
CSE439 Week 3: Qubits and Quantum Circuits (chapter 4 plus sections 5.1--5.3)
 
[The flow of Chapter 4 as written is to take the classical notion of computations by machines as given.  
When CSE396 was a required course at UB, everyone saw Turing machines (TMs); those may have 
been talked about briefly in CSE331, but otherwise the "random-access machine" concept of executing 
algorithms from that course is fine.  (The one advantage of TMs is that you can say that their tape cells 
numbered 1,2,3,... represent "classical bits" that evolve over time, in analogy to the way we will speak 
of qubits evolving over time.)  Now, however, we will take the classical Boolean circuit model as 
fundamental while contrasting it directly to quantum circuits.  The strongest linkage is that the quantum 
Toffoli gate can simulate NAND and hence do all classical Boolean operations by itself.  This is shown 
in section 5.3, though.  Section 5.1 has the -fold tensor product  of the basic  Hadamard n H⊗n 2 × 2
matrix , which we have already seen, anyway.  So please read all the above as one block.]H
 
Unitary Versus Stochastic (section 3.6)
 
A (doubly) stochastic matrix has the property that its rows (and columns) are nonnegative real 
numbers that sum to .  A simple example is1
 

J  =   0.5 0.5
0.5 0.5

 
However, while  is Hermitian (like any symmetric real matrix), it is not unitary: , not the J JJ = J = J* 2

identity.  There are doubly stochastic matrices that are not Hermitian either when we go up to , 3 × 3
e.g.:

1 / 2 1 / 3 1 / 6
1 / 2 1 / 6 1 / 3

0 1 / 2 1 / 2
 
However, every permutation matrix is both doubly stochastic (in the trivial manner of having a single  1
in each row and column) and unitary.  A less trivial example of symmetric (Hermitian) doubly stochastic 
matrices arise from undirected graphs  that are regular---meaning every vertex in  has the same G G
degree (meaning: number of edges connecting to it).  The text in section 3.6 gives an example where 
negating some of the entries does create a unitary matrix.  However, this is not a regular phenomenon 
as far as I know.
 
Operations: Joint and Entangled
 
Here is a statement that uses a lot of notational fuss to express the simplest of ideas:
 
Proposition: For any  matrix ,  matrix , -vector  and -vector , m × n A p × q B n x q y
 

. Ax ⊗ By  =  A ⊗ B ⋅ x⊗ y( ) ( ) ( ) ( )

 

 



 
Proof.  The dimensions are consistent: both sides give a column vector of  entries.  Showing mp
equality is where our effort to interpret vectors  as functions  of their indices in binary notation may x x u( )
help.  Under this view,  gives the function , where  means z =  x⊗ y z uv  =  x u y v( ) ( ) ( ) uv
concatenation of binary strings, while the right-hand side is an ordinary numeric product.  And a matrix 

 gives the two-argument function .  A A u, w  =  a( ) u,w
 
0.5, 0.5, - 0.5, 0.5 ⊗ 0.6, 0.8   =   0.3, 0.4, 0.3, 0.4, - 0.3, - 0.4, 0.3, 0.4[ ] [ ] [ ]

Indices:   : 000, 001, 010, 011, 100, 101, 110, 111[ ] 100 = 10 ⋅ 0 -0.3 =  -0.5 0.6 .( )( )
 
Silly? style note: When we think of vector and matrix entries the way we usually do, we will use square 
brackets like in the text, e.g.: , .  When the indices are regarded as binary strings rather than x i[ ] A i, j[ ]
numbers, we will write things like  and  below, where .A u, w[ ] C uv, wt[ ] C = A⊗ B
 

The vector  becomes the function mapping a row-index  to .  Thus, x' = Ax u x' u  = A u, w x w( ) ∑ 
w ( ) ( )

putting , the right-hand side is the functionz' = Ax ⊗ By( ) ( )
 

z' uv  =  x' u y' v  =  A u, w x w ⋅ B v, t y t( ) ( ) ( ) ∑ 
w ( ) ( ) ∑ 

t ( ) ( )
 
Now by usual rules of re-ordering summations, the right-hand side of this can be rearranged as
 

A u, w B v, t x w y t∑ 
w ∑ 

t ( ) ( ) ( ) ( )
 
With , we can already recognize that the  part is the same as .  And z =  x⊗ y x w y t( ) ( ) z wt( )

 is the same as .  So the whole thing becomesA u, w B v, t( ) ( ) A ⊗ B uv, wt( )( )
 

