
CSE439 Week 14: Applications of the SVD and Classical Simulations
 
First, the version we proved last time, where  with  and  both unitary, is called the full A = U𝛴V* U V
SVD.  When the  matrix  has rank , then we can also do  with  m × n A r < m, nmin( ) A = U𝛴V* 𝛴

being an  matrix with positive values on the main diagonal,  being , and  being .  r × r U m × r V n × r
This is called the reduced or compact SVD.  Some sources give a third version where  is  but U m × r

 is  and  is  (and unitary).  Let's call this the semi-reduced version.𝛴 r × n V n × n
 
Our proof and notes use the style of diagonalizing , getting  from the unit eigenvectors  of that, A A* V vi

and then getting , dividing by  to normalize .  There is also a symmetrical style of u = Avi i 𝜎i ui

diagonalizing  instead, forming its orthogonal unit eigenvectors as the columns of , and getting  AA* U V
at the end.  The nicely verbose applet 
 
https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/
 
does that.  The most portable applets handle real numbers only, so they write  instead of  (or ). AT A* A†

 There are some Java applets that allow complex numbers (but I haven't tried them).  They all have 
limitations on , , and/or the magnitudes of matrix entries.  The appletm n
 
https://www.omnicalculator.com/math/svd#is-singular-value-decomposition-unique
 
seems to do things the  way, with  first, but only does up to  and doesn't show intermediate A AT V 3 × 3

steps.  There are also differences in output caused by not sorting the singular values in nonascending 
order (so with the largest one at upper left) and the non-uniqueness of  and , which I show in the V U
next example.
 
 

 Example (based on https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf)2 × 2

 

Consider .  The eigenvalues are  and  with  as one of the eigenvectors.  This has A =
a 0

b c
a c 1, 0[ ]T

no dependence on the entry .  How much  can stretch a (unit) vector does depend on .  The SVD b A b
employs this information.  We have
 

A A =  ⋅  =   =  .* a* b*

0 c*

a 0

b c
a a + b b* * c b*

b c* c c*

|a| + |b|2 2 bc⏨
cb⏨ |c|2

 
In the real case we can drop all the stars and bars.  Then, solving  givesA A - xI = 0det *

 
.0 =  a + b - x c - x - b c  =  x  -  a + b + c x +  a c2 2 2 2 2 2 2 2 2 2 2

 

 

 

https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/
https://www.omnicalculator.com/math/svd#is-singular-value-decomposition-unique
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


The two solutions given by

x =  a + b + c  ±   
1

2

2 2 2 a + b + c  -  4a c2 2 2
2

2 2

 
do not simplify further in general.   In the example , , and , the expression under the a = 3 b = 4 c = 5

square root becomes , so  or just .  Notice also that 50 - 30 = 402 2 2 x =  50 ± 40  =  45
1

2
( ) 5

 
.Tr A A  =  |a| + |b| + |c|  =  9 + 16 + 25 =  50 =  𝜆 + 𝜆* 2 2 2

1 2

 

The singular values are the square roots, so  and .  The  matrix is formed from the = 345 5 5 V
eigenvectors of , so we solve:A A*

 

,     .⋅ = =
25 20

20 25

y
z

25y + 20z
20y + 25z

45y
45z

⋅ = =
25 20

20 25

y'

z'

25y' + 20z'

20y' + 25z'

5y'

5z'

 

This gives  for the vector  and  as one of a couple orthogonal =
y
z

1

2

1

1
v1 =

y'

z'

1

2

1

-1

choices for the vector .  Then  becomes the Hadamard matrix.  The  matrix is obtained by v2 V U

normalizing the columns of .  We can normalize  columnwise as AV ⋅  =  
3 0

4 5

1 1

1 -1

3 3

9 -1

, so .  1 / 10 3 / 10

3 / 10 -1 / 10
U =

1

10

1 3

3 -1

 
 
As a final check, U𝛴V  =*

 

,= H = =
1

20

1 3

3 -1

3 5 0

0 5

1 1

1 -1

1

20

3 5 3 5

9 5 - 5

1

2

3 3

9 -1

1 1

1 -1

1

2

6 0

8 10

 

which equals .  We also get  and .  A ||A||  =  2 5 ||A||  =   =  5F 45 + 5 2

 
 

