
CSE439/501 Week 2: Linear Algebra, Unitary Operations, and Qubits

First, one item added to review of last lecture:

• means there is a constant such that for all past a certain point , f n = O g n() (()) C > 0 n n0
f n ≤ C ⋅ g n .() ()

• means there are constants and such that beyond some point , f n = 𝛩 g n() (()) c C n0
stays in the range to .f n () c ⋅ g n() C ⋅ g n()

• is stronger---it says that the limit exists and equals f n ∼ g n() () f n() / g n() 1.

An example of the last is versus .f n = 3n() 2 g n = 3n + 100n + 500() 2

The last bullet is the same as In the example: = 1.lim
n ∞→

g n
f n

()
()

 = = 1 + + = 1 + +
g n
f n

()
()

3n + 100n + 500
3n

2

2

100n
3n2

500
3n2

100
3n

500
3n2

The limit is because the limits of the latter two fractions are .1 0

Tensor Products

In a calculus or linear algebra course you have likely encountered the spaces of points in the R2 a, b()
plane and of points or in -dimensional space. Then means -dimensional R3 x, y, z() x , x , x(1 2 3) 3 Rn n
real space, whether you called it a vector space or not. Maybe you also covered the complex vector
spaces or specialized to vectors of rational numbers---which make the vector space . When we Cn Qn

care more about the "space" aspect than the particular kind of numbers allowed, we use the umbrella
term "Hilbert space" after the mathematician David Hilbert. That term is often employed by physicists
not only to avoid having to specify the dimension but also to allow it to be infinite. We, however, will n
stay in finite dimensional spaces and care a lot about what the dimension is.

The usual rule for the product of two vector spaces is to add the dimensions. Thus a member of

, which formally is an ordered pair like , is considered the same as the 5-tuple R × R2 3 a, b , x, y, z(() ())
, which we could re-label as . Soa, b, x, y, z() x , x , x , x , x(1 2 3 4 5)

.R × R = R2 3 5

The tensor product, however, multiplies the dimensions. When defined between our vectors a, b()
and , it doesn't just ram them together. Instead it combines a copy of the second vector into x, y, z()
each part of the first vector. In symbols:

.a, b() ⊗ x, y, z = a ⋅ x, y, z , b ⋅ x, y, z = ax, ay, az, bx, by, bz() (() ()) ()

The vectors we get have dimension 6 not 5. We will see that not every vector in the target space, here

, arises as a tensor product. But if we close out under linear combinations, then we do R6 R ⊗ R2 3

get all of .R6

What does tensor product do? We feel again that good intuition comes by thinking about abstract
attributes first, numbers later. Let us make the card suits into the abstract "attribute vector"

 u = ♣, ♢, ♡, ♠ .()

And the ranks of cards becomes the attribute vector

.v = 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A()

Then the tensor product---in the order (it's not commutative)---isu ⊗ v

.w = ♣2, ♣3, … , ♣K, ♣A, ♢2, ♢3, … , ♢A, ♡2, … , ♡A, ♠2, … , ♠A()

This sorts the deck by suits. If we tensored the other way around, we'd get

,v ⊗ u = 2♣, 2♢, 2♡, 2♠, 3♣, 3♢, 3♡, 3♠, 4♣, … , 4♠, 5♣, … , … , A♣, A♢, A♡, A♠()

which sorts the deck by ranks instead. Always the second vector gets "copied inner" while the first
vector is "outer." The ordinary product would have just rammed after to give a vector of 17 items, v u
four of type Suit and thirteen of type Rank. This is inhomogeneous mishmash---like "not playing with
a full deck" as we say. Whereas, in either order, the tensor product creates a homogeneous length-52
vector of type "Suit and Rank." (Between Suit and Rank, the order might or might not matter.)

Now let's see how this works numerically. The vector is the standard basis vector u = 0, 1, 0, 0[]T
corresponding to "diamonds" in our scheme for suits. For ranks, the seven is indexed by

.v = 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0[]

Then

u⊗ v = 0 ⋅ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 , 1 ⋅ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 , … , 0[[] []]T

 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, … .0 .[]T

The single corresponds to the position of the in the abstract indexing scheme. So we write:1 ♢7

u⊗ v = = .♢7 ♢ 7

Thus the tensor product of two standard basis vectors gives us a standard basis vector in the larger
space. Indeed, we can get the entire standard basis of 52 vectors this way. We've also started writing
the "invisible dot" product of kets---which are in quantum coordinates---to stand for the tensor product in
the underlying coordinates.

