CSE439/510 Week 5: Building and Visualizing Quantum Circuits

Computing Functions

Let us view the 4-qubit Hadamard transform as a big matrix:

[ H® 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 ]
0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
1(0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
— (0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
4 1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
[ 1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H®n[1/l, U] — (_1)u-v

We have argued that the Hadamard transform is feasible: it is just a column of 7 Hadamard gates, one
on each qubit line. There is, however, one consequence that can be questioned. We observed that a
network of Toffoli gates suffices to simulate any Boolean circuit C (of NAND gates etc.) that computes a

function f: {0, 1}" — {0, 1}". The Toffoli network C actually computes the reversible form
F(xy, ..., xy,a1, ..,8;) = (X1, .., Xy, 810 f(X)1, ..., a8, ® f(x),).

The matrix Ug of Cf is a giant permutation martrix in the 2" underlying coordinates. Yet if the
Boolean circuit C has s gates, then we reckon that C ¢ costs O(s) to build and operate. Now build the
following circuit, which is illustrated with n = 5 and r = 4:
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What this circuit piece computes is the functional superposition of f defined as
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The juxtaposition of two kets really is a tensor product, |x) ® | f(x)). The abbreviated form above is
"okayyy..." because |x) and | f(x)) individually belong to the standard basis. The whole state | Dy ),
however, is far from belonging to the standard basis, and it (IMHO) has several issues.

D) =

One of them is highlighted by Holevo's Theorem, which is not covered per se but can be given the
following informal statement:

A quantum state on 7 qubits can store at most 7 bits of classical information.

Let's think of this first about our n-qubit graph states @ for n-node graphs G. (NB: Writing |@G> is
OK but redundant since "@;" is not a basic attribute---likewise the ket in "|(Df>" above just looks

) ~ 0.5n2 edges. Thus G itself can encode @(nz) bits of

n
2

information, especially when the vertices are explicitly numbered 1 ... n. However, the graph state

"quantum-y".) G can have up to (

holds only n = o(nz) bits. It follows that graph states are "lossy" for general graphs. They give full
fidelity only for special classes of sparse or highly-regular/symmetrical graphs.

With (Df, however, the state looks like attempting to store exponentially many bits of information about
the function f---as defined by its 2" values f(x) on inputs x € {0, 1}". The sum has exponentially
many terms. We can, however, get at most n distinguishable bits out of the state from any
measurement. This is commensurate with the fact that it is produced by a circuit of O(s + 1) gates,
especially when s itself is O(1n).


https://en.wikipedia.org/wiki/Holevo's_theorem

Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the
creation of |®¢ ), instead of just O() for the Hadamard transform plus O(s) for the circuit. Or does the
fact of only O(s + n) gates mean that |€Df> doesn't meaningfully reflect the exponentially many values
taken by the function f(x)?

Let's ask this where the circuit C is just a bunch of CNOT gates. On five qubits,

00— H—@

(O] ?

|0)—1H] f
|0)—H] ?
|0)—H] r
0) -+

0) D

0 B

0 D

10) D

computes the functional superposition
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This is not the same as | +++++ ) ® | +++++ ), because that is the equal superposition over all basis
states for 10-bit binary strings, including all the cases of | xy) where the binary strings x and y of length
5 are different. An analogy is that for any set A of two or more elements, the Cartesian product of A
with itself includes ordered pairs (x, y) with x, y € A but x # v, whereas the functional superposition is
like the diagonal of the Cartesian product, namely {(x, x) : x € A}. The functional superposition is
entangled, just as we first saw in the case n = 1.

If we replace the five H gates by a subcircuit that prepares a general 5-qubit state
|¢> = ﬂ0|00000> + a1|00001> + e+ 6130| 11110> + a31|11111>,

then the five CNOT gates produce

D(|¢Y) = /0000000000 + a1]0000100001) + --- +as|1111011110) + a5 |1111111111).



This is not the same as [¢) ® |¢), whose terms have coefficients a;a; for all i and j. IMHO the
notation || or [(p¢) can be unclear about what is meant, though I've freely used |++) etc. as
above. When |x) is a basis element in the basis used for notation, then there is no difference: both
|x) ®|x) and D(|x)) have the single term |xx) with coefficient 1 = 12.