To see that  is not unique, we could have chosen  as the second eigenvector V =
y'

z'

1

2

-1

1

instead.  Then we'd get , which Assignment 4 called the "Damhard matrix ."  The  V =
1

2

1 -1

1 1
H4 U

matrix changes too: it comes by normalizing each column of  to get ⋅ =
3 0

4 5

1 -1

1 1

3 -3

9 1

.  Note that this  is not Hermitian, so we have to remember to transpose it when we U =
1

10

1 -3

3 1
V

 

 



do the check that U𝛴V  =*

 

 =  =  =  A
1

20

1 -3

3 1

3 5 0

0 5

1 1

-1 1

1

2

3 -3

9 1

1 1

-1 1

1

2

6 0

8 10

 

as before.  (Nor does  square to the identity; , so this  is another square root of the V V =2 0 -1

1 0
V

matrix  considered between the practice and actual Prelim II exams.)B = -iY
 

Last, let's see what happens if we simply wipe out the smaller entry of , which is :𝛴 𝜎 =2 5

 

.= = =
1

20

1 3

3 -1
3 5 0

0 0

1 1

1 -1

1

20

3 5 0

9 5 0

1 1

1 -1

1

2

3 3

9 9

1.5 1.5

4.5 4.5

 
Is the resulting  a reasonable approximation to ?  Note that  stretches the first  vector  by the A' A A' V v1

same amount: , whose -norm is .  But the second A' =
1

2

1

1

1

2

3

9
2  =   =  𝜎

1

2
3 + 92 2 45 1

dimension  gets zeroed out. v2

 

We can also preserve the trace by using  instead, which gives .  Then 𝛴' = 4 5 0

0 0
A' =

2 2

6 6

 over-stretches, but in other contexts it may give better results.  Or we might prefer to preserve the A'v1

Frobenius norm by using  instead, conserving .  Well, the whole 𝛴'' =  5 2 0

0 0
𝜎 + 𝜎2

1
2
2

approximation idea looks better when the matrices are much larger to begin with.
 
 
(Pseudo-)Inversion and Numerical Instability 
 
In the invertible  Hermitian case where we get orthonormal diagonalization  with all n × n A = U𝛬U*

diagonal entries  being nonzero, then using  makes .  We can partly 𝜆i 𝛬' = diag 1

𝜆i
U𝛬'U = A* -1

emulate this for any matrix by taking the reciprocals of the positive singular values.
 
Definition: The (Moore-(Bjerhammer)-Penrose) pseudoinverse of an arbitrary  matrix  with m × n A
SVD  is the  matrix given by , where  transposes  and then A = U𝛴V* n × m A = V𝛴 U+ + * 𝛴+ 𝛴

replaces every nonzero  by .  𝜎i 1 / 𝜎i

 
If we specified that  is the reduced SVD, then  would be an  diagonal matrix with A = U𝛴V* 𝛴 r × r
positive diagonal entries, and we would simply get .  Saying it this way, however, would A = V𝛴 U+ -1 *

 

 



hide a highly important "pseudo" aspect.  You might expect that for sake of continuity, a zero  would 𝜎i

be replaced by some large value, if not by (the IEEE representation of) inf.  However, what happens 
more often instead is that when  for some threshold  (e.g.,  where  is 𝜎 < 𝜖i 𝜖 𝜖 = 𝜖 m, n, 𝜎0 max( 1) 𝜖0

the least positive hardware value), it is treated as zero and blipped---rather than put the large value 
 into the inverse.  The rationale for this is that the dimensions and singular vectors associated E = 1 / 𝜖

to small  can often be "cropped out" with minimal effect---we will elaborate on this below.  But such 𝜎i

cavalier blipping of large values  betrays the fact of numerical instability lurking in concepts of E
inversion.  
 