Suppose we next take the tensor product of with itself. Doing this with the attribute vectors, we getw

.w ⊗ w = ♣2♣2, ♣2♣3, ♣2♣4, … , ♣2♣A, ♣2♢2, … , ♣2♠A, ♣3♣2, ♣3♣3, … , … , ♠A♠A()

What does this represent? It conveys the idea of playing two cards in sequence. This allows them to
be the same card---casinos usually play blackjack with eight decks shuffled together, for instance---but
we will encounter algorithms whose point is either amplifying or eliminating such particular possibilities.
The point is that tensor product is the underlying way of Nature simply doing a sequence, which means
concatenating the symbolic representations.

Tensor Product = Simple Concatenation = Flow of Events.

This kind of representation is not just useful in quantum. It underlies the idea of the "TensorFlow" API
and library in machine learning.

The common example that matters most is when both spaces have dimension . This case is innately 2
confusing because . But hopefully the above will help us avoid confusion.2 + 2 = 2 ⋅ 2 = 22

Tensor Products With Matrices

If is and is then is , so the dimensions can be anything. In A ℓ × m B n × r A ⊗ B ℓn × mr
particular, and can both be column vectors with , whereupon is a column A B m = r = 1 A ⊗ B
vector of length . ℓn

https://en.wikipedia.org/wiki/TensorFlow

[Lecture first did an example of a matrix tensored with a matrix . It was tedious on-3 × 2 A 3 × 4 B
purpose. The resulting matrix was . All entries of were negative. One point of doing that was C 9 × 8 B
to distinguish the factors coming from each matrix---but even so, cases like and 3 ⋅ -12() 4 ⋅ -9()
caused equal entries in . This led to the question of whether tensor product of matrices is lossy---C
given , can you get and back again, or not? Note that ordinary matrix multiplication C A B C = A ⋅ B
is mega-lossy (besides the fact that the dimensions must conform:). A second point is that the m = n
negated entries could have been factored out as a scalar outside the whole product, thus saving -1
some scratchwork. This is true with any scalar factor---and this will soon be underscored by the
definition that two quantum states (or two quantum operations) are equivalent if one is a multiple of the
other by a scalar.]

The entries of are indexed by binary strings of length . Take the Boolean inner product mod H⊗n x, y n
2 of and . If it is , then , but if it is , then .x y 0 H x, y = 1⊗n[] 1 H x, y = - 1⊗n[]

E.g. for any , so the row for is all s. But , so the entry ⟨00, y⟩ = 0 y 00 1 ⟨01, 01⟩ = 1

. And , so back again.H 01, 01 = - 1⊗2[] ⟨11, 11⟩ = 2 = 0 mod 2() H 11, 11 = + 1⊗2[]

This rule defines for any as an matrix. On paper that is exponential size, but in a H⊗n n N × N
quantum circuit diagram on qubits, it is gates. Is it linear effort for Nature to compute? n O n()
Because the computation is unitary, hence reversible and ideally accompanied by zero entropy, it
might be zero effort. Or, because it represents splitting beams of particles, possibly serially, it might be
exponential effort after all.

Two Quantum Coordinates

In 4-space, the standard basis is given by the vectors:

.e = 1, 0, 0, 0 , e = 0, 1, 0, 0 , e = 0, 0, 1, 0 , e = 0, 0, 0, 10 () 1 () 2 () 3 ()

The indexing scheme for quantum coordinates changes the labels to come from instead of 0, 1{ }2

from , using the canonical binary order . Then we have:1, 2, 3, 4{ } 00, 01, 10, 11

.e = 1, 0, 0, 0 , e = 0, 1, 0, 0 , e = 0, 0, 1, 0 , e = 0, 0, 0, 100 () 01 () 10 () 11 ()

The big advantage is that these basis elements are all separable and the labels respect the tensor
products involved:

 = e = 1, 0, 0, 0 = 1, 0 ⊗ 1, 0 = e ⊗ e = ⊗ = 00 00 () () () 0 0 0 0 0 0
 = e = 0, 1, 0, 0 = 1, 0 ⊗ 0, 1 = e ⊗ e = ⊗ = 01 01 () () () 0 1 0 1 0 1

 = e = 0, 0, 1, 0 = 0, 1 ⊗ 1, 0 = e ⊗ e = ⊗ = 10 10 () () () 1 0 1 0 1 0
 = e = 0, 0, 0, 1 = 0, 1 ⊗ 0, 1 = e ⊗ e = ⊗ = 11 11 () () () 1 1 1 1 1 1

It is OK to picture the tensoring with row vectors, but because humanity chose to write matrix-vector
products as rather than , they need to be treated as column vectors. This will lead to cognitive Mv vM
dissonance when we read quantum circuits left-to-right but have to compose matrices right-to-left.

We can also take tensor products of non-basis vectors of length 2. Let's us try

 .u = = 1, 1
e + e0 1

2
0.5 []T

When we do , the first thing that happens is that the scalars in front multiply to get u⊗ u

 as the multiplier on the whole thing. The vector bodies combine as ⋅ = 0.5 0.5 1
2

.1 ⋅ 1, 1 , 1 ⋅ 1, 1 = 1, 1, 1, 1[[] []] []

(Strictly speaking, we should do this as column vectors---maybe we'll show on the whiteboard---but it's
always fine to do as row vectors and remember to transpose when needed at the end.) So

.u⊗ u = , , ,1
2

1
2

1
2

1
2

T

This is a unit vector. We can do the same with

 v = = 1, -1
e - e0 1

2
0.5[]T

We get times OK, to be strict. We v⊗ v =
1
2

1, -1 ⊗ 1, -1 = 1, -1, -1, 1 .[] []
1
2

[] 1, -1, -1, 1
1
2

[]T

also get:

.u⊗ v = 1, -1, 1, -1
1
2

[]T

.v⊗ u = 1, 1, -1, -1
1
2

[]T

Suppose I instead said

?u⊗ v = -1, 1, -1, 1
1
2

[]T

Would I be wrong? Numerically yes: does not equal . But Nature's "Quantum Rose" u⊗ v -u⊗ v

does not care. It may, however, care about the difference from .v⊗ u

Let's ignore the normalizing multipliers out front for the moment, since they do not matter to the ability
to combine the vector bodies. How about the simpler vector

w = 1, 0, 0, 1 ?[]

This equals , i.e., , ignoring the normalizing constant . Can we get this as a e + e00 11 +00 11 0.5
tensor product of two vectors of length 2?

The answer is no. We can prove it by representing the general 2-by-2 tensor product as

.a, b ⊗ c, d = ac, ad, bc, bd[] [] []

To get as the result, we need to solve the equations1, 0, 0, 1[]

, , , and .ac = 1 ad = 0 bc = 0 bd = 1

But entails that either is or is . If , then is impossible. But if , then ad = 0 a 0 d 0 a = 0 ac = 1 d = 0

 is impossible. So there is no solution.bd = 1

Definition. A vector is separable if it can be written as the tensor product of two smaller vectors.
Otherwise---and especially when the vector represents a quantum state---we call it entangled.

To introduce some more quantum terminology, when a unit vector is not a basis vector, it is necessarily
a linear combination of two or more basis vectors. Then it is a superposition. One of the amazing
verities of physics is that we really can put particle-level sustems into superpositions and interact with
them. The math of how those interactions behave involves the kind of vectors we are already seeing.
The vectors and above are superpositions. When we re-interpret the attributes and as u v 0 1

 and , then becomes the superpositiondead alive u

 + dead alive

2

This is said to be the state of Schrödinger's Cat. The philosophical issue is whether a macro-level
being, not a particle, can be put into superposition. (We will later argue the answer is "yes...but...") For
now we prefer to take the simple realist view that a particle can have the state . It is not a cat, but it u

has a pet-name, indeed a ket-name: . The vector , with its prominent minus sign, is called .+ v -

Tensoring the cat with another cat gave us . Are the cats entangled? No---
e + e + e + e

2
00 01 10 11

they are separable, because we got this as a tensor product to begin with.

