantum state on  qubits can store at most  bits of classical information.n n

 
Let's think of this first about our -qubit graph states  for -node graphs .  (NB: Writing  is n 𝛷G n G 𝛷G

OK but redundant since " " is not a basic attribute---likewise the ket in " " above just looks 𝛷G 𝛷f

"quantum-y".)   can have up to  edges.  Thus  itself can encode  bits of G ∼ 0.5n
n

2
2 G 𝛩 n2

information, especially when the vertices are explicitly numbered .  However, the graph state 1 … n

holds only  bits.  It follows that graph states are "lossy" for general graphs.  They give full n =  o n2

fidelity only for special classes of sparse or highly-regular/symmetrical graphs.  
 
With , however, the state looks like attempting to store exponentially many bits of information about 𝛷f

the function ---as defined by its  values  on inputs .  The sum has exponentially f 2n f x( ) x ∈ 0, 1{ }n

many terms.  We can, however, get at most  distinguishable bits out of the state from any n

measurement.  This is commensurate with the fact that it is produced by a circuit of  gates, O s + n( )

especially when  itself is   s O n .( )
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https://en.wikipedia.org/wiki/Holevo's_theorem


Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the 
creation of , instead of just  for the Hadamard transform plus  for the circuit.  Or does the 𝛷f O n( ) O s( )

fact of only  gates mean that  doesn't meaningfully reflect the exponentially many values O s + n( ) 𝛷f

taken by the function ?f x( )
 
Let's ask this where the circuit  is just a bunch of  gates.  On five qubits,Cf CNOT

 

computes the functional superposition
 

. 
1

32

∑
 

x∈ 0,1{ }5

x x

 
This is not the same as , because that is the equal superposition over all basis ⊗+++++ +++++

states for -bit binary strings, including all the cases of  where the binary strings  and  of length 10 xy x y

 are different.  An analogy is that for any set  of two or more elements, the Cartesian product of  5 A A

with itself includes ordered pairs  with  but , whereas the functional superposition is x, y( ) x, y ∈ A x ≠ y

like the diagonal of the Cartesian product, namely .  The functional superposition is x, x : x ∈ A{( ) }

entangled, just as we first saw in the case .n = 1
 
If we replace the five  gates by a subcircuit that prepares a general 5-qubit stateH

 
, =  a + a + ⋯ + a + a𝜙 0 00000 1 00001 30 11110 31 11111

 
then the five  gates produceCNOT

 
.D  =  a + a + ⋯ + a + a𝜙 0 0000000000 1 0000100001 30 1111011110 31 1111111111

 

 

 

0

0

0

0

0

0

0

0

0

H

H

H

H

H

0



This is not the same as , whose terms have coefficients  for all  and .  IMHO the ⊗𝜙 𝜙 a ai j i j

notation  or  can be unclear about what is meant, though I've freely used  etc. as 𝜙 𝜙 𝜙𝜙 ++

above.  When  is a basis element in the basis used for notation, then there is no difference: both x

 and  have the single term  with coefficient .  ⊗x x D x xx 1 = 12

 
Feasible Diagonal Matrices (section 5.4)

We can continue the progression , , by Z =
1 0

0 -1
CZ =

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 -1

,    ,CCZ =

1        
 1       
  1      

   1     
    1    
     1   

      1  
       -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([ ])

 
and so forth.  These are examples of a different kind of conversion of a Boolean function  besides the f

reversible form called  or  above.  This is the matrix  defined for all indices  byF Cf Gf u, v
 

.G u, v  =  f[ ]

0 if u ≠ v

-1 if u = v ∧ f u = 1( )

1 if u = v ∧ f u = 0( )

 
The above are for the -ary AND function.  The  stands for "Grover Oracle", though here I G  AND n G

would rather emphasize that it is a concretely feasible operation.  This ultimately leads to a theorem 
whose statement doesn't appear until chapter 6:
 
Theorem (6.2): If  is computable by a Boolean circuit with  gates, thgen  can be computed by a f s Gf

quantum circuit of  gates.O s( )
 
When  is polynomial in , this makes a big contrast to  being a -sized diagonal matrix.   s =  s n( ) n Gf 2n

We can also summarize a relationship to the previous definition of  which was based on BQP

languages, i.e., on yes/no decision problems.
 