The pseudoinverse obeys the rule , and if  is invertible, then .  ThusAB = B A( )+ + + A A = A+ -1

 

A  =  V𝛴 U  =  U 𝛴 V  =  U 𝛴V  =  U𝛴V  =  A+
+

+ *
+

*
+

+
+

+ *
-1 -1 *

 
back again, so this is a viable concept of inversion.  However,  reduces to AA  =  U𝛴V V𝛴 U+ * + *

 but not necessarily to the identity matrix---because zeroes can occur in  from having U𝛴𝛴 U+ * 𝛴𝛴+

 even when all singular values are positive.  It also obeys the rules:m < n
 

• ;AA A =  U𝛴V V𝛴 U U𝛴V  =  U𝛴𝛴 𝛴V  =  U𝛴V  =  A+ * + * * + * *

• ;A AA  =  A+ + +

•  and  are both Hermitian.AA+ A A+

 
Indeed,  is generally the unique matrix obeying these rules.  Here are some more examples of A+

SVDs and the resulting (pseudo-)inverses.  Back to our  example:2 × 2

 

, soA =   =  U𝛴V  =  
3 0

4 5
* 1

10

1 3

3 -1

3 5 0

0 5

1

2

1 1

1 -1

 

,A = V𝛴 U = = =+ -1 * 1

2

1 1

1 -1

1

3 5
0

0
1

5

1

10

1 3

3 -1

1

30

1

10
1

30

-1

10

1 3

3 -1

1

3
0

-4

15

1

5

 
which is the same as .  Of course,  is invertible by virtue of being square and having nonzero A-1 A
determinant, and we could have made life much easier using the adjugate formula 

.  A  =   =  -1
1

Adet( )

5 -4

0 3

T 1

15

5 0

-4 3

 

How about the pseudo-inverse of the matrix ?  .  We get B =
0 0

1 0
B B = =T 0 1

0 0

0 0

1 0

1 0

0 0

 

 



 with eigenvalue  and can choose  (orthonormal to ) for the eigenvalue .  Then v =1
1

0
1 v =2

0

1
v1 0

, while for  we choose an orthonormal vector since ;  is the u = Bv =1 1
0

1
u2 Bv = 02 u =2

1

0

natural choice.  So we have , , and .  This makes U =
0 1

1 0
𝛴 = = 𝛴

1 0

0 0
+ V = I

.  Then  while .B = V𝛴 U  =   =  + + * 1 0

0 0

0 1

1 0

0 1

0 0
B B =+ 1 0

0 0
BB =+ 0 0

0 1

 
 

Now let's try the second MIT notes example: .  We get .  Then A =

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

A A =T

0 0 0 0

0 1 0 0

0 0 4 0

0 0 0 9

 is the identity matrix again while  and  (ignoring the sorting V U =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

𝛴 =

0 0 0 0

0 1 0 0

0 0 2 0

0 0 0 3

order).  So .  And A = V𝛴 U  =  ⋅  =  + + *

0 0 0 0

0 1 0 0

0 0 1 / 2 0

0 0 0 1 / 3

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1 0 0 0

0 1 / 2 0 0

0 0 1 / 3 0

 while .A A =  +

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

AA  =  +

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
Regarding numerical instability, the MIT notes point out that if you make  a small value  so that A 4, 1[ ] 𝛿

 becomes invertible, the eigenvalues grow by more than expected.  With  the singular A 𝛿 = 1 / 60000

values stay , , , and  but the eigenvalues become , as seen at 1 2 3 1 / 60000 , , ,
1

10

i

10

-1

10

-i

10

https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/
The reason for using  is that the determinant becomes (negative) , and that 60000 1 / 10000 =  1 / 104

neatly spreads a factor of  among four eigenvalues.  The fact that the eigenvalues have equal 1 / 10

magnitude is weird, given how the singular values match the sizes of the four positive matrix entries.
 
