
CSE439 Week 12: Quantum States as Operators
 
This week will pivot into linear algebra and scientific computing topics that also go outside quantum 
mechanics: the Spectral Theorem and canonical matrices and their decompositions.  We begin with the 
reformulation of quantum states as operators, which embraces the (IMHO philosophically fraught) 
extension to mixed states, and which all become matrices in the finite-dimensional case.  
 
 
Mixed States
 

A pure state of  qubits is one denoted by a unit vector in .  A mixed state is any linear n C
2 n

combination of pure states by non-negative weights that sum to .  That is, a mixed state is a classical 1

probability distribution over pure states.  Whether "mixed state" includes pure states depends on 
context; one can say "properly mixed" to exclude pure states.
 
For one qubit, every properly mixed state maps to a point interior to the Bloch Sphere.  This also holds 
for generalizations of the Bloch Sphere to higher dimensions for more qubits.  So let us have pure 
states  and probabilities  summing to .  Then, … ,𝜙1 𝜙m p , … , p1 m 1

 
p  +  ⋯  +  p1 𝜙1 m 𝜙m

 
is the "standard" representation of the mixed state.  We will see momentarily that, like writing  to 𝜙k

begin with, it may presume more than we can directly sense.  A philosophical question that comes first 
is whether a mixed state is a "thing", or just our lack of full knowledge about the state.  Appreciating the 
issues needs treatment of measurements in any basis.
 
 
General Measurements and Operators
 
The triple product of a row-vector , a matrix , and a column vector  is just .  We will care x A y xAy

about the case where  is the "bra" dual of .  Let's write , where  (kappa) could be any x y y = 𝜅 𝜅

meaningful label, and further put  where  and  are complex numbers such that = a, b𝜅 [ ]T a b
  Now consider the fact that the inner product of  with , i.e., of  but written it |a| + |b| = 1.2 2 1, 0[ ] 𝜅 0

as the bra , is just .  Meanwhile the inner product  gives .  Furthermore,0 a  ⋅𝜅 0 a*

 
 .a a =  ⋅ ⋅  =  ⋅  =  | |  =  |a|* 𝜅 0 0 𝜅 𝜅 0 0 𝜅 𝜅 0 2 2

 
What this says is that we projected the vector denoted by  onto the basis vector , and then took 𝜅 0

the magnitude of that projection.  Thus  represents the operation of projecting onto the  0 0 0

vector.  Moreover, look how it transforms the  vector:𝜅
 

.⋅  =  ⋅  =  1 ⋅ a + 0 ⋅ b  =  a0 0 𝜅 0 0 𝜅 0 ( ) 0

 

 



 

If we let  stand for the probability of  and divide through by  then we get just .  Oh p = |a|0
2 0 p0 0

wait, what we actually get is
 

.  ⋅  =  a  =  
1

p0

0 0 𝜅
1

p0

0
a

|a|
0

 

This might not be exactly , but it is equivalent to it since  is always a unit complex scalar.  That's 0
a

|a|

good enough.  Thus  updates the state when outcome  happens.  Similarly, 1

p0

0 0 0

 faithfully updates the state when outcome  happens.  Again, the point is how this 
1

p1

1 1 1

works for any basis state, not just the standard basis.  Let's trot out the general definitions first, then do 
the example within the   basis, then use   to measure  as originally defined as ,+ - ,+ - 𝜅

.a + b0 1

 
Definition: The projection operator associated to a pure state  is .𝜙 P  =  𝜙 𝜙 𝜙

 

Note that , so every projection operator is P  =  ⋅  =  ⋅  =  ⋅  =  P*
𝜙 𝜙 𝜙

*
𝜙

*
𝜙

*
𝜙 𝜙 𝜙

Hermitian.  More generally, we define:
 
Definition: A matrix  is positive semidefinite (PSD) if there is a matrix  such that .B A B =  AA*

 
Definition: A matrix  computes a projection if it is PSD and .P P = P2

 
By  we also haveP = P*

𝜙 𝜙

 
,P P  = P = ⋅  =  ⋅ ⋅  =  ⋅ 1 ⋅  =  P𝜙

*
𝜙

2
𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙

 
since  is a unit vector.  So  is indeed a projection and is PSD.𝜙 P𝜙
 
Definition: A projective measurement is given by a set  of projections such that P , … , P{ 1 m }

P  =  I.∑
m

i=1

i

 