Theorem (not stated as such): If the language  belongs to , then for every L = x, y :  f x ≤ yf { ( ) } BQP

 and all  there are circuits  of size  (with as many output gates needed to write 𝜖 > 0 n Cn,𝜖 s n = n( ) O 1( )

values  for ), the probability that  correctly outputs  after measurement of its f x( ) x ∈ 0, 1{ }n C xn,𝜖( ) f x( )

output gates is at least .  This is true for both the " " and " representations of .1 - 𝜖 Ff "Gf f

 

 

 



The nub of the proof is the---completely classical---fact that binary search using the language  Lf

works in polynomial time even though there are exponentially many values  to sift through.  f x( )
 
 
Universal Gate Sets
 
The above theorems allow us to solidify our intuition about the power of quantum gates.
 
Definition. A set  of basic quantum gates is universal if every language/function in  can be S BQP

computed by polynomial-sized circuits that use only gates in .S
 
Definition. The set  is metrically universal if for every unitary operation  on some number  of S U m

qubits, and , there is a circuit  on  qubits using finitely many gates from  such that for all -𝜖 > 0 C m S m

qubit quantum states , .  (The norm is the sup-norm, aka. -norm.)𝛷 ||C𝛷 -  U𝛷|| <  𝜖 ∞

 
Theorem. The following gate sets are universal:

1. Hadamard, CNOT, and .  T

2. Hadamard and .  CS

3. Hadamard and Toffoli.
The first two sets are metrically universal.  The third is not---simply because it doesn't use any complex 
numbers at all.
 
These facts are stated but not proved in the text; a key idea of the third is in the solved exercise 3.8 in 
chapter 3.  But given the third fact, universality of  follows by the circuit equation for Toffoli H+CS

gates given before, because  can be written as .  And the simulation of  by CZ CS ⋅CS CS

 could be homework... This doesn't prove metric universality, however.  Indeed, the H+CNOT+ T
only source I know for gate set 2 being metrically universal is the exercise section of lecture notes by 
John Preskill: https://www.preskill.caltech.edu/ph219/chap5_13.pdf (start on page 47).  Those of you 
who are sharp on logic may not be convinced that "metrically universal" implies "universal" the way I 
worded it, because -errors on single gates might compound themselves when the gates are 𝜖

composed in a circuit---and also, how large is that "finitely many gates from " part when  can grow S m

with  rather than be fixed?  The connection is enforced by the Solovay-Kitaev theorem and its efficient n

underlying algorithm, which shows that only  extra overhead in gates is needed---not even n(log )O 1( )

linear or polynomial overhead.
 
Another important fact to bear in mind is that the gate set  is not metrically H,CNOT,CZ,X,Y,Z, S{ }
universal.  Every circuit of these gates is simulatable in classical polynomial time.  This is called the 
Gottesman-Knill theorem.  My graduated PhD student Chaowen Guan and I improved the running time 
of this theorem in 2019 using a new analysis of (essentially) graph-state circuits.  These gates and their 
ordinary and tensor products generate the Clifford gate set.  One other notable member is . V = HSH

 Note: . So  is called the "square root of NOT" and is V  =  HSHHSH =  HSSH =  HZH =  X2 V

 

 

https://www.preskill.caltech.edu/ph219/chap5_13.pdf
https://en.wikipedia.org/wiki/Solovay%E2%80%93Kitaev_theorem
https://en.wikipedia.org/wiki/Gottesman%E2%80%93Knill_theorem


also written as SRN or as SRNOT or as  in various sources. Its matrix is .  Note this X1/2 1

2

1 + i 1 - i

1 - i 1 + i

equals , and if you multiply it by the unit scalar  you get the nicer-looking matrix 1

2

ei𝜋/4 e-i𝜋/4

e-i𝜋/4 ei𝜋/4
ei𝜋/4

.  Like Hadamard, this is a source of quantum nondeterminism. Multiplying a whole unitary 1

2

i 1
1 i

matrix by a unit scalar, even by , is not considered to change the quantum operation it represents.  -1
 