 
Applications to Solving Equations
 
Approximately Solving Linear Systems: When a matrix  is invertible, the solution to  is A Ax = b

.  When  is not invertible, or not even square (thus denoting an overspecified or x = A b-1 A
underspecified system), we can still use  as an "ersatz" solution.z = A b+

 

 

https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/


 
How good a solution?  It follows from the SVD theorem that  for all vectors .  ||Az - b||  ≤  ||Ax - b||2 x

So this is the best approximation.  When the system is underspecified, so that exact solutions exist,  z
will be one of them---and moreover, all exact solutions have the form
 

z  +   I -  A A w+

 
for arbitrary vectors .  This follows from the identity  given in the "rules" above.  Least w A AA = A+ + +

squares fitting is essentially the same process, since we are using the -norm.|| ⋅ ||2

 
In some cases we can combine  and  into a matrix  such that  measures the error in an A b E Ex
attempted solution .  Then we want to find the  that minimizes .  This  is given by the column x z ||Ez||2 z

of  that corresponds to the least singular value.  (If  is a singular value of , so that , this just V 0 E Ez = 0

means that  is an exact solution.)z

 
 
Succinct Approximation
 
This IMHO is the "signature" application of the SVD and will lead us back to quantum computing.  
Given a pseudodiagonal matrix  with  positive entries (in sorted order), define  to be the result 𝛴 r > k 𝛴k

of zeroing out all but the  largest entries.  If  has SVD , then define .  k A U𝛴V* A = U𝛴 Vk k
*

 
Eckart-Young-Mirsky Theorem:  minimizes both  and  over all matrices  of Ak ||A - B||F ||A - B||2 B
rank (at most) .k
 
The reason is that choosing the  largest singular values is both the way to maximize the sum of their k
squares (relevant to the Frobenius norm) and the way to minimize the size of any leftover singular 
value, i.e., of  in sorted order (relevant to the 2-norm).  𝜎k+1

 
How good is the approximation?  It depends on the size of  (and their squares) in relation 𝜎 , … , 𝜎k+1 r

to the sizes of (the sum of squares of) the first  singular values.  If the first  have the bulk of the k k
magnitude, then the approximation can be quite good.
 

Example: .  Think of the rows as movies and the columns as users.  Notice that A =

1 1 1 1 1

1 1 1 0 0

1 1 0 0 0

1 0 0 0 1

0 0 0 1 0

movie 1 is seen by everyone and user 1 is the most active.  The emathhelp.net applet sorts the 
singular values in reverse order, giving (rounded to five places):
 

 

 



𝛴 ≈

0.29257     

 0.72361    

  1.16633   

   1.33095  

    3.04287​  

 
This has one distinctly low singular value and another one under .  Its SVD comes with1

 

U ≈

−0.48209 −0.23434 0.13187 0.44906 0.70258

0.55100 −0.34647 0.30727 −0.47362 0.50757

−0.25405 0.76276 −0.01555 −0.45976 0.37687

0.34853 0.03548 −0.86833 0.15420 0.31541

0.52722 0.49191 0.36599 0.58213 0.08507

and

V ≈

0.55847 0.30049 -0.38132 -0.24803 0.62521

-0.63280 0.25146 0.36318 -0.36389 0.52155

0.23554 -0.80265 0.37652 -0.01845 0.39770

0.15425 0.35595 0.42687 0.77478 0.25885

-0.45650 -0.27481 -0.63143 0.45326 0.33455

 
 
Now suppose we delete the two smallest singular values at upper left.  Then we also don't need the 
first two columns of  and , the latter becoming the top two rows of .  We first computeU V V*

 

≈

0.13187 0.44906 0.70258

0.30727 −0.47362 0.50757

−0.01555 −0.45976 0.37687

−0.86833 0.15420 0.31541

0.36599 0.58213 0.08507

1.16633 0 0

0 1.33095 0

0 0 3.04287

0.15381 0.59768 2.13787

0.35838 -0.63036 1.54446

-0.01814 -0.61191 1.14676

-1.01276 0.20523 0.95976

0.42687 0.77478 0.25885

 
Then multiplication with  givesV*

 

A  ≈  3

1.12973 0.95339 0.89712 1.08212 0.88901

0.67261 0.70630 0.73754 1.04116 0.57612

0.55827 0.38202 0.45161 0.77868 0.64955

0.16296 0.79370 0.75923 0.83976 -0.22538

-0.19311 0.00810 0.24937 0.84951 0.16823

 

Is this a reasonable approximation to ?   The first and last rows are good.  