Inner Products (begin Thu. 9/5)

The dot-product of two equal-length vectors and is always defined bya = a , … , a(1 n) b = b , … b(1 n)

a ⋅ b = a b + ⋯ + a b .1 1 n n

(I actually want to write a bigger solid dot, and our textbook does so, but MathCha doesn't have it.) We
have already seen the example of the dot product of binary strings treated as vectors with entries
modulo , which is called the "Boolean inner product" on page 12 of Chapter 2. 2

When and are vectors of real-number entries, the real inner product is the same as the dot-a b

product. Besides , the most common notation for it is . a ⋅ b ⟨a, b⟩

When and are vectors over the complex numbers, however, the entries of the first vector are a b
complex-conjugated. The common angle-bracket notation remains the same:

⟨a, b⟩ = b + ⋯ + b .a⏨1 1 a⏨n n

This should not cause confusion with regard to the real-number case: if the entries all happen to be ai
real numbers, their conjugates don't change, so we get anyway. But don't forget to a b + ⋯ + a b1 1 n n
conjugate when they really are complex numbers! The "twist" of conjugating the entries is thus more ai
fundamental. Any, this defines the "standard" inner product on a finite-dimensional real or complex
vector space. (If you're curious about the general definition of when a vector space becomes a V
Hilbert Space, it is when there is an abstract product such that whenever you have a sequence ⋅

 of vectors in the space and a vector (that could be "floating outside") such that the v , v , v , …1 2 3 w

scalar values go to zero, the vector in fact belongs to .)v ⋅w, v ⋅w, v ⋅w, …1 2 3 w V

The conjugation twist may also seem a little arbitrary---why don't we conjugate the entries instead? bi
Well, this is where using a vertical bar rather than a comma leads to a notational inspiration by Paul
Adrien Maurice Dirac in 1939.

⟨a b⟩ = b + ⋯ + b = ⋅ b.| a⏨1 1 a⏨n n a⏨

The first thing to note is that if we transpose to be a row-vector rather than a column vector, while a⏨

keeping as a column vector (which you can call the default), then we can interpret the dot as b ⋅
ordinary "matrix" multiplication. Rather than messily write the conjugate transpose as , we write it as a⏨T

, where the superscript star can be read as "star", "adjoint", or "dual" depending on the context. a*

(Word-to-the-wise, however: newer sources are using a superscript "dagger" instead: . I avoid the a†

dagger in handwriting because it can look either like a plus sign or like a superscript for transpose T
without conjugating.) Now Dirac's inspiration was that we can break the angled "bracket" into two
pieces at the vertical bar:

⟨a b⟩ = ⟨a ⋅ |b⟩ = a ⋅ b| | *

where the dot is the same as our dot product and ordinary "matrix" multiplication. He called the two
parts the "bra" and the "ket". Thus the bra is another way of writing . (And when is a scalar, ⟨a| a* a a*

is another way of writing since transpose is immaterial.) It comes IMHO with a different philosophy: a⏨
instead of the "pristine" vector being changed by conjugation, it is "moved into dual position." It is a

considered OK to use " " and " " as synonymous notations, although we've already used the ket a a
notation as wrapper around an attribute, to signify the basis state indexing that attribute. Well, keeping
things simple is why Part I of the text avoids the Dirac notation, but I think conveying Dirac's insight will
help tie our various "product" ideas together: We can write bras and kets together in products any
which way. If we write

⋅a b

then this is the tensor product of the two vectors. We've already been doing this with our standard
basis states of binary-string attributes under big-endian notation, e.g. (making the dot invisible):⋅

 = ⊗ = e ⊗ e = e = 0 1 0 1 0 1 01 01
 = ⊗ = e ⊗ e = e = 10 11 10 11 10 11 1011 1011

..
And then is the tensor product of the corresponding row vectors and works out the same as ⋅a b

 owing to the scalar conjugation rule applied to each entry. Finally,⋅a b
*

⋅ = a⏨ b⏨ ab⏨

⋅a b

can be figured out as multiplying an column vector by a (conjugated) row vector. You get ℓ × 1 1 × n
an matrix. Here is a sketch picture:ℓ × n

