
CSE439 Fall 2025 Week 6: Reckoning and Visualizing Circuits and Measurements (ch. 7)

There are basically three ways to "reckon" a quantum circuit computation on total qubits, :q Q = 2q

1. Multiply the matrices together---using sparse-matrix techniques as far as possible. If Q × Q

 and you try this on a problem in the difference then the sparse-matrix techniques BQP ≠ P

must blow up at some (early) point. The downside is that the exponential blowup is paid early;
the upside is that once you pay it, the matrix multiplications don't get any worse, no matter how
more complex the gates become. This is often called a "Schrödinger-style" simulation.

2. Any product of -many matrices can be written as a single big sum of -fold products. s Q × Q s

For instance, if are four such matrices and is a length- vector, thenA, B, C, D u Q

.ABCDu i = A i, j ⋅ B j, k ⋅C k, l ⋅D l, m ⋅ u m[] ∑
Q-1

j,k,l,m=0

[] [] [] [] []

Every (nonzero) product of this form can be called a (legal) path through the system. [As hinted
before, in a quantum circuit, will be at left---on an input , it will be the basis vector u x

 under the convention that s are used to initialize the output and ancilla lines-e = x0
r+m x0r+m 0

--and will be the first matrix from gate(s) in the circuit as you read left-to-right. Thus the D

output will come out of , which is why it is best to visualize the path as coming in from the top A

of the column vector , going out at some row (where is nonzero---for a standard basis u m um

vector, there is only one such), then coming in at column of , choosing some row to exit m m D l

(where the entry is nonzero), then coming in at column of , and so on until exiting at D l, m[] l C

the designated row of . This is the discrete form of Richard Feynman's sum-over-paths i A
formalism which he originally used to represent integrals over quantum fields (often with respect
to infinite-dimensional Hilbert spaces). The upside is that each individual path has size O s()

which is linear not exponential in the circuit size. The downside is that the number of nonzero
terms in the sum can be far worse than and doubles each time a Hadamard gate (or other Q
nondeterministic gate) is added to the circuit.

3. Find a way to formulate the matrix product so that the answer comes out of symbolic linear
algebra---if possible!

For the textbook, I devised a way to combine the downsides of 1 and 2 by making an exponential-sized
"maze diagram" up-front but evaluating it Feynman-style. Well, the book only uses it for 1 ≤ Q ≤ 3

and I found that the brilliant Dorit Aharonov had the same idea. All the basic gate matrices have the

property that all nonzero entries have the same magnitude---and when normalizing factors like are 1

2

collected and set aside, the Hadamard, CNOT, Toffoli, and Pauli gates (ignoring the global factor in) i Y

give just entries or , which become the only possible values of any path. That makes it easier to +1 -1

sum the results of paths in a way that highlights the properties of amplification and interference in the
"wave" view of what's going on. The index values become "locations" in the wavefront m, l, k, j, i, …

as it flows for time , and since it is discrete, the text pictures packs of...well...spectral lab mice running s
through the maze.

One nice thing is that you can read the mazes left-to-right, same as the circuits. Here is the
 entangling circuit example: [Note: The mice are sometimes left in final positions, H + CNOT

sometimes in a startup or midway position, for what I demonstrated in lecture.]

No interference or amplification is involved here---the point is that if you enter at , then and 00 00

 are the only places you can come out---and they have equal weight. To see interference, you can 11

string the "maze gadgets" for two Hadamard gates together:

In linear-algebra terms, all that happened at lower right was giving . But the wave 1 ⋅ 1 + - 1 ⋅ 1 0

interference being described that way is a real physical phenomenon. Even more, according to
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse"
(which can be a photon after going through a beam-splitter). One of those universes has "Anti-Phil",
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they
fight to mutual annihilation.

Can we build any interesting things with just a few qubits? Yes, in fact. Even the simplest graph state
circuit---for a graph of just one node with a self-loop---is instructive to visualize.

