CSE439 Fall 2025 Weeks 7 and 8: Deutsch-Jozsa and Simon's Problems

These lectures begin a "vibe shift" from pictorial to formulaic. Note that the pictorial way of tracing the
matrix calculations---via Feynman paths---scales exponentially with the number 7 of qubits. Not only
that, it also forks exponentially with the number of Hadamard gates (or square-root-of-NOT or other
nondeterministic gates). Formulas, however, can scale linearly or at worst polynomially in 7.

These chapters also lead into the two major applications where quantum advantage is strongly
believed: Shor's and Grover's algorithms (to come in chapters 11--13). On the way are the Deutsch-
Jozsa Problem---where it is unresolved whether the classical criticism of the original Deutsch's Problem
fully applies---and Simon's Problem, where an exponential lower bound on the expected time for any
classically randomized algorithm has been proven under reasonable stipulations.

Deutsch-Jozsa Extension (Ch. 9)

Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing
functions f : {0,1}" — {0, 1} from balanced ones, then you can make the classical

algorithms require 27141 queries, while the quantum ones can still do it on one query to a completely
separable superposed state. This is a conditional problem, called a promise problem, in that it only
applies when f is in one of those two cases. If f is neither balanced nor constant, then "all bets are
off'---any answer is fine, even | \_(/)_/ ).

The maze diagrams would get exponentially big, but we can track the computations via linear algebra.
It is like Deutsch's setup except with H®" in place of the first H, input |O”1> in place of |01, and

targets (ignoring the \/5 normalizers):

. constant |O”>(|0> + |1>) (instead of (|00> + |01>), so that 0" is certainly measured.
+ balanced — |? ) (instead of (| 10> + |11>), such that 0" is certainly not measured.

The key observation is that for any f, any argumentx € {0,1}",andb € {0, 1}, the amplitude in the
component xb of the final quantum state ¢ is
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Here x o t means taking the dot-products x; - t; (which is the same as x; A ;) and adding them up
modulo 2 (which is the same as XOR-ing them). Well, when x = 0" this is always just zero, so the
first term is (—1)° and just drops out, leaving
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Note that the (1) term is independent of the sum over ¢, so it comes out of the sum-—-and this is why
we get two equal possibilities in the original Deutsch's algorithm as well. Ths final point is that:

1
* When f is , these terms are all the same, so they ---giving % for the constant-
false function and _712 for constant-true. Both of these amplitudes square to % and so together

soak up all the output probability, so that 0" is measured with certainty.
« When f is balanced, the big sum has an equal number of +1 and —1 terms, so they all interfere
and cancel. Hence 0" will certainly not be measured.

Added: A randomized classical algorithm can efficiently tell with high probability whether f is constant
by querying some random strings. If it ever gets different answers f(y) # f(y’) then definitely f is not
constant. (So, under the condition of the "promised problem," it must be balanced.) If it always gets
the same answer, then since any balanced function gives 50-50 probability on random strings, it can
quickly figure that f is constant. But it is still the case that a deterministic algorithm needs
exponentially many queries and hence exponential time.

At this point, coverage transits to handwritten notes on the blackboard and/or projector:
https://cse.buffalo.edu/~regan/cse439/CSE439week8notes.pdf

Note also that week 7 generally includes the First prelim Exam, while one lecture of week 8 is erased
by the short Fall Break. So they are really "one week of lectures."
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