,A ⊗ B uv, wt ⋅ x⊗ y wt∑
 

w,t( )( ) ( )( )
 
which is exactly the meaning of .  So the two sides are equal.  A ⊗ B ⋅ x⊗ y( ) ( ) ☒
 
The simple idea is that  does the  operation on  side-by-side with  doing its A ⊗ B ⋅ x⊗ y( ) ( ) A x B
operation on , but with no connection at all between them.  We will soon have diagrams like this---y

 

 

Ax

y B

Ax

By

==

 



 
---note that we picture the inputs coming in from the left but when writing them as matrix arguments 
they will swing around to the right.  As a tandem, this is formally the tensor product  coming in to x⊗ y

. But really---and locally---it is just  happening in one place and  happening A ⊗ B( ) Ax By
independently in another place.  The upshot is this:
 

When we have entanglement, not independence, between the  part and the  part, then the x y
notation will stay the same but the interpretation will change a whole lot.
 

 
Qubits
 
A qubit is a physical system whose state  is described by a pair  of complex numbers such that 𝜙 a, b( )

.  (This is called the Born Rule, after Max Born.)  The components of the pair index |a|  +  |b|  =  12 2

the basic outcomes and .  There are two ways we can gain knowledge about the values  and :0 1 a b
 

• We can prepare the state from the known initial state  by known quantum e  =  1, 00 [ ]
operations, which here can be represented by  matrices.2 ×  2

• We can measure the state (with respect to these basic outcomes), in which case:
– We either observe , whereupon the state becomes , or we observe , in which case the 0 e0 1

state becomes .e  =  0, 11 [ ]
– The probability of observing  is , of getting  is .0 |a|2 1 |b|2

 
If both  and  are real numbers, then we can picture the qubit as a point on the unit circle in :a b R2

 
What can be confusing in the diagram is that we also habitually use the unit circle in  to illustrate a R2

single unit complex number , that is, an element of  of magnitude .  We would then write c C1 1
, and then  is the same as .  Our pair  of complex numbers, c =  a +  bi |c|  =  12 a  +  b  =  12 2 a, b( )

however, is an element of , which is 4-dimensional if we tried to view it in real space.C2

 

 

 

0, 1( )

1, 0( )

a, b( )

𝜃

a|  +  |b|  =  1| 2 2

a =  𝜃cos

b =  𝜃sin

-

+

0

1

The qubit  represents a, b( ) ae + be  =  a 1, 0 + b 0, 1  =  a + b0 1 ( ) ( ) 0 1

ket

a =  1 / 2
b = ditto

a =  1 / 2
b = - 1 / 2

22.5 , 22.5cos ∘ sin ∘

0, -1( ) ae  -  be /( 0 1) 2



 
 
Multi-Qubit Matrices and Gates
 
The tensor product of two basic Hadamard gates is 
 

.H  =  H ⊗H =  ⊗  =⊗2 1
2

1 1
1 -1

1 1
1 -1

1
2

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

 
This matrix carries the orthonormal two-qubit standard basis , , ,  onto the four e00 e01 e10 e11

combinations of tensoring the  and  states, namely (transpose  omitted):+ - { }T
 

 =  ⊗  =  1,   1 ⊗ 1,   1  =  1,   1,   1,   1 =++ + + 1
2( ) ( ) 1

2( )  +  +  + 
2

00 01 10 11

 =  ⊗  =  1,   1 ⊗ 1, -1  =  1, -1,  1, -1 =+ - + - 1
2( ) ( ) 1

2( )  -  +  - 
2

00 01 10 11

 =  ⊗  =  1, -1 ⊗ 1,   1   =  1,  1, -1, -1 =- + - + 1
2( ) ( ) 1

2( )  +  -  - 
2

00 01 10 11

 =  ⊗  =  1, -1 ⊗ 1, -1  =  1, -1, -1,  1 =- - - - 1
2( ) ( ) 1

2( )  -  -  + 
2

00 01 10 11

 
These four vectors are linearly independent and mutually orthogonal, so they form an orthonormal 
basis.  We can see the mapping because forming the target vectors into a matrix (as column vectors) 
gives us exactly .H⊗2

 
Well, this is the case  of the Hadamard transform .  Also note the following tensor products m =  2 H⊗m

of  matrices:2 × 2

,H ⊗  I =   ⊗  =1
2

1 1
1 -1

1 0
0 1

1
2

1 0 1 0
0 1 0 1
1 0 -1 0
0 1 0 -1

 

.I ⊗  H =    ⊗   =1 0
0 1

1
2

1 1
1 -1

1
2

1 1 0 0
1 -1 0 0
0 0 1 1
0 0 1 -1

 
Some examples of states you can produce with these matrices are:
 