The 

A =

1 1 1 1 1

1 1 1 0 0

1 1 0 0 0

1 0 0 0 1

0 0 0 1 0

 

 



entry in row 4, column 5 is way off, as are some others.  But overall, not too shabby?  Another reason 
this looks silly is that we not only need  but the relevant elements of  and  as well, which are all 𝛴k U V
more complicated numbers than  has.  However, the total number of entries isA
 

   as compared with       entries in .km + k + kn2 mn A
 
When  this is a major savings.  And when  are of order in the 1000s,  often gives k ≪ m, n m, n k = 100

a nice approximation.  Image Compression Examples.  Companies that store user views of media 
content may have dimensions in the millions---and an even bigger motive to calculate with reduced 
dimensions.  Then the approximations reflect the relative popularities of movies and other media 
content---while over in the column space of users, they indicate the patterns of frequent consumers.
 
We are most interested in compressing density-matrix representations of large quantum states.
 
 
Quantum Applications (cf. https://www.math3ma.com/blog/understanding-entanglement-with-svd)
 
First and simplest, SVD ideas give an easy way to tell whether a pure quantum state vector  is 𝜙

entangled.  It finally leverages the relation between tensor product and outer product: Reshape  into 𝜙

the matrix  that would occur if we really had  =  from qubits held by Alice and Bob, A𝜙 𝜙 ⊗𝜙A 𝜙B

respectively.  Then we would have  be of rank .  So:A = 𝜙A 𝜙B r = 1

 
 is entangled between Alice and Bob if and only if  has more than one nonzero singular 𝜙 A𝜙

value.  The number of nonzero singular values quantifies the entanglement.
 

For the simplest example,  gives .    The matrix has rank .  = 1, 0, 0, 1𝜙
1

2
[ ]T A =𝜙

1

2

1 0

0 1
r = 2

So Alice and Bob are entangled.
 

The state in problem (3) of the Prelim II practice exam is , which gives the e + e + e - e
1

2
( 000 001 110 111)

vector  (ignoring the ).  If Alice holds the first two qubits, it re-shapes as 1, 1, 0, 0, 0, 0, 1, -1[ ]T
1

2

.  This matrix has rank .  But the state  becomes  which 

has 

1 1

0 0

0 0

1 -1

2 e + e + e + e
1

2
( 000 001 110 111)

1 1

0 0

0 0

1 1

rank just  and so is not entangled.  It is  with  as above.  But if we gave Alice only the first 1 𝜙 + 𝜙

qubit, then the shape would be .  This does have rank , so qubit is collectively 1 1 0 0

0 0 1 1
r = 2 1 

entangled with Bob's "system" of qubits 2 and 3.
 
 

 

 

https://medium.com/@moh.hussain06/applying-singular-value-decomposition-svd-in-image-compression-ba63a2c558de
https://www.math3ma.com/blog/understanding-entanglement-with-svd


Theorem: Let  be a pure state in the product  of two Hilbert spaces of dimensions  𝜙 H ⊗HA B dA

and , respectively.  Then we can find orthonormal bases  of  and dB :  0 ≤ i < diA A A HA

 of  and positive numbers  where  such that:  0 ≤ i < diB B B HB 𝜎 , … , 𝜎0 r-1 r ≤ d , dmin{ A B }

 

. =  𝜎𝜙 ∑
r-1

i=0

i iA iB

 

It follows that  and that if we define  and , to be 𝜎  =  1∑
 

i
2
i 𝜌 := TrA B 𝜙 𝜙 𝜌 := TrB A 𝜙 𝜙

the density matrices resulting from tracing out , respectively tracing out , thenHB HA

 

   and   .𝜌 = 𝜎A ∑
r-1

i=0

2
i iA iA 𝜌 =  𝜎B ∑

r-1

i=0

2
i iB iB

 
The state  is separable over  if and only if this happens with .  Otherwise,  is 𝜙 H ⊗HA B r = 1 𝜙

entangled with respect to , which is equivalent to  and to .H ⊗HA B Tr 𝜌 < 12
A Tr 𝜌 < 12