From above,  is a projective measurement.  How about the  basis ,0 0 1 1 X

?  Using the numerics of the standard basis, we get:,+ + - -
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So  is a projective measurement.  Note that if we used the  coordinates to ,+ + - - ,+ -

begin with, then the numerics would be  and would come out literally identical, =+ +
1 0

0 0

likewise if we apply the measurement to .  (Note: the third from last line on page = a  +  b𝜅' + -
145 would be less confusing if it defined  this way rather than say  again.)  Using the standard-𝜅' 𝜅
basis numerics:
 

.= , + ,  =  a + b, a - b𝜅'
a

2

a

2

T b

2

-b

2

T
1

2
[ ]T

 
The triple product with  is:+ +

 

⋅ ⋅  =  a + b , a - b a + b, a - b = 2a , 2a𝜅' + + 𝜅'
1

4

* * * * 1 1

1 1
[ ]T

1

4

* * a + b
a - b

=  2a a + 2a b + 2a a - 2a b  =  4a a  =  a a =  |a| .
1

4

* * * * 1

4

* * 2

 
Similarly, we get .  That is a lot of rigamarole to replicate the answer we got ⋅ ⋅  =  |b|𝜅' - - 𝜅' 2

for measuring the original  in the standard basis.  The larger point is that the  vector with regard 𝜅 𝜅'

to the  basis has the same relation to it as  did to the standard basis.X 𝜅
 
However, when we expressly write rather than , then we are defining = a + b𝜅 0 1  = a, b𝜅 [ ]T

it in a way that is independent of a particular coordinate notation, and so it really is a different physical 
vector from .  To underscore the point (this is an example that should be on page = a  +  b𝜅' + -
146), let us measure  not  in the  basis.  𝜅 𝜅' X
 

⋅ ⋅  =  a , b a, b = a + b , a + b𝜅 + + 𝜅 * *
1

2

1 1

1 1
[ ]T

1

2

* * * * a
b

=  a a +  a b +  b a + b b  =  |a| + |b| + a b + b a  =  +
1

2

* * * * 1

2

2 2 * * 1

2

c + c

2
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where .  What happened?  The first thing to note is that the sum of a unit complex number  and c = a b* c
its conjugate is always a real number because the imaginary parts cancel.  Although in general the sum 
could be as big as  (or as low as ), because  arises as  where , the maximum 2 -2 c a b* |a| + |b| = 12 2

magnitude of  is .  Hence the probability of getting the outcome  stays within the range  c + c* 1 + 0, 1[ ]

as required for a probability.
 

In fact, if  then  so  and , finally giving that the probability of getting 𝜅 = + a = b =
1

2
c =

1

2
c + c = 1*

the outcome  is .  And the probability of getting the outcome  is:+ 1 -
 

⋅ ⋅  =  a , b a, b = a - b , - a + b𝜅 - - 𝜅 * *
1

2

1 -1

-1 1
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* * * * a
b

=  a a -  b a - a b + b b  =  |a| + |b| - a b - b a  =  -
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with  as before.  This ensures that the probabilities sum to , regardless of what  is.  It is a nice c = a b* 1 c

self-study exercise to repeat this with the example .= ,𝜅
1

2 2

3

There is an essential symmetry of measurement as well.  If we instead did  then we ⋅ ⋅- 𝜅 𝜅 -
would get the same answer.  Indeed, for a general other pure state , the double action𝜙
 

P  = ⋅ ⋅  𝜅 𝜙 𝜙 𝜅 𝜅 𝜙

 

is a product of the form  where .  And  back again, so the productcc* c = 𝜙 𝜅 cc = c c = cc*
*

*
*
( )* *

 of a complex number and its conjugate is always a real number too.  Some interpretations:
 

• The only knowledge we can gain about a quantum state  (relative to any prior knowledge 𝜅
about how it was prepared) is by measuring it.

• All measurements of  go through the outer product .𝜅 𝜅 𝜅

• Hence , not , is the "unit of epistemology" (the origin of "episte-" is the idea of sending 𝜅 𝜅 𝜅
a message, i.e., an epistle).  This is a Hermitian operator and a PSD matrix with real entries and 
a projection.  All complex numbers have vamoosed.

 

 

 =  0, 11 ( )

 =  1, 00 ( )

 =  1, 1+ ( )
1

2
 =  1, -1- ( )

1

2

𝜅

𝜅'



 
This carries through when  is a state of multiple qubits, or of multiple qutrits, quarts, qudits 𝜅

(meaning -ary, as with card ranks where ), and so on, even going into infinite-dimensional d d = 13

Hilbert spaces.  The "real proof" of the principle, IMHO, comes from the extension to mixed states.
 