 =  ⊗  =  1, 1 ⊗ 1, 0  = 1, 0, 1, 0 =+0 + 0 1
2
( ) ( ) 1

2
( )  + 00 10

2

 =  ⊗  =  1, 0 ⊗ 1, 1  =  1, 1, 0, 0 =0 + 0 + 1
2
( ) ( ) 1

2
( )  + 00 01

2

 

 



 
Meanwhile,

 

 =  ⊗  =  1, 1 ⊗ 0, 1  = 0, 1, 0, 1 =+1 + 1 1
2
( ) ( ) 1

2
( )  + 01 11

2
 

can be gotten as  applied to the column vector .  However, the state H ⊗  I 0, 1, 0, 0  =  ( )T 01
, which we saw in the last lecture is entangled, cannot be gotten this way.  1, 0, 0, 1  =  1

2
( )  + 00 11

2
Instead, it needs the help of a  unitary matrix that is not a tensor product of two smaller matrices.  4 × 4
The most omnipresent one of these is:
 

.  CNOT =  

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 
Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis, 
the values are: , , CNOTe  =  CNOT  =  00 00 00 CNOTe  =  CNOT  =  01 01 01

, and .  We can get these CNOTe  =  CNOT  =  10 10 11 CNOTe  =  CNOT  =  11 11 10
from the respective columns of the  matrix, and we can label the quantum coordinates right on it:CNOT
 

.  CNOT =  

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Because we multiply column vectors, the co-ordinates of the argument vector come in the top and go 
out to the left.  If the first qubit is , then the whole gate acts as the identity.  But if the first qubit is , 0 1

then the basis value of the second qubit gets flipped---the same action as the NOT gate .  Hence the X

name Controlled-NOT, abbreviated : the NOT action is controlled by the first qubit.  The action CNOT

on a general 2-qubit quantum state  is even easier to picture:𝜙 =  a, b, c, d( )
 

 

 

 00 01 10 11
00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0



.CNOT  =  

a
b
c
d

a
b
d
c

 
All it does is switch the third and fourth components---of any 4-dim. state vector.  Hence,  is a CNOT
permutation gate and is entirely deterministic.  Permuting these two indices is exactly what we need to 

transform the separable state  into the entangled state .  Since we got the 1, 0, 1, 01
2
( ) 1, 0, 0, 11

2
( )

former state from  applied to , the matrix we want isH ⊗  I e00
 

.CNOT ⋅  H ⊗  I  =  ⋅( ) 00

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =  =1
2

1 0 1 0
0 1 0 1
1 0 -1 0
0 1 0 -1

1
2

1 0 1 0
0 1 0 1
0 1 0 -1
1 0 -1 0

1
0
0
0

1
2

1
0
0
1

 
We can see the result coming from the first column.  When we do a quantum circuit left-to-right, 
however, the  part comes first on the left.  The symbol for a CNOT gate is to use a black dot to H ⊗  I( )
represent the control on the source qubit and  (which I have used as a symbol for XOR) on the target ⊕
qubit.  This is more easily pictured by a quantum circuit diagram:

If , then we can tell exactly what  is: it is the  state.  And if , then .  If x  =  1 0 y + x  =  1 1 y =  -
 is any separate qubit state , then by linearity we know that x1 a, b  =  a  +  b( ) 0 1

.  This expresses  over the transformed basis; in the standard basis it isy =  a  +  b+ - y
 

.  a 1, 1 + b 1, -1  =  a + b, a - b  1
2
( ( ) ( )) 1

2
( )

 
So we can say exactly what the input coming in to the first "wire" of the CNOT gate is.  And the input to 
the second wire is just whatever  is.  But because that gate does entanglement, we cannot specify x2
individual values for the wires coming out.  The state is an inseparable 2-qubit state:
 

. +  1
2

00 11

 
If you measure either qubit individually, you get  or  with equal probability.  This is the same as if you 0 1

measured the state .  But that state is outwardly as well as inwardly different.  When both qubits ++

 

 



to be measured, it allows  and  as possible outcomes, whereas measuring the entangled state 01 10
does not.  I've seen papers telling ways to visualize entangled states of 2 or 3 qubits, but none 
implemented by an applet so far---quantum-circuit.com just shows Bloch spheres with the black 
dot at the center for the "completely mixed state": .   ¯ \ _ ツ _ / ¯ ( )
 
 
 