B

 
We've numbered from  because  and  are powers of  when we talk about "Alice" 0 d = 2A

m d = 2B
n 2

holding  qubits and "Bob" holding  qubits, and while we've been numbering qubits from , we've m n 1

been numbering the standard basis from  to leverage the correspondence between binary strings and 0

binary numbers.  It is less usual to number singular values from , but this serves to emphasize that we 0

may have exponentially many of them when  and  get large.  Also bear in mind that the dimension of m n
 is  with times, not  as it would be with an ordinary Cartesian product.  The H ⊗HA B d ⋅ dA B d + dA B

whole representation is called the Schmidt decomposition of .𝜙
 
To visualize the theorem statement, it helps to say what happens when  really is a tensor product 𝜙

 with  and .  Then, as we observed when the parital trace ⊗𝜓A 𝜓B ∈ H𝜓A A ∈ H𝜓B B

("traceout") was introduced in week 13, we get  and Tr =B 𝜙 𝜙 𝜓A 𝜓A

.  Since we can trivially extend the pure state  to an orthonormal Tr =A 𝜙 𝜙 𝜓B 𝜓B 𝜓A

basis of all of  and  likewise for , we get the theorem conclusion by taking  and HA 𝜓B HB r = 1

.  Moreover, if the theorem conclusion happens with , then we must have  to 𝜎 = 10 r = 1 𝜎 = 11

normalize, and so we get  and , from which it follows (these being pure 𝜌 =A 0A 0A 𝜌 =B 0B 0B

states, so that  and ) that .  This proves the conclusion about 𝜌 = 𝜌2
A A 𝜌 = 𝜌2

B B = ⊗𝜙 0A 0B

entanglement illustrated above without having to invoke the SVD.  But the general proof is really crisp 
doing so.
 
Proof: The state vector of  has length , so we can reshape it into a  matrix  as 𝜙 d ⋅ dA B d × dA B A𝜙

done above---so that entry  equals entry  of  (again, numbering from .  Take the A i, j𝜙[ ] d i + jB 𝜙 0)

 

 



full SVD  with  and  unitary and  in nonincreasing order.  Then the columns of  form A =: U𝛴V𝜙
* U V 𝛴 U

the desired orthonormal basis for , the columns of  likewise for , and taking  to be the rank of HA V HB r

 gives the reduced SVD representation  as well.  Then  is a diagonal matrix, so the A𝜙 A = U 𝛴 V𝜙 r r
*
r 𝛴r

only nonzero terms  are those with .  So  follows.  u 𝜎 vi i
T
j j = i  =  𝜎𝜙 ∑

r-1

i=0 i iA iB
 

For the rest, the mere fact that  is a unit vector forces .  Now when we trace out Bob from 𝜙 𝜎 = 1∑
 

i
2
i

 under this representation we get a  entry left over from each of his submatrices on the main 𝜙 𝜙 1

diagonal only---but the  becomes  in  so we get  - note that  𝜎i 𝜎2
i 𝜙 𝜙 𝜌 = 𝜎A ∑

r-1

i=0

2
i iA iA

 is exactly what's needed for this to have unit trace and so be a legal density matrix.  𝜎 = 1∑
 

i
2
i

Likewise for .  The final fact is that whenever a sum of squares is , the sum of the corresponding 𝜌B 1

fourth powers is less than  unless the sum is just a single  and the rest zeroes. 1 1 ☒
 
 
A simple example that also resonates with our idea of truncating SVDs of quantum states is at
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf
 

Let .  This is a pure state of a = , , , , , , ,𝜙 .17 .17 .125 .125 .125 .125 0.08 0.08
T

3-qubit system we'll call Alice, Charlie, and Bob in that order.  This state has the form  for ⊗𝜓 +

some 2-qubit state  of Alice Charlie alone.  However, we are going to group it the other way: 𝜓 ⊗

 representing Alice by herself and  for Bob linked with Charlie.  Is it separable that H = CA
2

H = CB
4

way?  Well, "reshaping" with two rows for Alice and four columns for  givesHB

 

.A  =  𝜙
.17 .17 .125 .125

.125 .125 0.08 0.08

 
It is easy to see that this has full rank---the second row is not a scalar multiple of the first row---so the 
Schmidt rank is  and so  is not separable as an Alice (Charlie+Bob) system.  However, we will 2 𝜙 ⊗

develop a sense in which it comes weirdly close to being so.  In passing, let us note that the other 
reshaping,