00

01

11

10

00

01

11

10

input x = 00

-1

-1

0

1

0

1

input x = 0

-1 -1

input x = 1

1 1

1 -1

1 1

1 -1
=

2 0

0 2

0 1=

=

We have seen the equation . How is this reflected when we visualize the quantum HZH = X

properties? There is only one change from the "maze" for two -gates canceling, which was:H

The change is to insert a stage that again has a on the basis value but no "crossover":-1 1

This time, when "Phil" starts running from at left, the "mice" cancel at and amplify at 0 z = 0

. And on input they output the basis state . The result is Boolean NOT, i.e., .z = 1 x = 1 0 X

[Footnote: A basic outcome for the circuit on input has amplitude , not as z C x z UC x x UC z

I've once been guilty of writing. Perhaps the diagrams should write the bra-form, and and so 0 1

on, for at right to emphasize this. But we've identified the ket-form with the notion of "outcome"; this z

is the form that would be given as input to a further piece of the circuit. This dilemma is another reason
why Lipton and I first tried for a "handedness-free" approach.]

Phenomena of interest (tracing the "mice" is analogous to propagating a waveform):

1. Superposition
2. Amplification
3. Phase changes
4. Interference.

For graph state circuits of nodes we need qubits. The Hadamard transform of two qubits is 2 2

H HZx1 z1

0

1

0

1

input x = 0

-1 -1

input x = 1

1 1

1 -1

1 1

1 -1
=

2 0

0 2

0 1

=

=

0

1

0

1

input x = 0

-1 -1

input x = 1

-1

=
=

=

diagrammed as at left and right. It does not matter what order the two gates go in.H

Note that the mouse running from encounters no phase change, nor mice ending at 00 00

regardless of origin. This simply expresses that the Hadamard transform (and the QFT too) have every

entry (divided by the normalizing constant) in the row and column for . We will focus +1 R = 2n 00

on the amplitude of getting as output given as input. If is the graph, the graph-state 00 00 G CG

circuit, and the unitary operator it computes, then the amplitude we want is . UG 00 UG 00

The simplest two-node has a single edge connecting the two nodes. This introduces a single G CZ

gate between the qubits standing for the nodes.

If we take the two Hadamard gates away from line 1, then we have , which is H 2 CZ 1 2 H 2

equivalent to . But with them, we get equal superpositions once again. Most in particular, the CNOT

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1
?

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1

-1

H Hx1 z1

H Hx2

z2

amplitude of (=) is nonzero. [The lecture also noted how is 00 UG 11 11 UG 00 1, 1, 1, -1
1

2
[]T

a fixed point of , ignoring multiplication by the unit scalar .]H⊗2 -1

Now let's try a graph that adds a loop at each node. We can call it the "Q-Tip" graph:

The phase shifts for the gates go on the basis states that have a on line 1 or 2, respectively. -1 Z 1

Now the amplitude value is negative. Its sign does not affect the probability and the state 00 UG 00

still gives an equal superposition.

It does not matter whether we put the gates "before" or "after" the . The diagonal matrices all Z CZ

commute, and this is clear from how the paths go straight across without branching. We could simply
make the whole graph into one diagonal gate with phase shifts that multiply the factors along each -1

row. A related thing to note is that if we repeat an edge or loop, then the two cancel completely. It's as
if we have a graph with edges defined by even-odd parity rather than number.

Now let's try a three-node graph, the triangle:

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1

-1

H Hx1 z1

H Hx2 z2

Z

Z

-1 -1

-1

-1

Z

For computing the amplitude it is not necessary to follow the "mice" through the 000 UG 000

Hadamard parts of the "maze". The mice entering the graph part from are all positive, and x = 000

the mice going to will not change color once they leave the graph. So we need only track z = 000

the middle portion and count how many mice are and how many are . For the triangle graph, the + -

answer is: four of each. They cancel. So . = 0000 UG 000

This leads us to more insight and a strategy for determining this amplitude for a general -node graph n

: G = V, E()

• Every basis state with corresponds to a 2-coloring of the vertices. Say a x x ∈ 0, 1{ }n 𝜒x

node is black (B) if , white (W) if . (The Greek letter (chi) looks like an and u x = 1u x = 0u 𝜒 X

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

H Hx1 z1

H Hx2 z2

-1

H Hx3 z3

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

B1

3

2

B
W

B

W

indeed is its capital form, but the Greek letter that sounds like English X is (xi) with capital . 𝛸 𝜉 𝛯

 The gives the ch in chromatic. Well, we can say that the binary string "is" the coloring .)𝜒 x 𝜒

• For any edge , the edge contributes a -1 in its gate if both and are colored B. u, v ∈ E() CZ u v
Call it a B-B edge.

• Therefore, a coloring gives a net contribution if it gives an odd number of B-B edges.-1 G

• The amplitude value is positive if fewer than (i.e., half) the colorings create 0
n
UG 0

n 2n-1

an odd number of B-B edges, zero if exactly half do, negative if more.