It actually has the same entries as , but rolled into a matrix rather than left as a longer a bi *

j a⊗ b*

vector. Especially when , this is called the outer-product matrix. And the final secret is that ℓ = n
when , the outer-product matrixb = a

A = ⋅a a

captures all the ways that the quantum state can interact with the outside world. Most in particular, a

when we take the ordinary matrix product of with another quantum state of compatible size, the A c
associativity of basic dot multiplication gives us:

,A ⋅ c = ⋅ ⋅ = ⋅a a c a a c

which is just the original vector multiplied by the scalar value from the inner product. The a a c

essence has a neat symmetry that maybe requites the concern about making a left-handed ⋅a a
versus right-handed choice with conjugation. Maybe Nature is "evenhanded" after all. Moreover, this
shows that all of our products:

• "ordinary" matrix product
• inner product
• outer product, and
• tensor product

are really fungible---and belong to a reality where we can climb up a "stairway to heaven" of higher
dimensions and back down again, so that maybe dimensionality is not fundamental. But the high-
volume ThePhysicsMemes Twitter site recently had the last word.

Unit Vectors and Unitary Operations

Back on ground level, note that for a complex scalar , and both equal its squared magnitude c c c* cc*

. To wit, if we write with and real, then , and we get|c|2 c = a + bi a b c = a - bi*

=

https://x.com/ThePhysicsMemes/status/1829713582042341767

cc = a + bi a - bi = a - abi + abi + b = a + b = |c| .* ()() 2 2 2 2 2

And for a vector ,a

⟨a a⟩ = a a = |a || ∑
n

i=1

*
i i ∑

n

i=1
i

2

is its squared magnitude. The norm of the vector is the positive square root of this:

.|a| = ⟨a a⟩|

Definition: A unit vector has norm , equivalently, has squared magnitude . Any unit vector in a 1 1 v

Hilbert space gives rise to a "legal quantum state", which we can write as for pretentious v
emphasis (or decide not to do so).

In the two-dimensional real space , the unit vectors correspond to the points on the unit circle R2 x, y()
in the plane, as defined by . The simplest quantum states are unit vectors of two x + y = 12 2

complex numbers, i.e., members of . But in many cases we can ignore the distinction between C2

complex and real entries and pretend-visualize them as points on the unit circle in the plane anyway.
(There is a non-fudged, non-lossy visualization in 3D called the Bloch Sphere---we will come to it later.)

Now for operations, we begin by extending some notation we just used for vectors:

Definition. The conjugate transpose of an matrix is obtained by first transposing to make m × n A A
the matrix , and then taking the complex conjugate of every element. We write for the n × m AT A*

resulting matrix. (Many other sources write instead.)n × m A†

Examples:

• If , then and .A = 1 + i 1 - i
2 0

A = T 1 + i 2
1 - i 0

A = * 1 - i 2
1 + i 0

• If , then , and weirdly, back again.Y = 0 -i
i 0

Y = T 0 i
-i 0

Y = = Y* 0 -i
i 0

• For our old friend the Hadamard matrix , because is H = 1
2

1 1
1 -1

H = H = HT * H

symmetric and has all-real entries.

Note that

, He = H = = = 0 0 1
2

1 1
1 -1

1
0

1
2

1
1

e + e0 1

2

a vector we saw in the previous lecture, and ditto for

.He = H = = = 1 1 1
2

1 1
1 -1

0
1

1
2

1
-1

e - e0 1

2

The two resulting vectors are also unit vectors, and they are linearly independent. Indeed, they are
orthogonal, because

.⟨ 1, 1 , 1, -1 ⟩ = 1 ⋅ 1 + 1 ⋅ -1 = 0[] [] ()

Thus, like and , they form an orthonormal basis for (not to mention also for). Focusing e0 e1 C2 R2

on the plus and minus sign between and , the "Dirac names" for these states are and , e0 e1 + -
respectively. Getting just a little bit ahead for visualizing qubits, here is a diagram:

Well, was our "Schrödinger's Cat" state where we spoke of superposition. Maybe that seemed +
mysterious. Now carries the standard basis onto the basis. It also maps that basis back to H ,+ -
the standard one, because , the identity matrix. Thus, a vector that looks superposed in H = I2 2 × 2
the standard basis can be simple when viewed in the changed basis. Thus superposition is relative---
"in the eye of the beholder" one might say---but in many concrete cases the observer is Nature.

