
CSE439 Week 4: More Quantum Circuits
 
Graph-State Circuits
 
Now  gates are especially neat because they look like edges in a graph , specifically CZ G =  V, E( )
an undirected graph because the gates are symmetric.  Let's first see some examples of graphs.  The 
cycle graphs  have  vertices (also called nodes) and  edges connecting them in a ring, for .  Ck k k k ≥ 3
The four-cycle graph has the following picture and adjacency matrix:
 

 
Note: This differs from the text only in the labels 3 and 4.  This makes it maybe easier to see that not 
only is  not unitary, it isn't even invertible: rows 2 and 3, and rows 1 and 4, are identical.  But:A
 

•  is a real symmetric matrix, so it is Hermitian.A
•  is a matrix of nonnegative entries each of whose rows and columns sums to , which makes A' 1

it doubly stochastic.  This is an analogue of "unitary" for classical probability.
• In fact, for any regular graph, meaning that all vertices have the same degree , dividing the d

adjacency matrix by  always gives a doubly-stochastic matrix.d
• We can in fact make a unitary matrix  by flipping the sign of the two s at lower right and A'' 1

dividing by  rather than by .  This is, however, more of a coincidence than a general feature. 2 2
 The text shows that in the case of the regular prism graph ( , ), there is no sensible n = 6 d = 3
way to make it into a unitary matrix.

• The general way to encode graphs into quantum circuits via the  gate yield much bigger CZ
underlying matrices---and some surprises.  Here we go:

 

 
When put on four qubits, the first gate gives the matrix , which we know how to build: replace CZ⊗ I⊗ I

 

 

1 2

3 4

A =  

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

A' =  A1
2

A'' =  
1

2

0 1 1 0
1 0 0 1
1 0 0 -1
0 1 -1 0
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x4



every entry of the  matrix by the  identity matrix, to get the  matrixCZ 4 × 4 16 × 16
 

:     CZ⊗ I⊗ I = = diag     

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

1
1
1
1
1
1
1
1
1
1
1
1
-1
-1
-1
-1

 
At far left I've put the labels of the underlying coordinates by the sixteen basis strings of length 4.  The 
point is that the  entries go in all the places where the first two bits of the string are  as shown in -1 1
pink.  This is because the first  gate is on the first two bits.  Next, for the gate on qubits 1 and 3, we CZ
follow the same rule but for the coordinates where the first and third bit are :1
 

.:     diag     

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1
1
1
1
1
1
1
1
1
1
-1
-1
1
1
-1
-1

 

 

 



    =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 
Here is the product of all four gate matrices that we get.  I've "properly" put the matrix for the first gate 
on the right now, but actually this doesn't matter---they are all diagonal matrices so they commute with 
each other.  To multiply them, we can just multiply the entries in each of the sixteen rows.  The blue s 1
show cases where an even number of  entries multiplied to give :-1 +1
 

:    diag     ⋅ diag        diag     ⋅ diag      =  diag     .

0000
0001
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1111
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A word to the wise: The matrix for the fourth gate, which comes leftmost just above, is the tensor 
product .  The matrices for the middle two gates, however, are technically not tensor I⊗ I ×CZ( )
products, because one identity comes "between the two arms" of the  gate.  They are "morally" CZ

 

 



tensor products, though.  The assigned exercise 4.11 makes a different case of this point.  The rule 
about places with two particular s, however, applies in all cases.  And the surviving  entries in the 1 -1
product at right mark four of the strings that gave exactly two s, the four corresponding to the edge set 1

 of the graph.E = 1, 2 , 1, 3 , 2, 4 , 3, 4{( ) ( ) ( ) ( )}
 
If we apply our diagonal matrix to the all-  unit vector, here1

, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  =  [ ]1
4 ++++

then we get the column vector of the diagonal entries at right (again, divided by  to normalize it).  Does 4
that column vector faithfully preserve all information about the given graph?  A question to ponder...
 
A graph-state circuit conventionally includes an all-qubits Hadamard transform before and after it:
 

 
 
 

 
 
 
General Quantum Circuits and Computations
 
If there are  qubits, then the underlying matrices we get are  with .  It is much harder to n N ×  N N = 2n

handle -sized stuff than -sized stuff.  Happily, we can always break the basic gates down to 2n n
constant size---3 at most with the Toffoli gate in practice---and there are theorems that guarantee 
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constant size gates working in general.  One important case of using  single-qubit gates is the n
Hadamard transform  (  times), which can be abbreviated :H⊗H⊗ ⋯ ⊗H n H⊗n

 

 ,             H  =  ⊗2 1
2

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

H  =  ⊗3 1

2 2

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

 

We always have the all-1 vector of length  divided by H  =   =   =  ⊗n 0n + ⊗n +n N = 2n

.  Often this is the first step of a quantum circuit, for example: =   =  2N 2n n/2

 
 

 
Putting the same Hadamard transform also at the end creates what is called a graph state circuit; we 
will analyze them later.  
 
