CSE439, Fall 2025 Problem Set 2 Due Thu. 9/25, 11:59pm

Reading: For next week, read the rest of Chapter 5, read Chapter 6, and yes also read
Chapter 7. You may find that Chapter 7 actually recapitulates a lot of stuff; for instance, I
have already made the boxed point in section 7.6 about entanglement. Also read the Chapter
7 end notes, and for Yogi Berra, see https://yogiberramuseum.org/about-yogi/yogisms/.

(1) (a) Compute the following tensor products of basic quantum gate matrices seen in
lecture: (i) Z® S, (i) S®Z, (ili) S® T, (iv) H® X, and (v) E = H® (H-X). (The
expression for E, which we’ve given a name just for this question, includes an ordinary matrix
product inside the parentheses.)

(b) Now compute E |[++), that is 0.5E[1, 1, 1, 1], without doing any 4 x 4 matrix operations.
(Well, you may do the 4 x 4 matrix-on-vector multiplication to check your work, but you must
show how you can get the answer via operations on 2 X 2 matrices and between length-2
vectors only. 9 pts. total for (a), (9) for (b), making 18 on this problem.)

(2) (a) Design a 4 x 4 unitary matrix U such that Ueyy = \/%'To[l’ 2,3,6]7. For a strategy
hint, note how this vector comes from problem (3) of assignment 1. (9 pts.)

(b) Now design a 4 X 4 unitary matrix V such that V |[++) = |[++) and V |—+) = |——).
OK, whereas the notation eg in (a) is interchangeable with |00), I don’t know any simple
“non-Dirac” names for the three states mentioned here. But as a reminder:

) ) )=3(L 1" e [1,1]") = 31,1, 1,1]".

o |-t =)@+ =3(1-1"a[1") =3[11-1,-1".
) ) ) =1([1,-1]" ®[1,-1]") = 1[1,-1,-1,1]7, and also
) ) ) =5(L1" @1, -1]") = 3[1, -1,1, -1]".

There are several ways to do this by strategy rather than trial-and-error. One is to consider
what the CNOT gate does on the standard basis and try to apply “change-of-basis” ideas you
may have seen in a previous course. Or you may consider whether permuting the underlying
classical co-ordinates might help. Or you can try working out what V must do on certain
linear combinations of |[++) and |—+) and maybe other vectors. (12 pts.)

(c) Finally show that such a matrix V cannot be a tensor product of two 2 X 2 matrices—
because if it were, the resulting action on the separate qubits would be self-contradictory. (6
pts., for 27 tota.l)

(3) Show, however, that there is no unitary matrix W such that W |00) = |00), W [10) =
111), W |+0> |[++) and W |—0) = |——). Here |+0) means |+) ®ey = f([l 11T®1,07) =


https://yogiberramuseum.org/about-yogi/yogisms/

\%[1, 0,1,0]7, and |—0) similarly equals \%[1, 0,—1,0]". The intent is clear: W wants to copy
the state of its first qubit over its zeroed-out second qubit. (This will give an even stronger
proof of the no-cloning theorem than the one to come in Tuesday’s lecture. For a hint, you
need only three of those four equations to reach a contradiction, if W would exist. Use the
principle of linearity. 18 pts.)

(4) Design a graph-state circuit C' such that given the all-zero state ey asd input, C

produces the state

1

¢ = 5(6’000 — €ego1 + €101 + €111)-

Here C' must begin and end with H®? and is allowed only CZ and simple Z gates between
those two banks of Hadamard gates. (A Z gate represents a self-loop at a vertex, rather than
an edge ebtween two vertices of the graph.) Note that —® = %(—eooo + €001 — €101 — €111)
is considered to be the same quantum state as ®, but %(6000 + ego1 + €101 — €111) is really
a different state. You are welcome to use a quantum circuit simulator such as those shown
in class and do trial-and-error, but there are also strategic ways that track which standard
basis vector(s) get negated when a Z or CZ gate is put into a certain place in the graph.
Please show or explain how you got your answer regardless—this may include pasting a snip
or screenshot from the simulator. (In Dirac notation, we want to build a graph-state circuit
C such that

1
C'1000) = §(|000) —1001) + |101) + |111)).
18 pts., for 81 total on the set.) Whoops! The state was meant to be:

1 1
¢ = 5(6000 —ep10 + €101 + 6111) = §<|OOO> - ‘OlO) + |101> + ‘111>)