The matrix is one of four named after the quantum phsyicist Wolfgang Pauli. The others are Y

, , X = 0 1
1 0

Z = 1 0
0 -1

and the identity . Note that and similarly, . Thus I X = = = 0 0 1
1 0

1
0

0
1

1 X =1 0

applying negates the bit label of a standard basis state, and this functions just like the Boolean NOT X

operation. Moreover, is a permutation matrix. In upcoming lectures we will show how permutation X
matrices used in quantum circuits confer exactly the power of classical Boolean circuit gates. The extra

0, 1()

1, 0()
a

b

a, b()

𝜃

a| + |b| = 1| 2 2

a = 𝜃cos

b = 𝜃sin

-

+

0

1

The qubit represents a, b() ae + be = a 1, 0 + b 0, 1 = a + b0 1 () () 0 1

ket

P.A.M. Dirac

a = 1 / 2
b = ditto

a = 1 / 2
b = - 1 / 2

quantum power starts coming in with the Hadamard gate.

Note: HZH = HZH = = = = X-1 1
2

1 1
1 -1

1 0
0 -1

1
2

1 1
1 -1

1
2

1 -1
1 1

1 1
1 -1

1
2

0 2
2 0

Now for two key definitions (which apply to any size matrices, not just):2 × 2

Definition: A matrix is unitary if . A A A = I*

Note, incidentally, that must be invertible, and furthermoreA

.AA = AA AA = A A A A = AIA = AA = I* * -1 * -1 -1 -1

This also works vice-versa: if , then . So an equivalent definition of unitary is that AA = I* A A = I*

.AA = I*

Definition: A matrix is Hermitian if .A A = A*

The Pauli matrices are all both Hermitian and unitary. So is the Hadamard matrix.

 = = I.1
2

1 1
1 -1

1
2

1 1
1 -1

1
2

2 0
0 2

If we took away the factor , the resulting matrix is Hermitian but not unitary. The matrix 1
2

1 1
1 -1

 is unitary but not Hermitian. S = 1 0
0 i

In Part I of the text we toe the line of identifying unitary matrices with "legal quantum operations."
When we dabble into Chapter 14, we will encounter the view that Hermitian operators are the
"physically actual" ones. Most in particular:

Proposition: For any unit vector , the outer product is a Hermitian matrix.c C = c c

Proof: It is a general fact that if , then . So C = AB C = AB = B A* ()* * *

C = = ⋅ = ⋅ = C* c c
*

c
*

c
*

c c

back again. ☒

Now we can use the reversal rule for adjoints to give a shorter and snappier proof of Lemma 3.1 than
what the text gives:

Lemma 3.1: If is a unitary matrix and is a vector then . U a ||Ua|| = ||a||

Proof: . ||Ua|| = = = = = = ||a||||Ua||2 Ua Ua()*() a U Ua* * () a U U a* * a a* ☒

The proof became a one-liner. Thus a unitary matrix always preseves the lengths of vectors, and in
particular, it always maps a unit vector to a unit vector. This is what makes it "legal" from the quantum
probability point of view.

The fact works the other way: if a matrix always preserves the lengths of vectors, then it must be U
unitary.

Reversal, Adjoint, and Duality.

The reversal of a string just means writing it "backwards": , FACED = DECAF, xR x 01001 = 10010R R

and so on. A string is a palindrome if , for instance . The empty string counts as a x x = xR 1001 𝜖
palindrome since . The rule for reversal and concatenation is that for any strings and ,𝜖 = 𝜖R x y

.xy = y x()R R R

For example,

.PUCK FACED = FACED PUCK = DECAF KCUP-
R

()R -
R

-

Actually, if the minus sign is a factor which could go anywhere, this would be equivalent to say -1
"DECAF K-CUP" meaning a certain pod for a Keurig coffee-maker.