Three Qubits and More
 
The CNOT gate by itself has the logical description  and .  This logical z  =  x1 1 z  = x  ⊕  x2 1 2
description is valid only for standard basis states.  It means that if  then , but if x  =  01 z  =  x2 2

 then .  Since this description is complete for all of the standard basis inputs x  =  11 z  =  ¬x2 2
, it extends by linearity to all quantum states.  We can use this idea to x =  x x  =  00, 01, 10, 111 2

specify the 3-qubit Toffoli gate (Tof).  It has inputs  (representing the components in each x , x , x1 2 3
basis state) and symbolic outputs  (which, however, might not have individual values in non-z , z , z1 2 3
basis cases owing to entanglement).  Its spec in the basis quantum coordinates is:
 

, , .  z  =  x1 1  z  =  x2 2 z  =  x  ⊕  x  ∧  x3 3 ( 1 2)
 

Of particular note is that if  is fixed to be a constant-  input, then x3 1
 

.z  =  ¬ x  ∧  x  =  NAND x , x3 ( 1 2) ( 1 2)
or rather

z  =  x  XOR x  ∧  x  =  x  XOR AND x , x3 3 ( 1 2) 3 ( 1 2)
 

if , then we get x = 13 1 ⊕  x ∧ x  =  ¬ x ∧ x  =  NAND x ∧ x .( 1 2) ( 1 2) ( 1 2)
 
Thus the Toffoli gate subsumes a classical NAND gate, except that you need an extra "helper wire" to 
put  and you gate two extra output wires  that only compute the identity on  (in x  =  13 z , z1 2 x , x1 2
classical logic, that is---a non-basis quantum state can have knock-on effects even though all Toffoli 
does is switch the 7th and 8th components of the state vectors).  If you have polynomially many Toffoli 
gates, then you get only polynomially much wastage of wires, and you can use the good ones to 

 

 

x1

x2

x3

z1

z2

z3

 000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0



simulate any polynomial-size Boolean circuit of NAND gates.  Because polynomial-time algorithms can 
be simulated by polynomial-sioze circuits, we have:
 
Theorem: .P ⊆  DQP ⊆  BQP
 
Well, we need to say more broadly what it means for quantum computations to be (polynomially) 
feasible.  The community convention is simply to count up gates of 1, 2, or 3 qubits as constant cost.  
Gates involving more qubits are OK if they can be built up out of the small gates.  We have already 
seen that  is just  binary Hadamard gates laid out in parallel.  The -qubit quantum Fourier H⊗n n n
transform can be built up out of  smaller gates---this actually has more "fine print" than sources O n2

usually say and is pursued in the chapter exercises of the textbook.
 
And  is to  as  is to .  We should describe measurements in more detail and see BQP DQP BPP P

smaller-scale deterministic and randomized examples first.
 
 
Quantum Circuit Examples
 
Theorem (cf. theorem 5.2 in section 5.3): Classical Boolean circuits can be efficiently simulated by 
quantum circuits that don't even do any superposition or entanglement.  
 
The proof is basically that the Toffoli gate simulates NAND via  and NAND is a Tof x, y, 1  =   ∨  ( ) (x⏨ y⏨)
universal gate.  The extra lines for the constant 1 inputs also make the whole computation reversible.  
That is,  is reversible.  [RevNAND ) ? (no, not Tof x, y, z  =  x, y, z ⊕  ∨  ( ) ( (x⏨ y⏨)) x, y = x,( ) (  ∨  x⏨ y⏨
reversible)]
 
 
 
Here is a sizable example of this theorem.  Consider the following circuit of NAND gates from the blog 
article "Implementing Logic Functions Using Only NAND or NOR Gates" by Max Maxfield:
 

 

 

 

https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/
https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/


 Here is the corresponding quantum circuit:
 

Note also that the initial three  gates effectively copy the Boolean values  so that they can CNOT a, b, c
be negated as  on the next three qubit lines.  This is covered in section 6.2, and the last three , ,a⏨b⏨c⏨
qubit lines exemplify the trick in section 6.1 of using  gates to effectively initialize them to  NOT 1
rather than .  Caveat: You can't copy an arbitrary quantum state using ---the No-Cloning 0 CNOT
Theorem mentioned in section 6.2 shows there is no way to do this in general.  But particular states in 
a known basis can be copied this way.
 
The "quantum extra", beginning with using the Hadamard gate to create superpositions, is what 
promises to take us beyond classical computing.
 