Thus, using  does not really help us "break out" from the realm of the Pauli gates .  Using  S I,X,Y,Z T

does, however. We can get a taste by composing  and .  HTHT H* HTHT HTHT H* *

 
The most particular takeaway for (philosophical issues in) this course, however, concerns the extended 
series of gates we've mentioned before:
 

, , , , , ...Z =
1 0

0 -1
S =

1 0

0 i
T =

1 0

0 ei𝜋/4
T =𝜋

8

1 0

0 ei𝜋/8
T =𝜋

16

1 0

0 ei𝜋/16
T =𝜋

32

1 0

0 ei𝜋/32

 
Can we really engineer these super-fine angles?  By (metric) universality, we don't have to: we can 
combine  with  (and  , but only  is needed for these particular gates) to emulate them.  T H CNOT X

There is a web app for this.  A useful technote: if you multiply  by the unit scalar  you getT e-i𝜋/8

 

.e-i𝜋/8 0

0 ei𝜋/8

 
This sets up some confusing nomenclature:  itself, not what I've called , is often called "the  T T𝜋/8 𝜋 / 8

gate".  The web app calls this " " with .  The Wybiral applet has "R2" as a redundant R 𝜃z( ) 𝜃 = 𝜋 / 4

name for , "R4" for , but at least gives "R8" for the gate .S T T𝜋/8

 
 
The Quantum Fourier Transform
 
Super-tiny angles are in the definition of the QFT itself.  For any , it takes  where n 𝜔  =  en

2𝜋i/N

.  With  and , the matrix together with its quantum coordinates is:N =  2n n = 3 𝜔 = ei𝜋/4

 

 

 

https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://www.mathstat.dal.ca/~selinger/newsynth/


 
The above "  series"---and their controlled versions , gives us a recursive way to Rz CS,CT,CT , …𝜋/8

build the -qubit QFT using only  unary and binary gates.  This is already evident from the four-n O n2

qubit illustration in the textbook (where the two gates on the left are swap gates):

For  the next bank uses , then  uses angles of  of a circle, and so on.  Soon the n = 5 1 / 32 n = 6 1 / 64
angles would be physically impossible so the gates could never be engineered.  But:
 

• The metric universality of  says you only need to engineer "pieces of eight" for H+CNOT+ T
angles---and the Solovay-Kitaev algorithm shows you how to build the approximating circuits 
with only  extra multiplicative overhead.  Such "polylog" factors are often ignored n(log )O 1( )

under the notation of saying the whole simulation of the -qubit QFT needs only  gates.n nO
2

• Doing this with  instead needs only quarter-circle angles---that is,  and .H+CS i -i

• With Hadamard + Toffoli the only angles involved are  and .  You wind up simulating the real 0 𝜋
and imaginary parts of QFT computations under two separate binary encodings. 

 
I retain, however, a "meta-physical" objection that the inherent instability in tiny angles still infects these 
circuits when attempts are made to engineer them physically and keep them free of noise.  One can 
cite LIGO as a supreme success case where tiny physical displacements are magnified and detected in 
a roughly analogous manner.  But that has a fixed physical limit of resolution, whereas the Shor's 
algorithm application of  wants  to grow at least linearly with the overall problem instance size QFTm m

.  Well, if the obstacle is actually physical, not just "meta-", it will entail the discovery of a new physical n
law that modulates quantum mechanics.

 

 

 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 1 1
001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i

011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1

101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1

5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j  =  𝜔[ ] ij

https://en.wikipedia.org/wiki/LIGO


 
Maybe  isn't impossible.  We can show, however, that a simpler-looking task---one we take for QFTn

granted in classical computing---is really impossible in the quantum realm.  This also exemplifies how 
interpreting quantum circuits can be tricky unless you apply the principle of linearity strictly.
 
 
The No-Cloning Theorem
 
It's good enough to prove this in the case of copying one qubit in a two-qubit circuit.
 