  
Mixed States Again
 
Consider a mixed state represented as  where the  are p  +  p  +  ⋯  +  p1 𝜙1 2 𝜙2 m 𝜙m pi

nonnegative and sum to .1

 
Definition: The corresponding density matrix is
 

 .  𝜌 = p  +  p  +  ⋯  +  p1 𝜙1 𝜙1 2 𝜙2 𝜙2 m 𝜙m 𝜙m

 
Per above philosophy,  is all we can know about the mixed state (aside from any prior knowledge from 𝜌

having prepared it).  The letter  tends to be used, without a ket or bra around it.  Some more facts:𝜌

 
1. A density matrix is always Hermitian: .𝜌 = 𝜌*

2. The matrix designates a pure state if and only if ; note that this is automatic as shown 𝜌 = 𝜌2

above when .  m = 1

3. The results of measuring a mixed state can be computed by applying  as an operator to update 𝜌

the state, or with the double action to compute a probability of getting a given state.  By linearity, 
this is the same as working with each individual term and taking the linear combination.

 
Example: The density matrix of the mixed state  isp + 1 - p0 ( ) 1

 

 .𝜌  =  p + 1 - p  =  p + 1 - p =p 0 0 ( ) 1 1
1 0

0 0
( )

0 0

0 1

p 0

0 1 - p
 

Note that  unless  or , so this is generally not a pure state.𝜌 = ≠ 𝜌2
p

p2 0

0 1 - p( )2 p p = 1 p = 0

 
How about ?  We get p  +  1 - p+ + ( ) - -
 

.p + 1 - p = + =
1

2

1 1

1 1
( )

1 -1

-1 1

1

2

p p
p p

1 - p p - 1

p - 1 1 - p

1

2

1 1 - 2p
1 - 2p 1

 

In general, this is different.  But for the equal mixture , both density matrices are the same: p =
1

2

.  In terms of the Bloch sphere, both mixtures map to the exact center of the sphere, 𝜌1/2 = 
0.5 0

0 0.5

 

 



which is halfway down the axis between  and  at the poles, and also halfway along the 0 1

equatorial axis between  and .  In physical terms, that means they are the same state.  That + -
might come as a surprise, because:
 

One is defined as a spread between the outcomes  and , the other between the outcomes 0 1

 and .  Isn't that like saying one is apple vs. pear, the other orange vs. grapefruit?+ -
 
The ultimate point is that to probe the state, we have to choose a basis to measure against in advance.  
If we choose the standard basis, then to measure the probability for the outcome , even if we use 0

the  and  mixture, we still get+ -
 

P 𝜌  =  0.5  +  0.5   =   0.5   +  0.5  0 ( 1/2) 0 + + - - 0 0 + + 0 0 - - 0

=  0.5 ⋅  +  0.5 ⋅  =  0.5.
1

2

1

2

1

2

1

2

 
Note that this associated the terms so that the fact that the  and  vectors are  aligned to 0 + 45∘

each other in Cartesian coordinates, likewise  and , came out as an idea.  But we can get the 0 -
point much more succinctly upon measuring any outcome  for :𝜅 𝜌1/2

 

 =   =   =  0.5  =  0.5  =  0.5.𝜅 𝜌1/2 𝜅 𝜅
0.5 0

0 0.5
𝜅 𝜅 0.5I 𝜅 𝜅 I 𝜅 𝜅 𝜅

 
That's it.  However we try to probe the completely mixed state , it just behaves like a perfect 𝜌1/2

unbiased classical coin.  Regardless of what we mixed to make it, there is nothing else that it is now.
 
 
The Spectral Theorem
 
Now we come to the essential connection between Hermitian and unitary matrices.
 
Theorem (split between theorems 14.1 and 18.1 in the text):  If  is an  Hermitian matrix, then A n × n
there are  real numbers  (not necessarily all distinct) and associated vectors  n 𝜆 , … , 𝜆1 n u , … , u1 n

forming an orthonormal basis, such that
 

.A =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

 
Furthermore, the matrix , which is then well-defined bye

iA

 
,e  =  e  +  e  +  ⋯  +  eiA i𝜆1 u1 u1

i𝜆2 u2 u2
i𝜆n un un

 
 is unitary---and every unitary matrix arises in this manner.
 