,A'  =  𝜙

.17 .17

.125 .125

.125 .125

0.8 0.8

 
just as obviously has rank only , so  is separable as (Alice+Charlie) Bob.  The SVD of  is 1 𝜙 ⊗ A'𝜙
relatively boring.  But let's go ahead and do the SVD of .  The emathhelp applet actually allows A𝜙

entering square roots explicitly:

 

 

https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf
https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/?i=%5B%5Bsqrt%28.17%29%2Csqrt%28.17%29%2Csqrt%281%2F8%29%2Csqrt%281%2F8%29%5D%2C%5Bsqrt%281%2F8%29%2Csqrt%281%2F8%29%2Csqrt%280.08%29%2Csqrt%280.08%29%5D%5D


 
The exact calculations get quite freaky with nested radicals, but the numerics come out the same as in 
the first source.  With  for the reduced SVD, we get:r = 2

 

𝛴 =2
0. 99985947 0

0 0. 01676428

 
Wow:  has almost all the bulk.  (These rounded numbers' squares sum to 1.0000000008325993 on 𝜎0

my Windows calculator.)  This asymmetry isn't obvious if you just look at the  and  matrices:U V
 

,U =  
0. 7681475 -0. 6402729

0. 6402729 0. 7681475

 

V =* 0. 5431623 0. 5431623 0. 4527413 0. 4527413

0. 4527413 0. 4527413 -0. 5431623 -0. 5431623

 
Yes, the squares of a column of  sum to 0.99999996823066 and squares in columns of  sum to U V
0.99999993773396 on my calculator.  Now let us truncate by zeroing out the  entry.  Since 0. 01676428

we want to preserve the property that the sum of  is , we also replace  simply by .  𝜎2
i 1 0. 99985947 1

This also allows us to discard the second column of  and the second row of :U V*

 

= U 𝛴 V  =  𝜙1 1 1
*
1

0. 7681475

0. 6402729
0. 5431623, 0. 5431623, 0. 4527413, 0. 4527413

 
.= 0.417229, 0.417229, 0.347772, 0.347772, 0.347772, 0.347772, 0.289878, 0.289878[ ]

 
Rounded to six decimal places, these entries' squares sum to 1.000000042586, so this is legal like

 (also to = 0.412310, 0.412310, 0.353553, 0.353553, 0.353553, 0.353553, 0.282843, 0.282843𝜙 [ ]

six decimal places).  The differences in the second or third decimal place between entries of  and 𝜙1

those of the original  are similar to how we truncated-and-rounded the singular values.  But to 𝜙

compare probabilities, we need the entries' squares, which are under the square-root signs in  =𝜙1

, , , , , , ,.174080 .174080 .120945 .120945 .120945 .120945 .084029 .084029

versus the original .  This is also not , , , , , , ,.17 .17 .125 .125 .125 .125 0.08 0.08

 

 

https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf


bad.  The property of "Alice+Charlie" not being entangled with "Bob" is clear when we reshape  as 𝜙1

0.417229 0.417229

0.347772 0.347772

0.347772 0.347772

0.289878 0.289878

 
since the columns are identical. For our drumroll conclusion---that Alice is not entangled wiyth 
Bob+Charlie either---we also get separability under the reshaping
 

0.417229 0.417229 0.347772 0.347772

0.347772 0.347772 0.289878 0.289878

 

because  So we have approximated the entangled state by  =   =  1.199720...
0.417229

0.347772

0.347772

0.289878
the completely separable state
 

. =   ⊗   ⊗  𝜙
0.543162

0.839628

0.768148

0.640272
+

 
The relationship to  and to one of the entries of  (equality up to the six-place rounding) is striking. U V
Note also that the approximation did not affect Bob's qubit at all---it was separate and stayed separate.
 
 
Problem Adding 10 Pts. to Prelim II
 
Use SVD truncation to find a completely separated three-qubit state that approximates this one:

 

 



You are welcome to use an applet to compute the original SVD (again mindful of possible different 
ordering in operaions and displays), but you are required to show the steps of truncating it and 
multiplying  on-paper manually.U 𝛴 V1 1

*
1

 
 
Can We Scale This Up?
 