Whether one amplitude is positive or negative does not matter so much in quantum up to equivalence
under scalar multiplication. (My lecture demo'ed some examples.) But patterns of signs between
different amplitudes of possible outcomes may have further significance. az z z

Whether the amplitude is zero, however, is absolute. I call a graph "net-zero" if . G = 00

n UG 0
n

Above we first observed that the single-node loop graph is net-zero. The smallest simple undirected
graph (meaning no loops or multiple edges) that is net-zero is the triangle. Here are all such graphs up
to five vertices:

I do not see any simple way to tell "visually" whether a graph is net-zero. My recent PhD graduate

Chaowen Guan and I improved the known running time to decide this algorithmically from to O n3

whatever the time to multiply two matrices is (currently)). The algorithm works by n × n < O n(2.37286

converting the graph-state circuit into a quadratic equation of a kind that converts into a linear equation
in variables, whose solutions can be counted in yea-much time. But a simple, more-direct O n()

criterion for a graph to be net-zero could give a practically much better algorithm. Guan and I wrote
about this on the GLL blog at

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/

Some generalizations of graph-state circuits can be handled with equal efficiency. We can simulate

 gates since is equivalent to . The extra gates take things outside CNOT CNOT i j H j CZ i j H j H

the realm of graph-state circuits as strictly defined, but keeps them within the class of so-called
stabilizer circuits, or equivalently, Clifford circuits, to which the same runtime < O n2.37286

applies (for getting any one amplitude, that is). The gates allowed in these circuits are , , , H CNOT S

, , , , but notably not , , or . Or for that matter. But there are other tweaks that X Y Z CZ Tof T CS CCZ

seem to be easy to bring within our framework, yet yield hard problems. Consider:

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/

The only change was in the middle column, removing the from the row for . The middle -1 011

column now "fires" only when all 3 bits are , i.e., for the component of in any state. This is the 1 111

action of the double-controlled -gate, (which is really a triple control of a phase shift). It is Z CCZ 180∘

easy to diagram in a quantum circuit:

In graph-theoretic terms, this has replaced the edge by the hyper-edge , thus creating a 2, 3() 1, 2, 3()

hypergraph. The effect of changing only the color of the mouse in row 4 (for) may seem small, 011

but it has a wild effect on the state vector. Now has positive paths from instead z = 000 5 x = 000

of 4, so its amplitude is . Six other components have amplitude , and they collectively have =
5-3

8

1

4

1

4

7

16

of the probability. The other one, for , has positive paths to negative, and so amplitude 100 7 1

 which squares to . Note that the previous amplitude was which squares to just , =
7-1

8

3

4

9

16
=

6-2

8

1

2

1

4

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

H Hx1 z1

H Hx2 z2

H Hx3 z3

so flipping just one path of eight made a difference to the probability, more than one might expect. 5

16

The gate could likewise be in any order---the gates commute so there is no element of time CCZ

sequencing until the final bank of gates. The middle part is "instantaneous." Here is a snip as H

shown in lecture from the Wybiral simulator, which does allow you to do a gate by placing two CCZ

controls:

This little illustration of wildness (amplitudes and probabilities being suddenly imbalanced after placing
the gate) sits over a more general point. The equation resulting from having the gate CCZ CCZ

changes from quadratic to cubic. Counting solutions to this kind of cubic equation is -hard. In fact, NP

sandwiching the gate between two gates (on any one qubit line) gives the Toffoli gate (with CCZ H

target on that line). So likewise goes outside the Clifford ambit and gives a universal gate set. CCZ

What About Measurement?

Let's say we measure qubit 1 (big-endian) of the above imbalanced state. There is a 1/4 chance of
getting the result 0 and 3/4 chance of getting 1. If we measured all the qubits, we would see a 9/16
chance of getting , 1/16 each for , , and . But when we measure just one qubit, the rest 100 101 110 111

of the state stays superposed. Which part is "the rest of the state" depends on the outcome of the
measurement. In this case:

• If the outcome is , the new state on qubits 2 and 3 is . Equal weight superposition 0 1, 1, 1, 1
1

2
[]T

with positive signs
• If the outcome is , then preserving the relative amplitudes the gives . (Or 1 3, -1, -1, -1[]T

, which has the same ratios of amplitudes .) To renormalize this, divide by the -3, 1, 1, 1[]T

square root of , which is twice the square root of . The state also equals 12 3

.1.5, 0.5, 0.5, 0.5
1

3
[]T

Heres's a challenge : Can we get this state using just the graph-state gates on two qubits? We will
also allow you and Pauli and and even the phase gate , but not or . And not CNOT X Y S T CS CCZ

or Toffoli since only two qubits without ancillae. If not, can we prove not?