 

 



Proof: The first part is by induction.  By the fundamental theorem of algebra, the characteristic 
polynomial  has  solutions over , counting multiplicities.  If there is only one distinct det A - xI( ) n C

solution , then  must equal .  By the Hermitian property ,  must be real, and we can get 𝜆 A 𝜆I A = A* 𝜆

 from any orthonormal basis of the A = 𝜆I =  𝜆  +  𝜆  +  ⋯  +  𝜆u1 u1 u2 u2 un un

space.  This is the base case.  Note also that for , the basis is unique.n = 1

 
So suppose  is one of at least two distinct solutions.  Then the subspace  of vectors  such that 𝜆1 W v

 is not the whole space---it has dimension  less than .  So let  be in and  in the Av =  𝜆 v1 m n x W y

orthogonal complement  of .  By the Hermitian property,W⟂ W
 

.⟨x, Ay⟩ =  ⟨Ax, y⟩ =  ⟨𝜆 x, y⟩ =  𝜆 ⟨x, y⟩ =  0*
1

*
1

 
Since  is an arbitrary vector in , this means that  always stays in the orthogonal complement x W Ay

, as well as  always staying within .  Hence we can argue inductively about  acting on  W⟂ Ax W A W
and on  individually.  This induction also concludes, as ultimately validated on hitting the base case, W⟂

that  is real, so , and this carries through to all other (distinct) solutions.  This process also 𝜆1 𝜆 = 𝜆*
1 1

builds othonormal vectors  such thatui

 
.A =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

 
Note that these are automatically eigenvectors, because 
 

Au  =  𝜆 u  +  𝜆 u  +  ⋯ +  𝜆 u +  𝜆 ui 1 u1 u1 i 2 u2 u2 i i ui ui i n un un i

=  𝜆 ⋅ 0 +  𝜆 ⋅ 0 +  ⋯ +  𝜆 ⋅ 1 + ⋯ +  𝜆 ⋅ 0 1 u1 2 u2 i ui n un

= 𝜆 ui i

 
(Well, this is because the notation  and just  is interchangeable.)  Moreover, if  has multiplicity ui ui 𝜆i

, i.e. is a unique eigenvalue in its eigenspace, then the associated unit eigenvector  is unique.  1 ui

 
Now to show that is unitary, we note that its adjoint ise  iA

 

. =  e  =  e  +  e  +  ⋯  +  ee⏨⏨iA T -iAT -i𝜆1 u1 u1
-i𝜆2 u2 u2

-i𝜆n un un

 
This is because, as we've seen, every self-outerproduct  is Hermitian so those parts don't u u

change under conjugate transpose.  Finally, when we multiply by its adjoint, all of the cross-terms e  iA

cancel by the orthogonality of the  vectors, leaving only the products of like terms:ui

 
e e  +  ⋯  +  e ei𝜆1 u1 u1

-i𝜆1 u1 u1
i𝜆n un un

-i𝜆n un un

 
=  e e  +  ⋯  +  e ei𝜆1 -i𝜆1 u1 u1 u1 u1

i𝜆n -i𝜆n un un un un

 

 



 
,=  +  ⋯  +   =  Iu1 u1 un un

 
because  (etc.) and the  are unit vectors.  So is unitary. e e =  e = e = 1i𝜆1 -i𝜆1 i 𝜆 -𝜆( 1 1) 0 ui e  iA

 
For the converse direction, let  be any unitary matrix, and putU
 

 and , V =  U + U
1

2

* W =  U - U
1

2i
*

 
so that .  These are intuitively trying to be the real and imaginary parts of the matrix .  U = V + iW U
Partial success is attested by the fact that they are Hermitian:  and .  Moreover, V = V* W = W*

 because  and  both equal .  VW = WV UU* U U* I
 
Now a useful fact: Hermitian matrices  that commute can have the same orthonormal eigenbasis.  A, B
For intuition, suppose  has multiplicity  for  with unique unit eigenvector .  Take .  Then 𝜆i 1 A ui v = Bui i

.  Thus  is also an eigenvector of .  It need not be a Av = ABu = BAu = B𝜆 u = 𝜆 Bu = 𝜆 vi i i i i i i i i vi A
unit eigenvector like , but it must be a multiple of  because the eigenspace is one-dimensional.  So ui ui

 for some constant .  This constant can be different from , but it is an eigenvalue of Bu = v = 𝜇 ui i i i 𝜇i 𝜆i

 for the same eigenvector .  The general case of higher multiplicity is messier---and it is not the case B ui

that every orthonormal eigenbasis for  becomes one for , only that some orthonormal eigenbasis of A B
 carries over to ---but the basic reason it works is similar.  Therefore, we can write:A B

 
  andV =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

W =  𝜇  +  𝜇  +  ⋯  +  𝜇1 u1 u1 2 u2 u2 n un un

 
with different eigenvalues  but the same vectors .  So𝜆 , 𝜇i i ui

 
 .U =  V + iW =  𝜆 + i𝜇  + 𝜆 + i𝜇  +  ⋯  +  𝜆 + i𝜇( 1 1) u1 u1 ( 2 2) u2 u2 ( n n) un un