Approximating entangled states by separable states---and telling properties of mixed states whether 
they are given as traceouts or not---goes into research that is plagued by NP-hardness.  Bear in mind 
that the SVD representations have the same exponential " " scaling as the underlying state vectors N
and matrices---as opposed to the order-  scaling of quantum circuits.  Scott Aaronson makes these n
points pithily in his own notes.  [Added: I mentioned the analogy between tensor contraction and 
database join further down.  The paper https://arxiv.org/html/2209.12332v5, from this past October, 
leverages this to show that even though certain problems of optimal contraction order are NP-hard, in 
the nice case of tree tensor networks and with a linearity condition, polynomial time algorithms are 
available.  It also prominently references the dissertation work of Mahmoud Abo Khamis under Drs. Atri 
Rudra and Hung Ngo here at UB.]
 
Thus we cannot expect to be able to generate good approximations of arbitrary quantum states "given 
cold."  This leaves two main possibilities as I see them:
 

1. Carry along succinct approximations to quantum states inductively as they are processed and 
built up in quantum circuits.

2. Focus on families of quantum states that have special structure that promotes classical 
approximations.

 
The main argument for 1 is evidently Nature computes efficiently, so has some way to avoid the 
exponential blowup that is ingrained in our explicit notation.  Whether that applies to something as 
advanced as Shor's algorithm incurs other considerations---as the real-world quantum feasibility of 
Shor's algorithm is still not really established.
 
The rationale for 2 requires that the special structure does not impede the usefulness of quantum 
circuits/algorithms that abide by it.  The major structural divide we have seen is between the Clifford 
family of gates: , , , , , , , versus the fact that adding any one of the gates , , H X Y Z S CNOT CZ T CS

, or the Toffoli gate  gives the full power of quantum computation.  The more fruitful structural CCZ CCX

limitations may apply to how gates are combined in circuits rather than which gates are allowed.  
 
On the latter there is one major strand I know: Circuits that can be modeled as tensor networks that 
are close to being trees can be simulated classically with reasonable overhead.  So we will say some 
words about tensor networks, as they are vital in classical machine learning as well.
 
A tensor  is a possibly higher-dimensional matrix.  In the text's functional notation with tiered indexing, T
it is represented by a multi-ary function .  The order is the number of tiers.  In a tensor T i, j, k,...( )

 

 

https://www.scottaaronson.com/qclec/11.pdf
https://arxiv.org/html/2209.12332v5


network, each tensor is a node of degree equal to its order.  Edges, commonly called "legs", do not 
have to go to another node; they can be "free".  Those that do go to another node (and so become a 
shared leg of the other node) represent setting up a contraction.  The allowed operations in a tensor 
network include:
 

1. Introduce a new tensor---this is implicitly a tensor product with the existing tensors.
2. Reshape a tensor in a way that changes its order.
3. Contract two nodes along one or more shared legs.  Matrix product is the canonical simple 

example.  The generalized concept was employed by Einstein via the Einstein summation 
convention.

 
 
Segue to sources:
 
https://arxiv.org/abs/1306.2164 (a representative research-level survey from 2014)
 
https://www.benasque.org/2020scs/talks_contr/106_tensornetworks_lecture1.pdf 
(high-level but slides 15--20 are the best exposition of the SVD-based simulation idea in general 
contexts that I have found)
 
and especially
 
https://www.quantumcomputinglab.cineca.it/wp-content/uploads/2021/10/MPS_Lecture.pdf 
(the most immediately accessible gateway to the main idea that I've found)
 
https://pennylane.ai/qml/demos/tutorial_tn_circuits
(shows how we could actually program this stuff)
 
 
 

 

 

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Einstein_notation
https://arxiv.org/abs/1306.2164
https://www.benasque.org/2020scs/talks_contr/106_tensornetworks_lecture1.pdf
https://www.quantumcomputinglab.cineca.it/wp-content/uploads/2021/10/MPS_Lecture.pdf
https://pennylane.ai/qml/demos/tutorial_tn_circuits