Feasible Diagonal Matrices (section 5.4)
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cCZ = 1 1 , CCCZ = diag([1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, -1]),

and so forth. These are examples of a different kind of conversion of a Boolean function f besides the
reversible form called F or C above. This is the matrix G defined for all indices u, v by

0 fu+v
Gelu,v] = -1 ifu=0v Af(u)y=1.
1 ifu=v Af(u)=0

The above are Ganp for the n-ary AND function. The G stands for "Grover Oracle", though here |

would rather emphasize that it is a concretely feasible operation. This ultimately leads to a theorem
whose statement doesn't appear until chapter 6:

Theorem (6.2): If f is computable by a Boolean circuit with s gates, thgen Gf can be computed by a
quantum circuit of O(s) gates.

When s = s(n) is polynomial in 11, this makes a big contrast to G being a 2"-sized diagonal matrix.
We can also summarize a relationship to the previous definition of BQP which was based on
languages, i.e., on yes/no decision problems.

Theorem (not stated as such): If the language Ly = {x, y: f(x) < y} belongs to BQP, then for every
€ > 0 and all n there are circuits C,, . of size s(n) = nO (with as many output gates needed to write

values f(x) for x € {0, 1}"), the probability that C,, .(x) correctly outputs f(x) after measurement of its
output gates is at least 1 — €. This is true for both the "F (" and "G " representations of f.



The nub of the proof is the---completely classical---fact that binary search using the language Lf
works in polynomial time even though there are exponentially many values f(x) to sift through.

Universal Gate Sets
The above theorems allow us to solidify our intuition about the power of quantum gates.

Definition. A set S of basic quantum gates is universal if every language/function in BQP can be
computed by polynomial-sized circuits that use only gates in S.

Definition. The set S is metrically universal if for every unitary operation U on some number m of
qubits, and € > 0, there is a circuit C on m qubits using finitely many gates from S such that for all -
qubit quantum states @, ||CP — UP|| < €. (The norm is the sup-norm, aka. co-norm.)

Theorem. The following gate sets are universal:

1. Hadamard, CNOT, and T.

2. Hadamard and CS.

3. Hadamard and Toffoli.
The first two sets are metrically universal. The third is not---simply because it doesn't use any complex
numbers at all.

These facts are stated but not proved in the text; a key idea of the third is in the solved exercise 3.8 in
chapter 3. But given the third fact, universality of H + CS follows by the circuit equation for Toffoli
gates given before, because CZ can be written as CS - CS. And the simulation of CS by

H + CNOT + T could be homework... This doesn't prove metric universality, however. Indeed, the
only source | know for gate set 2 being metrically universal is the exercise section of lecture notes by
John Preskill: https://www.preskill.caltech.edu/ph219/chap5_13.pdf (start on page 47). Those of you
who are sharp on logic may not be convinced that "metrically universal" implies "universal" the way |
worded it, because €-errors on single gates might compound themselves when the gates are
composed in a circuit---and also, how large is that "finitely many gates from S" part when m can grow
with 7 rather than be fixed? The connection is enforced by the Solovay-Kitaev theorem and its efficient

underlying algorithm, which shows that only (log n)o(l) extra overhead in gates is needed---not even
linear or polynomial overhead.

Another important fact to bear in mind is that the gate set {H, CNOT, CZ, X, Y, Z, S} is not metrically
universal. Every circuit of these gates is simulatable in classical polynomial time. This is called the
Gottesman-Knill theorem. My graduated PhD student Chaowen Guan and | improved the running time
of this theorem in 2019 using a new analysis of (essentially) graph-state circuits. These gates and their
ordinary and tensor products generate the Clifford gate set. One other notable member is V = HSH.

Note: V2 = HSHHSH = HSSH = HZH = X. So V is called the "square root of NOT" and is



https://www.preskill.caltech.edu/ph219/chap5_13.pdf
https://en.wikipedia.org/wiki/Solovay%E2%80%93Kitaev_theorem
https://en.wikipedia.org/wiki/Gottesman%E2%80%93Knill_theorem
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L[ e ] Like Hadamard, this is a source of quantum nondeterminism. Multiplying a whole unitary
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matrix by a unit scalar, even by —1, is not considered to change the quantum operation it represents.

Thus, using S does not really help us "break out" from the realm of the Pauli gates I, X, Y, Z. Using T
does, however. We can get a taste by composing HTHT*H and HTHT*HTHT*H.