 
Thus each  is an eigenvalue of .  Since  is unitary, its eigenvalues have norm . Thus  𝜆 + i𝜇( j j) U U 1 𝜆j

and  are real numbers whose squares sum to , and they are therefore the cosine and sine of some 𝜇j 1

angle .  So 𝜃j

 
𝜆 + i𝜇  =  𝜃 + i 𝜃  =  e .   j j cos j sin j

i𝜃j

 
This finally means that taking
 

A =  𝜃  +  𝜃  +  ⋯  +  𝜃1 u1 u1 2 u2 u2 n un un

 
gives a Hermitian matrix such that .  U = eiA ☒

 

 



 
 
Numerical Matrix Operations
 
One major application of the spectral representation of a matrix  (when  is Hermitian so it is A A
available) is in representing and executing numerical functions  as matrix functions .  We have f x( ) f A( )

seen this already with  as defining "phased exponentiation" .  This can be defined in f x = e( ) ix eiA

general given :A = 𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

 
.f A  =  f 𝜆  +  f 𝜆  +  ⋯  +  f 𝜆( ) ( 1) u1 u1 ( 2) u2 u2 ( n) un un

 
When  is a function involving addition and subtraction and multiplication only (i.e., is a polynomial f
function) then this is immediately evident: only multiplication needs a second thought, and it works 
because terms for different orthogonal eigenvectors ,  will cancel when multiplied.  Provided  and ui uj A

 are decomposed in the same eigenbasis, this works for two-variable functions  as well: if B f x, y( )

  andA =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

B =  𝜇  +  𝜇  +  ⋯  +  𝜇1 u1 u1 2 u2 u2 n un un

then 
.f A, B  =  f 𝜆 , 𝜇  +  f 𝜆 , 𝜇  +  ⋯  +  f 𝜆 𝜇( ) ( 1 1) u1 u1 ( 2 2) u2 u2 ( n n) un un

 
But the fun is that this works for just about any function .  A fortiori, this is because just about any f
function is approximable by polynomials.  (I really don't know that "a fortiori" means, it just sounds good 
moving forward.)  For example,
 

A  =   +   +  ⋯  +  -1
1

𝜆1

u1 u1

1

𝜆2

u2 u2

1

𝜆n
un un

 
(Wait a second---we saw that many Hermitian matrices, including ones from outer-products , 𝜙 𝜙
are not invertible.  So how can we do this??  Well, what happens in those cases is...  As revealed in 
class, those matrices have  as an eigenvalue occurring at least once.  So the above definition would 0

try to do , which blows up.  So there is no contradiction here.) 1

0

 
This idea, plus using a polynomial approximation to the numerical function  that works on a needed 1 / x

interval bounded away from , is the jumping point for the HHL Algorithm for (approximately) x = 0

solving matrix equations by (approximate) inversion, as covered in Chapter 18.  Another example is:
 

. =  ⋅  +  ⋅  +  ⋯  +  ⋅A 𝜆1 u1 u1 𝜆2 u2 u2 𝜆n un un

 
For unitary matrices  that happen to also be Hermitian, such as the Pauli matrices and  and A CNOT

, this gives a way to compute square roots for them.  For example, on HW3 we essentially CZ

computed the following spectral representation: CNOT =  

 

 



 

.1 ⋅  +  1 ⋅  +  1 ⋅  +  -1 ⋅
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0

0

0
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0

0

1

0

0

0

0

1

1

0

0

1

1

1

2
( )

0

0

1

-1

0

0

1

-1

1

2

 
To get a  matrix  such that  we just take square roots of all the eigenvalues.  We 4 × 4 B B = CNOT2

have a wide choice:  or  for the first there and  or  for the .  Using the positive signs gives+1 -1 i -i -1

 

B =  1 ⋅  +  1 ⋅  +  1 ⋅  +  i ⋅

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

1
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1
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1
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1
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=  +   +   +    

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

2

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

i

2

1 0 0 0

0 0 0 0

0 0 1 -1

0 0 -1 1

 

=   

1 0 0 0

0 1 0 0

0 0
1 + i

2

1 - i

2

0 0
1 - i

2

1 + i

2
 

This is the matrix of the controlled gate  where  is also written  and called CV V =  
1

2

1 + i 1 - i
1 - i 1 + i

X

1

2

the square root of NOT.  (The Wybiral circuit simulator calls it "SRNOT".)  Notice also that  is not V

Hermitian like  is---but that's not a contradiction because  is not an eigenvalue of this basis (it isn't a X i

real number, either).  
 