Theorem: There is no  unitary operation  such that for any single-qubit quantum state 4 × 4 U

, .𝜙 =  ae  +  be0 1 U 𝜙 ⊗  e  =  𝜙⊗ 𝜙( 0)
 
Proof: Suppose  existed.  Then  and .  So by linearity,U U e ⊗ e  =  e ⊗ e( 0 0) 0 0 U e ⊗ e  =  e ⊗ e( 1 0) 1 1

 
U 𝜙 ⊗  e  =  U ae  +  be ⊗ e  =  U a e ⊗ e  +  b e ⊗ e( 0) (( 0 1) 0) ( ( 0 0) ( 1 0))

 
.=  aU e ⊗ e  +  bU e ⊗ e   =   a e ⊗ e  +  b e ⊗ e  =  ae  +  be( 0 0) ( 1 0) ( 0 0) ( 1 1) 00 11

 
But  is supposed to equal , which U 𝜙 ⊗  e( 0) 𝜙⊗ 𝜙
 

.=  ae  +  be ⊗ ae  +  be   =   a e  +  abe  +  abe  +  b e( 0 1) ( 0 1) 2
00 01 10

2
11

 
The only way these quantities can be equal is if .  That boils down to saying that the only single-ab = 0
qubit states that can be copied are the two standard basis states.  (Note that this is a much stronger 
conclusion than the theorem stated.)  ☒
 
And indeed there is a  unitary matrix that can do this, namely .  This leads to the next topic.4 × 4 CNOT

 
 
The Copy Uncompute Trick
 
Suppose we know in advance that at a certain point in a quantum circuit  on a particular input  (that C x

is to say, ), some set of  qubit lines will be in a standard basis state .  Then we can insert  ex r ey CNOT

gates between each of those lines and one of  fresh qubit lines to make a copy of :r ey
 
 

 

 



 
If we then follow up with the inverse  of , then we also restore the input lines  to what they U* U x ⋯ x1 n

were:
 

 
Note: this works only when it really is true that the selected lines have separated basis state values at 
that juncture.  An example where it fails is with  and , the circuit H 1 CNOT 1 2 H 1 which n = 1 r = 1

creates the operation we called .  E
 
 
 
[Show H CNOT H example in Quirk (little-endian) (flipped).]
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https://algassert.com/quirk#circuit={%22cols%22:[[%22H%22],[%22%E2%80%A2%22,%22X%22],[%22H%22]],%22init%22:[1]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22X%22,%22%E2%80%A2%22],[1,%22H%22]]}


 
 
The Deferred Measurement Principle (section 6.6)
 

In a picture:

 
What this does is legitimize the policy of having measurements only at the end of a circuit.
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An Interesting Unitary Operation
 
Let  stand for the all-1s matrix of  qubits.   itself is .  As an example with , Jn n Jn 2  ×  2n n n = 2
 

J  =  2

1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

 
This is Hermitian but not unitary---far from it.  Actually, it equals the outerproduct  but ++ ++

multiplied by .  If we write in boldface , then  where .  With this 4 J  =  n +n +n J = Jn
1

N n N = 2n

normalization, we have (ordinary matrix multiplication, not tensoring)
 

J  =    ⋅  =     =   ⋅ 1 ⋅  =  J .2
n +n +n +n +n +n +n +n +n +n +n

n

 
(Math Jargon: this means  is idempotent.)  Now defineJn
 

,R  =  2J  -  In n n

 
where  is the  identity matrix, same as the  identity matrix tensored with itself  times.   In N × N 2 × 2 n

For  we get:n = 2
 

.R  =   -  =  2

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

1

2

-1 1 1 1

1 -1 1 1
1 1 -1 1

1 1 1 -1
 
Now we can verify that the matrix on the right is unitary.  It resembles the matrix we earlier called  but E

that had the  entries going southwest to northeast instead.  Now let's apply to a generic vector -1

u =  a , a , a , a :[ 1 2 3 4]T

 

R  u =  2J  u -  I u =  1, 1, 1, 1  -  u2 2 2

a + a + a + a

2

1 2 3 4
[ ]T

 
Is this unitary?  Note:  R  =   2J  -  I  2J  -  I  =  4J  -  2J  -  2J  +  I  =  I .2

n ( n n)( n n) 2
n n n n n

 
So  is a square root of the identity operator, and this is enough to make it unitary.  Thus if we apply R2

n

 a second time (and generally with ), we get  back again.  Thus  gives a reflection of  around R2 Rn u Rn u

the all-1s vector (that is, around ).  We will use a version of this in Grover's algorithm later.+n

 

 

 