The most particular takeaway for (philosophical issues in) this course, however, concerns the extended
series of gates we've mentioned before:

1 0 10 1 0 1 0 1 0 1 0
Z= ,S= ,T= . ,TT(: , ,Tn = , ,Tn = .
|0 —1l [0 il IO em/J 5 lo em/J T [o emﬂé] » lo em/SJ

Can we really engineer these super-fine angles? By (metric) universality, we don't have to: we can
combine T with H (and CNOT , but only X is needed for these particular gates) to emulate them.

There is a web app for this. A useful technote: if you multiply T by the unit scalar e~'m8

e—in/8 0
0 eiﬂ/S ’

This sets up some confusing nomenclature: T itself, not what I've called Tg, is often called "the 77/ 8
gate". The web app calls this "R, (0)" with 6 = 7t /4. The Wybiral applet has "R2" as a redundant
name for S, "R4" for T, but at least gives "R8" for the gate T 5.

you get

The Quantum Fourier Transform

2mi/N

Super-tiny angles are in the definition of the QFT itself. For any n, it takes w,, = ¢ where

N = 2" Withn =3andw = ei”/4, the matrix together with its quantum coordinates is:


https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://www.mathstat.dal.ca/~selinger/newsynth/
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The above "R, series"---and their controlled versions CS, CT,CT s, ..., gives us a recursive way to

build the n-qubit QFT using only O(nz) unary and binary gates. This is already evident from the four-
qubit illustration in the textbook (where the two gates on the left are swap gates):

X1 Tws /T SHH— W
r 5 [
A3 S—H l . V3
W dkomd .

For n = 5 the next bank uses 1/32, then n = 6 uses angles of 1/ 64 of a circle, and so on. Soon the
angles would be physically impossible so the gates could never be engineered. But:

« The metric universality of H + CNOT + T says you only need to engineer "pieces of eight" for
angles---and the Solovay-Kitaev algorithm shows you how to build the approximating circuits

with only (log n)o(l) extra multiplicative overhead. Such "polylog" factors are often ignored

under the notation of saying the whole simulation of the n-qubit QFT needs only O(nz) gates.

« Doing this with H + CS instead needs only quarter-circle angles---that is, i and —i.
« With Hadamard + Toffoli the only angles involved are 0 and 7t. You wind up simulating the real
and imaginary parts of QF T computations under two separate binary encodings.

| retain, however, a "meta-physical" objection that the inherent instability in tiny angles still infects these
circuits when attempts are made to engineer them physically and keep them free of noise. One can
cite LIGO as a supreme success case where tiny physical displacements are magnified and detected in
a roughly analogous manner. But that has a fixed physical limit of resolution, whereas the Shor's
algorithm application of QFT,, wants 1 to grow at least linearly with the overall problem instance size
n. Well, if the obstacle is actually physical, not just "meta-", it will entail the discovery of a new physical
law that modulates quantum mechanics.


https://en.wikipedia.org/wiki/LIGO

Maybe QFT,, isn't impossible. We can show, however, that a simpler-looking task---one we take for
granted in classical computing---is really impossible in the quantum realm. This also exemplifies how
interpreting quantum circuits can be tricky unless you apply the principle of linearity strictly.

The No-Cloning Theorem
It's good enough to prove this in the case of copying one qubit in a two-qubit circuit.

Theorem: There is no 4 X 4 unitary operation U such that for any single-qubit quantum state
¢ = aey + bey, U(P ® eg) = ¢pR¢.

Proof: Suppose U existed. Then U(ey ®ey) = ep®eyand U(e; ®ey) = e1 ®eq. So by linearity,
U(p ® eg) = U((aey + be)®@eg) = Ulaleo®ep) + ble; ®ep))
= all(eg ®eg) + bU(e; ®ey) = aleg®ey) + bleg ®eq) = aegy + beqs.
But U(¢ ® e) is supposed to equal ¢ ® ¢, which
= (aey + be1)® (aeg + be;) = a’ey + abey + abeiy + b2eqs.
The only way these quantities can be equal is if ab = 0. That boils down to saying that the only single-
qubit states that can be copied are the two standard basis states. (Note that this is a much stronger

conclusion than the theorem stated.)