 
Short Philosophical Interlude
 
Speaking fairly generally, a projective measurement  can be associated to an orthonormal P =  P{ i }

n
i=1

eigenbasis for some Hermitian matrix.  When we apply  to measure a general (pure) state , we P 𝜙

"bonk it with the basis".  The measurement outcome is one of the  vectors, with probability ui

.  (Some sources further say that the associated eigenvalue  "is" the outcome.)  The fact | |ui 𝜙
2 𝜆i

that  lends definiteness to the measurement result---it stays the same under "repeated P  =  P2
i i

bonking."  Maybe this is what enables us to observe the measurement result to begin with.
 

 

 



(By the way, note that  is a general representation of a change of basis transformation.  B =  QAQ-1

But if  is notationally the identity matrix, then so is .  So the specification that  in the A B P  =  I∑
 

i i

definition of projective measurement does not lock us into the notation for the standard basis.)
 
Anyway, we can give a gentle partial disagreement with the Copenhagen interpretation by saying the 
original quantum state doesn't "collapse"---it just gets bonked.  The meaningful factor going forward is: 
what is the role of the choice of basis to bonk it with?  And is there free will in that choice?  Possibly 
free will that leads to superluminal communication???  Let's look at a major case.
 
 
Choosing Bases to Measure In
 
The question that concerned Einstein is whether Bob can send a willful message to Alice through their 
entanglement by choices of measurement bases.  My use of "willful" here is willful: pace quantum-
based arguments against free will, it is IMHO the clearest way to frame the technical argument.  All 
agree that Alice gains information of Bob's random outcomes, though that information was "pre-paid" by 
the interactions that set up  entangled qubits to begin with.  The point of superdense coding is that n
Bob could distinguish among  willful actions by Alice after the initial exchange of one entnagled qubit, 4

when it was followed by her sending  other qubit.  Can something like this be done without any further 1

interaction---and over time intervals shorter than the time for light to travel between Alice and Bob?
 
Most in particular, can Alice gain any willful information---other than unstructured randomness---from 

how Bob orients his measurements?  The answer is no.  If they share  (over ) you +00 11 2

might think Bob could guarantee a ' ' by measuring in the  basis, but no: that was the first 1 ,+ -
decoherence example with Alice.  Any basis Bob uses is the same as a unitary  to convert to the U

standard basis followed by a measurement there, and  has no effect on what Alice will see.U
 
This makes it all the more amazing that there are situations where the choice of measurement basis 
does make a difference---one that has been quantified in actual experiments.
 
 
The CHSH Game
 
The initials in the CHSH Game stand for John Clauser, Michael Horne, Abner Shimony, and Richard A. 
Holt, who described it in a paper in 1969.  The 2022 Nobel Prize in Physics was awarded to Clauser 
and to Alain Aspect and Anton Zeilinger.  The latter two did the most notable experimental confirmations 
of the quantum advantage involved.  Clauser and Holt are still alive; Holt is emeritus at nearby Western 
University in London, Ontario.  
 

In the game, Alice and Bob share  Bell pairs  and can have as much prior classical n +
1

2
00 11

communication to agree on strategies as they please.  Between the start and end of a trial---one play of 

 

 

https://en.wikipedia.org/wiki/CHSH_inequality


the game---they may not communicate with each other, but they may observe common sources.  The 
common source can not only be random---such as from patterns of solar flares both Alice and Bob can 
see---it can be controlled by an oracle "Ozzie" who is trying to help Alice and Bob.  Each trial operates 
via classical communication with a third party, "Ralph" (to sound like ref, referee) and goes like this:
 

1. Ralph sends a random bit  to Alice and a bit  to Bob.  Neither can see the other's bit.a b
2. Alice sends a response bit  to Ralph and Bob simultaneously sends his response bit  to Ralph.u v
3. Ralph declares that Alice and Bob win the trial if .u⊕ v =  a∧ b

 
We may suppose that Alice and Bob receive  and  in sealed boxes, and give their respective  and  a b u v
within a nanosecond of opening their boxes.  Without loss of generality, we may suppose that any other 
influence from observations or "Ozzie" has been registered by that instant.  At that point, Alice's  is a u
one-bit Boolean function of  alone.  We use  for the inputs to this function but give the outputs as Y a 0, 1

for "yes" or N for "no" in order to keep inputs and outputs visually separate.  There are just four 
functions that she can use:
 

• The always-true function: yes to  and yes to , which we call YY.0 1

• The always-false function, which we similarly call NN.
• The identity function, giving Ralph the same bit back, which is NY.
• Flipping the bit to Ralph, which is YN.  