There is a more exact rule for computing the new state, predicated on the result of the measurement.
Since we have adopted the principle of deferred measurement, we can defer it to ch. 14 in November .
But we can see the results in Quirk by applying its postselection operators. Note that they are
outerproducts. In any event, this shows special effects one can do with non-Clifford gates like . CCZ

Another Graph State Circuit Example:

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

H Hx1 z1

H Hx2 z2

-1

H Hx3 z3

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Z

-1

-1

Small-Scale Applications (chapter 8)

At last we get into some famous instances of quantum applications. The first one was cooked up just to
show that quantum computations could meet a goal that classical algorithms cannot. Whether the goal
is compared fairly is open to debate, however. Here is some back-story:

David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing
while I was a graduate student and he was a postdoc at Oxford in the mid-1980s. At first, he claimed
quantum computers could solve the Halting Problem in finite time. Fellows of Oxford's Mathematical
Institute refuted the claim. But it was not crazy: a year ago it was proved that a binary quantum system
of "interactive provers" can (kind-of-)solve the Halting Problem in finite time. (My review of the paper is
at https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/) Per my memory of
observing some meetings about it, the gap in Deutsch's argument had to do with properties of
probability measures based on infinite binary sequences.

So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that
quantum computers can do and classical ones cannot. (Well, unless the playing field is leveled for
them...but before we argue about it, let's see the task.)

Deutsch's Algorithm

The task is a learning problem, a kind of interaction we haven't covered yet. Instead of "input , x

compute , a learning problem is to determine facts about an initially-unknown entity that y = f x "() f
you can query.

1. Oracle Turing machines give a classic way to define this kind of problem. For oracle functions
 or languages drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM that on input (for large enough) can distinguish what is in time M 0n n A

(say) polynomial in ? The computation can learn about by making queries on n M 0A n A y

selected strings and observing the answers . y A y()

2. One can also define oracle circuits that have special oracle gates with some number of m

input wires and enough output wires to give the answer on any .f y() y ∈ 0, 1{ }m

3. An ordinary electrical test kit behaves that way. It is a circuit with a place(s) for you to insert one
or more (possibly-defective) electrical components . The test results should diagnose A

electrical facts about .A
4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms

work this way. They involve an oracle function given in reversible form f : 0, 1 0, 1{ }n → { }r

as the function defined by:F : 0, 1 0, 1 { }n+r → { }n+r

https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/

. F x, z = x, f x ⊕ z() (())

Usually is and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

. In the simplest case , is a two-(qu)bit function. Some examples:xf x() n = r = 1 F

• If is the identity function, , then .f f x = x() F x, z = x, x⊕ z = CNOT x, z () () ()

• If , then : , , , .f x = ¬x() F x, z = x, x ↔ z() () F 00 = 01() F 01 = 00() F 10 = 10() F 11 = 11()

• If is always false, i.e., , then is the two-qubit identity function.f f x = 0() F

• If , then , so , , , f x = 1() F x, z = x, ¬z() () F 00 = 01() F 01 = 00() F 10 = 11() F 11 = 10.()

These are all deterministic as functions of two-qubit basis states, so they permute the quantum
coordinates , , , and . Recall that gives the permutation that swaps 0 = 00 1 = 01 2 = 10 3 = 11 CNOT

the coordinates 2 and 3, that is, in swap notation. In full, we have:CNOT = 2 3()

, , , .F = 2 3id () F = 0 1¬ () F = 0 () F = 0 1 2 31 ()()

The functions and are constant. The identity and functions have one true and f x = 0() f x = 1() ¬

one false value each, so they balance values of and . The question posed by Deutsch is:0 1

How many queries are needed to tell whether is constant from whether is balanced?f f

If we just think of , suppose we try the query and ask for . If we get the answer "f y = 0 f y()

 then it could be constant-false, but could also be the balanced identity function. The f 0 = 0"() f f

answer would leave both constant-true and negation as possibilities. Likewise if we try f 0 = 1()

. The first point is that this impossibility of hitting things with one query carries forward to the y = 1

way we have to modify the problem for quantum:

How many queries are needed to tell apart from ?F or F(id ¬) F or F(0 1)

It seems like we have more of a chance because now we can query two things: , , , or . Or in 00 01 10 11

the permutation view, we can query , , , or . The problem is that the range of answers we y = 0 1 2 3

can get is too limited for this to help. and can only be 0 or ; and can only be or F 0() F 1() 1 F 2() F 3() 2

3. So suppose you query and get the answer . Then could be or could be . The y = 2 3 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a
straight and a cross:

0

1

H

H

H

?