And indeed there is a 4 X 4 unitary matrix that can do this, namely CNOT. This leads to the next topic.

The Copy Uncompute Trick

Suppose we know in advance that at a certain point in a quantum circuit C on a particular input x (that
is to say, ey ), some set of r qubit lines will be in a standard basis state e,. Then we can insert CNOT
gates between each of those lines and one of r fresh qubit lines to make a copy of e,:
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If we then follow up with the inverse U* of U, then we also restore the input lines x; --- x,, to what they
were:

X1 — |x1)
|2y — [x2)
fram B i (R
| %5 > — |xs)
[xey— ] e — Je)

10) D Y1)
10} D |y2)
|0) D |y3)

Note: this works only when it really is true that the selected lines have separated basis state values at
that juncture. An example where it fails is withn = 1 and r = 1, the circuit H 1 CNOT 1 2 H 1 which

creates the operation we called E.

[Show H CNOT H example in Quirk (little-endian) (flipped).]


https://algassert.com/quirk#circuit={%22cols%22:[[%22H%22],[%22%E2%80%A2%22,%22X%22],[%22H%22]],%22init%22:[1]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22X%22,%22%E2%80%A2%22],[1,%22H%22]]}

On input egy. that is, x; =x3 =0, the first Hadamard gate gives the control qubit
a value that is a superposition. Hence, the second Hadamard gate does not
“uncompute” the first Hadamard to restore z; =0. The action can be worked
out by the following matrix multiplication (with an initial factor of %}:

1 01 0 I 0 0 O[T 0 10 I 1 1 -1

O 1 0 10 1 0 Off0 1 O 1T} {1 T-11

I 0 -1 0110 0 0 1 I 0 -120 I -1 1 1
0

O 1 0-130 0 1 0 10 -1 -1 111

This maps eqgg to %I 1. 1. 1.-1]. thus giving equal probability to getting O or 1 on
the first qubit line.

The Deferred Measurement Principle (section 6.6)

THEOREM 6.3 If the result b of a one-place measurement is used only as
the test in one or more operations of the form “if b then U,” then exactly the
same outputs are obtained upon replacing U by the quantum controlled oper-
ation CU with control index the same as the index place being measured and

measuring that place later without using the output for control.

Proof. Suppose in the new circuit the result of the measurement is 0. Then the
CU acted as the identity, so on the control index, the same measurement in the
old circuit would yield 0, thus failing the test to apply U and so yielding the
identity action on the remainder as well. If the new circuit measures 1. then
because CU does not affect the index, the old circuit measured 1 as well, and

in both cases the action of U is applied on the remainder.

In a picture:
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What this does is legitimize the policy of having measurements only at the end of a circuit.



An Interesting Unitary Operation

Let J,, stand for the all-1s matrix of n qubits. |, itselfis 2" x 2". As an example with n = 2,

o

Il
U U U
U
U G U
U

This is Hermitian but not unitary---far from it. Actually, it equals the outerproduct |++><++| but
multiplied by 4. If we write in boldface J, = |+"){+"|, then], = %]n where N = 2", With this

normalization, we have (ordinary matrix multiplication, not tensoring)
= [+ = [ (D) = [+ 1] =
(Math Jargon: this means J,, is idempotent.) Now define
R, =2, - I,

where I, is the N X N identity matrix, same as the 2 X 2 identity matrix tensored with itself 72 times.
For n = 2 we get:

0.5 05 05 05] [1000 -1 1 1 1
R, = [05050505/ j0100|_1/1-11 1
05050505 (0010 2{1 1 -1 1
0.5 05 05 05] (0001 11 1 -1

Now we can verify that the matrix on the right is unitary. It resembles the matrix we earlier called E but
that had the —1 entries going southwest to northeast instead. Now let's apply to a generic vector

u = [ay,ay, ﬂ3/ﬂ4]T

ai+a»>»+as+a
Ryu = 2pu — Lu = — 22 > ,1,1,17 -

Is this unitary? Note: R2 = (2], - L)(2], - I,) = 4% - 2], - 2J, + I, = I,.

So R,% is a square root of the identity operator, and this is enough to make it unitary. Thus if we apply
R, a second time (and generally with R,,), we get u back again. Thus R,, gives a reflection of © around
the all-1s vector (that is, around |+”>). We will use a version of this in Grover's algorithm later.