This gives intuition for how matrix transpose, matrix adjoint, and matrix inverse all work like reversal
with regard to matrix product. The rules for any (invertible) matrices and are:A B

1. AB = B A()T T T

2. AB = B A()* * *

3. .AB = B A()-1 -1 -1

Rule 2 follows from rule 1 because the only difference with is doing complex conjugates of individual *

entries. Rule 3 follows since . So why does rule 1 AB B A = ABB A = AA = I() -1 -1 -1 -1 -1

hold? Here our functional view might help: The transpose is the function with the two index AT

arguments reversed: . So:A j, i = A i, jT() ()

AB i, j = AB j, i = A j, k B k, i = B k, i A j, k = B i, k A k, j = B A i, j()T() ()() ∑

k () () ∑

k () () ∑

k
T() T() T T()

for all arguments (i.e., indices) and , so . (Note that the switch i j AB = B A()T T T

 in the middle step was just ordinary multiplication of numbers.)A j, k B k, i = B k, i A j, k() () () ()

The adjoint of a vector has another interpretation. It stands ready to pounce on any column vector x* x

 of the same length as and wrangle it down to the scalary x

,x y = y i = ⟨x, y⟩* ∑
i x i⏨⏨[] []

which is the inner product of and . As such, defines the linear functional byx y x* f : H Hx

n →

.f y = ⟨x, y⟩x()

Whereas a column vector is to be interpreted as "data", the row-vector form is "code".

Now we can review and extend some of the things we said about Dirac notation and the relationships
between various kinds of products:

1. If where and are numeric vectors and is a (possibly complex) scalar, then we z = ax x z a
have the rule . We have to remember to conjugate any factor we pull out of the z = x* a⏨ *

adjoint. A Khan Faculty video writes the rules and , but you have = aa𝜓 𝜓 = aa𝜓 * 𝜓
to be careful that stands for a numeric vector here. It makes no sense to say e.g. that 𝜓

 when the is the binary-bit attribute, nor that if the "7" is the rank 3 = 1 3 1 3 = 7 21
of a playing card. (Note that it is more convenient to write rather than for the complex a* a⏨
conjugate of a scalar, as if it were a " " dimensioned entity. And scalar multiplication 1 × 1
commputes, so writing equates to , in accordance with the rule .)ab = b a()* * * a b* * = ⋅ab⏨ a⏨ b⏨

2. . The product dot first goes invisible, then the two vertical bars combine to ⋅ = x y x y
be one.

3. by the reversal rule. So the = ⋅ = ⋅ = ⋅ = y x y x y * x * x y
*

x y *

flipped-around inner product is just the complex conjugate of the scalar .y x x y
4. Two consecutive kets as in is a gray area. Equating it to is AOK when x y ⊗x y

manipulating standard basis vectors, e.g. . Likewise,= 1 0 0 1 0 10010

 = 1, 1 ⊗ 1, 1 = 1, 1, 1, 1 = + + 1
2
[] 1

2
[] 1

2[]T ++

is kosher as nomenclature, likewise writing as and so on. But the product of two + - +-
column vectors is not really defined, and in general cases of where " and " " are not x y x" y
what I have been calling "attributes", combo-ing it as " " may not make sense. What might xy
bail you out of doubt is if you have a bra before . Then it becomes , w x y ⋅w x y
where the is now the same as ordinary multiplication. But may not make sense off ⋅ ⋅w xy
the top---because inner product wants the dimensions to agree. (??)

5. Two consecutive bras like are even grayer. Would they be the adjoint of or of x y y x
? Note what happens for tensor products of matrices: For all indices ,x y u, v, w, t

A ⊗ B uv, wt = = = ⋅ ()*() A ⊗ B wt, uv⏨⏨⏨⏨⏨⏨⏨()() A w, u B t, v⏨⏨⏨⏨⏨⏨() () A w, u⏨⏨⏨⏨() B t, v⏨⏨⏨()
= A u, w B v, t = A ⊗ B uv, wt .*() *() * * ()

So . Did you expect the and to reverse? Maybe not if you realize that A ⊗ B = A ⊗ B()* * * A B
they operate in independent systems.

[This last point 5 was actually meant to come after the "Operations: Joint and Entangled" subsection
below. So I will revisit it early in the next lecture.]