A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit
after a measurement. The input is not but instead ; that is, the ancilla is initialized to , not to 00 01 1

. Here is the wavefront ("maze") diagram of how it works:0

Interlude: Is the comparison fair?

The unfair aspect (IMHO) is that the classical algorithm is being allowed to evaluate the oracle only at
basis vectors. The quantum algorithm gets to evaluate it at a linear combination. We can represent
this state using the Dirac notation from Chapter 14 as

 = - + - + -
1

2
00 01 10 11

Well, suppose we allow evaluating ordinary Boolean functions at linear combinations of 0 and 1, such
as 0.25. We are really talking about the algebraic equivalents of these functions:f'

00

01

11

10

Fid F¬ F0 F1

1

2

00

01

11

10

e00

00

01

11

10

00

01

11

10

input x = 01

-1

-1 -1

-1

-1

-1

-1
-1 F1

• If is the identity function, , then too, but as algebra.f f x = x() f' x = x()

• If , then . Maybe the only non-obvious choice?f x = ¬x() f' x = 1 - x()

• If is always false, i.e., , then . i.e., is always zero too.f f x = 0() f' x = 0() f'

• If , then too.f x = 1() f' x = 1()

If we evaluate the unknown at , then we get four different answers that distinguish the four f 0.25

possibilities entirely, not just telling "balanced" apart from "constant." So the classical algorithm does
even better---and still with just one "query."
FYI: https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/

Superdense Coding

It is easy to rig cases where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3

measuring both qubits. Just define , for instance, where ranges over ---or F 00 = ii() i 00, 01, 10, 11{ }

if you prefer, ranges over the permutation elements as used above---and have the other i 1, 2, 3, 4

values go in cycle after that. See the above diagram for . F 01 , F 10 , F 11() () () F 11()

"Superdense coding" is a case where the rigging has a bit of surprise because it appears to convey 2
bits of information with just 1 qubit of communication after a certain point in time. This is impossible by
the following theorem:

Holevo's Theorem: It is not possible to extract more than bits of classical information from any -q q
qubit quantum state.

The most important case where this "bites" IMHO is with graph states: You can input bits of ∼ n
1

2
2

information by choosing the gates for edges of an undirected -vertex graph in a graph-state CZ n G

circuit on qubits, one for each vertex. But you can only get bits of information out by measuring. CG n n
 Hence graph-state encoding is majorly lossy and is often used only for special classes of graphs that

00

01

11

10

00

01

11

10

Fid

already have low information content, such as "grid graphs."

The "cheat" in superdense coding is that the communicating parties "Alice" and "Bob" exchange 1 bit of
information beforehand in order to set them up with an entangled qubit pair. Here is their circuit:

The opening Hadamard and CNOT set up the entangled pair. Alice then chooses one of the four Pauli
operators for the unknown operation in the middle. After the second CNOT, she applies Hadamard to
her qubit, measures, and sends the result to Bob. Bob then measures his qubit, and is able to infer
which of the four operators Alice used. Well, he got a qubit from Alice to begin with, and even though it
was before Alice made her 2-bit choice at the "?", it counts as 2 bits of "contact" anyway.

Even after the "magic" is explained away, this remains a nice illustration of a Deutsch-style learning
problem using the four Pauli matrices. We want to identify one of the following four possibilities exactly
by the results of two qubits.

This time the input is . To work it out via wavefronts (the figure below is left with in the 00 XZ⊗ I

middle, but all four will be exemplified):

00

01

11

10
-1

-1

-1

-1

I ⊗ I X ⊗ I Z ⊗ I -iY ⊗ I = XZ ⊗ I

Example: Quantum Teleportation

00

01

11

10

00

01

11

10

input x = 00

-1

-1

-1

-1

-iY ⊗ I = XZ ⊗ I