 
Bob has the same four options, so there are in total 16 different strategies they can use for any trial.  
Meanwhile, Ralph has his own four possible actions.  Here is the entire matrix of possibilities.  The 
matrix entries are numeric rather than Boolean:  if Alice and Bob win,  if they lose.  The rows are the 1 0

four options by Ralph, in order  so that for instance, if Alice and Bob adopt the strategy in the third a, b
column and find that Ralph chose , then Alice says  while Bob says ---and they lose because 1, 0 N Y

their answers disagreed while  is false.  1 ∧ 0

 
Alice NN NN NN NN NY NY NY NY YN YN YN YN YY YY YY YY

Bob NN NY YN YY NN NY YN YY NN NY YN YY NN NY YN YY
0, 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

0, 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

1, 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

1, 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

 
Note that when Ralph plays randomly, Alice and Bob can assure 75% winning if they choose any of the 
eight columns with three s as their joint strategy.  They cannot do better, because every column has 1

a case where Ralph could send them something that makes their joint strategy lose---and the 
randomized Ralph does so with 25% probability.  
 
The amazing fact is that sharing one entangled Bell pair enables Alice and Bob to do much better: to 
win over 85% of the time in theory.  
 

 

 



A side note if you are familiar with matrix game theory: could Ralph do better with non-random play if he 
knew Alice and Bob's strategy?  Certainly if Alice and Bob always play one fixed column, such as both 
always saying , then Ralph could always deny them by giving the one losing combination .  If you N a, b

know the Minimax Theorem of zero-sum matrix game theory, then you already know that because 
25% is Ralph's optimum when he has to move first, Alice and Bob must have a classically randomized 
strategy that assures them 75% even if Ralph is told about it in advance.  We can find it easily by first 
removing the eight "obviously stupid" joint strategies---those with only one  in their column---leaving:1

 
Alice NN NN NY NY YN YN YY YY

Bob NN NY NN YN NY YY YN YY

0, 0 1 1 1 0 0 1 1 1

0, 1 1 0 1 1 1 1 0 1

1, 0 1 1 0 1 1 0 1 1

1, 1 0 1 1 1 1 1 1 0

 
Now if Alice and Bob use their shared classical randomness to choose one of the leftover strategies at 
random with probability , there is no way Ralph can avoid their winning 75% of the time even if 1 / 8

Ralph knows that is their policy.  If Ralph could steal their random bits by looking at solar flares and 
knowing how and when Alice and Bob will decode them, then Ralph could still always send the bad 
combo.  But the order is: Ralph commits to the  combo first, then Alice and Bob have a moment to a, b

read the shared random source that determines their policies before they open their boxes.
 
The scientific significance does not require this detail---we just stipulate that Ralph plays randomly.
 
 
The Quantum Case
 
Alice and Bob get an extra option using one shared Bell pair per trial: Each can measure in a basis that 
depends on the bit received from Ralph.  The timing of this option is synchronized as viewed by Ralph.  
The text describes Alice as measuring first, but we'll make Bob go first for consistency with recent 
lectures.  By symmetry, it does not matter who goes first.  What does matter, technically, is that the time 
lapse from opening the boxes to the second measurement---as viewed by Ralph---must be less than 
the time it would take light to travel from Bob to Alice.  This is in order to avoid one of several possible 
"loopholes" that could enable a classical explanation.  
 
Rather than the Bloch sphere, this is a case where the Cartesian diagram of state vectors is best for 
visualization:  at east (E),  at north (N),  between them facing northeast (NE), and  to the 0 1 + -

southeast (SE).  Alice will use either the  or  measurement.  We ,0 0 1 1 ,+ + - -

let the former outcomes stand for "yes", so we can abbreviate her options as E or NE.  Bob has a 
funkier set of bases to choose from.  He can use the basis that orients his "yes" answer at , which 22.5∘

we call ENE for east-northeast, and puts "no" at  (or equivalently, at , i.e., ).  Or 112.5∘ -67.5∘ 292.5∘

Bob can use the basis that puts "yes" at , which is NNE for north-northeast.  Here is the protocol:+67.5∘

 

 



 
1. Alice and Bob open their boxes simultaneously.
2. If , Bob measures his entangled qubit in the basis oriented ENE; if , Bob chooses b = 0 b = 1

NNE.
3. If , Alice instantly chooses NE, else she chooses E.  No more than a nanosecond later a = 0

than Bob's actions, Alice measures her qubit in her chosen basis.
4. Each sends Ralph "yes" if getting the measurement outcome designated "yes", else "no".