 
Circuits and Computations
 
Just like music can be divided into measures with a basic 'beat' unit, quantum gates going left to right 
are timesteps of a computation.  If multiple gates are underneath each other, then they make a single 
tensor-producted operation---such as  in the above diagram.  If nothing happens on a certain qubit X⊗6

line at a given timestep, that is mathematically like tensoring with the identity matrix.  A "squidgy" point 
has to do with the nearest-neighbor aspect of tensor products.  Consider:
 

 
There is notation for  and  , but not for "  in the middle."  We can ignore this I ⊗  CNOT CNOT ⊗  I I

 

 

a

b

c

0

0

0

0

0

0

X

X

X

a⏨
b⏨

c⏨

X

X

X
d

(We will later
mirror the gates
except the last
one giving the
function value d
in order to reset
the ancilla qubits
4--8 to , so0
that all qubits
except the last 
keep their given
basis values.)

a

b

c

0

0

0

0

0

I

a

b

c



problem.  Or---and often this has to be done with real tech---we can suppose the Swap gate is applied 
twice, e.g.
 

 

SWAP =  

 00 01 10 11
00 1 0 0 0
01 0 0 1 0
10 0 1 0 0
11 0 0 0 1

 
In such manner, we get the -qubit circuit as a compositionn
 

C =  U ∘ U ∘ ⋯ ∘  Ut t-1 1
 
of  unitary matrices.N × N
 

Principle of Linearity: For any quantum state  ,𝛷 =  a e∑
N

i=1
i i

 

 .C 𝛷  =   a  Ce( ) ∑
N

i=1
i i

 
 
In words, the action of a quantum circuit on any quantum state is determined by its actions on the 
(standard) basis states.
 
 
General Controlled Gates
 

Related to the  gate is the controlled version of the  gate.  Recall .  The CNOT Z Z = 1 0
0 -1

controlled version of any matrix  (in the standard basis) is the block matrix A
 

 

 

a

b

c

a

b

a

a

b

a ⊕ c



,CA =  
 0u 1u

0u I 0
1u 0 A

 
where the hierarchical quantum indexing scheme is also shown.  If the first qubit is 0 then the effect is 
the identity, while if it is , then the effect on the remainder  is to apply .  So1 u A
 

.CZ =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

 
Although the control is nominally on the first qubit, with  the effect on base states is to multiply the CZ

global state by  if and only if both qubits are .  Hence it is really symmetric between qubits---the -1 1
second qubit could equally be said to be controlling the first.  The standard diagram for it is just two 
black dots connected by themselves:
 

 
Since a general vector  becomes  after going through , it u , u , u , u[ 1 2 3 4]T u , u , u , - u[ 1 2 3 4]T CZ

follows, upon writing  and , that= a , aa [ 1 2]T = b , bb [ 1 2]T
 

 .CZ ⋅ ⊗ =  CZ ⋅ a b , a b , a b , a b  =  a b , a b , a b , - a ba b [ 1 1 1 2 2 1 2 2]T [ 1 1 1 2 2 1 2 2]T

 
Is this ever entangled, and if so, when?  Note that if  and  are both , then a b 1

.  To CZ ⋅ ⊗  =  CZ  =  CZ ⋅ 0, 0, 0, 1  =  0, 0, 0, -1  =  - 0, 0, 0, 1  =  -a b 11 [ ]T [ ] [ ] 11

try to represent this as a tensor product , we need both  and  to be , ⊗ = eg, eh, fg, fhe
f

g
h

[ ]T e g 0

so we are left with .  This is easy to solve with  and , or even  since we fh = -1 f = 1 h = -1 f = h = i
can use complex numbers.  
 
But now let  and  both be .  Then we get a b +
 

.CZ  =  CZ ⋅ 1, 1, 1, 1  =  1, 1, 1, -1++ 1
2[ ]T 1

2[ ]T

 

For determining entanglement we can ignore the  factor.  So the equations become , , 
1
2 eg = 1 eh = 1

 

 

a

b



, and .  The first three combine to give , so , but that fg = 1 fh = -1 g =   =  h
1
e

fg = fh = 1

contradicts the fourth equation .  Thus  is entangled.  It follows thatfh = -1 CZ ++
 
 

It is possible for a quantum gate to leave one separable state separable while making 
another separable state become entangled.

 
 
Example and a Circuit Diagram Pitfall
 
Note: It is tempting to think that CZ should be the transform of CNOT under the  change of basis.  [I H⊗2

did this on the whiteboard.  See the "Graph States" section of https://rjlipton.com/2022/01/05/quantum-
graph-theory/ for the end-result matrix, there called " ".  I will type this up when I can.]E

 

 

https://rjlipton.com/2022/01/05/quantum-graph-theory/
https://rjlipton.com/2022/01/05/quantum-graph-theory/