 
The upshot can be appreciated ahead of any thinking about the underlying physical reality, just by 
looking at the diagram of the choices made by Alice and Bob in the four cases Ralph can send them:

Alice's chosen orientations depend only on her bit from Ralph: northeast on , due east on .  Bob 0 1

likewise reacts independently of Alice.  Yet the options combine to make their "yes" orientations come 
within  of each other in all of the , , and  cases from Ralph, yet  apart on .  22.5∘ 00 01 10 67.5∘ 11

 
If being one-fourth of a right angle apart meant a one-fourth chance of losing, then the resulting 
chances would be no different from the classical case: 75% frequency of winning.  But in ways we can 
actually see for ourselves by orienting polarizing filters at these angles and telling how much light gets 
through, in the first three cases, the chance of her qubit instantly transformed(?) by Bob's outcome 

giving the same yes/no answer from her -apart measurement is greater: . 22.5∘ = 85.3553... %cos2 𝜋

8

 And in the fourth case, the frequency of Alice and Bob giving different answers and winning is the 
same.  
 
 
Discussion
 
Well, saying "transformed" is exactly the kind of spukhafte Fernwirkung that Einstein objected to.  But 
this is the straightest path to expressing the explanation for what we observe---which has been verified 
in actual experiments achieving over 80%.  The gap between 80% and 85+% is ascribable in 
substantial part to the kind of slight-degrading errors we saw in the "depolarization and de-phasing" 
section (plus to other slight flaws in the apparatus and its nanosecond timing). 
 

 

 



Note that no "free will" is involved on the part of Alice and Bob, nor any contextual information ("hints 
from Ozzie") at all.  Their choices of measurement basis are determined entirely by the bit each 
receives from Ralph.  Their only agency is the sharing of entangled Bell pairs, possession of the 
measuring apparatus for their respective pairs of bases, and a mechanism for reading the bit from 
Ralph and effecting the corresponding basis choice.  Given a physical setup and timing so that their 
measurements are made within a picosecond of receiving the bit from Ralph and of each other, while 
"Alice" and "Bob" are situated more than a light-picosecond apart, Ralph is really playing solitaire.  And 
Ralph plays randomly, so no free will is involved there either.  Yet the resulting physical system "wins" 
with a frequency that cannot be explained by any classical theory with variables localized to "Alice" and 
"Bob" that obliviates the entanglements between them.
 
My section 14.7.3 replaces the element of Alice and Bob choosing different measurement bases with 
that of their choosing different basis-change operators, while always doing their actual measurements 
in the standard basis.  They apply these operators before (and only nominally after) doing their 
measurements.  This streamlines the physical interpretation, and yet yields the same basic math.  See 
also the chapter end notes for further discussion.  This should go hand-in-hand with the No-
Communication Theorem, but the Wikipedia treatment which I've linked goes a little further afield than I 
had in mind for the textbook.
 
Finally, this example avoids objections to earlier claims of "quantum advantage"---by which the Deutsch 
and Deutsch-Jozsa algorithms "unfairly" restrict the classical setting; Simon's algorithm is has a 
discrepancy between quantum and classical that is provable but only asymptotic; Shor's algorithm is 
proven but factoring might be in classical (random) polynomial time after all; and Grover's algorithm 
gives speedups only for running times that are exponential to begin with (your HW on exercise 13.7 has 
some sidelight here).   The ability to win more than the classical limit of 75% is concrete and 
experimentally proven.   The only knock is that the CHSH game is for an interactive protocol, not for 
straight-up computation.
 
Section 14.8 gives a claim of quantum advantage for straight-up computation, but it has come under 
more of a cloud since its October 2019 unveiling (see this article by me), and is for a contrived problem 
anyway.  We will instead seque into ideas for classical computing to take away the appearance of 
quantum advantage for straight-up computational problems.
 
 

 

 

https://en.wikipedia.org/wiki/No-communication_theorem
https://en.wikipedia.org/wiki/No-communication_theorem
https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/