We will call an  matrix that arises from a single small gate---or a tensor product of small gates---a N × N
succinct matrix.  Thus a quantum computation of length  is formally a composition of  succinct s s
matrices applied to some input vector.  The text draws allusion to a classical computation on a binary 
string  of length , such as , say.  The quantum circuit starts with input the basis state x n x = 10100010

.  We could actually start with  but then prepare the state  by making the  =  x 10100010 08 x
first column of the circuit be the tensor product
 

,X⊗ I⊗X⊗ I⊗ I⊗ I⊗X⊗ I
 
which has a NOT gate where  has a .  This is why we often suppose ("without loss of generality") that x 1
the circuit starts with the all-zero basis vector.
 
The  and  gates are the heads of an important family of basic gates having to do with rotations of Z CZ
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phase, which is a curious but definitely physical property.  When a complex number  is rewritten x +  iy
in polar form as , the angle  is the phase.  The magnitude is , so when  we have a unit rei𝜃 𝜃 r r = 1
complex number.  Note that  itself is the same as  since  means  phase.  Then i ei𝜋/2 𝜋

2 90∘

 and if we put  then .  In Cartesian coordinates, .  Here is i  =  e  =  - 12 i𝜋 𝜔 = ei𝜋/4 𝜔 = i2 𝜔 =  1 + i
2

some more geometry:
 

The vector  is a funky unit vector.  To see that it is a unit vector, note that u = a, b[ ]T
 

.||u||  =  ⟨u, u⟩ =  u ⋅ u =  a a + b b =  +2 * * * 1 +
2

𝜔⏨ 1 + 𝜔
2

1 -
2

𝜔⏨ 1 - 𝜔
2

 
In polar form, the complex conjugate of  is always , so .  In Cartesian ei𝜃 e = e-i𝜃 i 2𝜋-𝜃( ) = e = 𝜔𝜔⏨ i7𝜋/4 7

coordinates,
 

    and    =  1 + =
1 + 𝜔

2
1
2

1+i
2

+1+i
2
2

2
 =  1 - =

1 - 𝜔
2
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2
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1 +

2
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Then 

= + 1 + i + 1 - i = + 1 + 1 = 2 + 1 + 2 + 1 =1+
2
𝜔⏨ 1+𝜔

2
1
8 2 2 1

8 2
2 1

8 2 2+
4

2

and

.= - 1 - i - 1 + i = - 1 + 1 = 2 + 1 - 2 + 1 =1-
2
𝜔⏨ 1-𝜔

2
1
8 2 2 1

8 2
2 1

8 2 2-
4

2

 

 



 
These squared values add to  as promised, so  is a unit vector.  How do we get it?  Here is 1 u = a, b[ ]T
the start of an infinite family of gates:
 

,   ,   ,   .Z =  1 0
0 -1

S =  1 0
0 i

T =  1 0
0 𝜔

T  =  𝜋/8
1 0
0 ei𝜋/8

 
The controlled versions to go with  are , , etc.  They, too, are symmetric---indeed, all of these CZ CS CT

gates are controlled phase shifts conditioned on the basis-state  of all of the (one or two) qubits 1
involved.  (Here I must note global inconsistency and confusion in notation, especially about rotations, 
which we will try to resolve when we cover the Bloch Sphere next week.)
 
Now we have all the background we need to read quantum circuits.  Lecture will go on to illustrate 
them, both out of section 4.5 and (the same examples) on QC web applets.
 
 
 
The Quantum Fourier Transform
 
 
Super-tiny angles are in the definition of the QFT itself.  For any , it takes  where n 𝜔  =  en

2𝜋i/N

.  With , the matrix together with its quantum coordinates is:N =  2n n =  3
 

 
 
Two other 2-qubit gates and their matrix and circuit representations are:

The  gate is symmetric: note that its results on  and on  are the same.  So are the  and CZ 01 10 CS

 

 

 000 001 010 011 100 101 110 111
000 1 1 1 1 1 1 1 1
001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i
011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1
101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1
5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j  =  𝜔[ ] ij

CZ =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

SWAP =  

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 gates, which have  and  in place of the .  For a general  matrix ,  is CT i 𝜔 =  e  =  i𝜋/4 i -1 r × r A CA

the  matrix given in block form as .  The circuit convention is to put a black dot on the 2r × 2r I 0
0 A

control qubit line and a vertical line extending to  in a box the target line(s).  Most applets make you A
do that with  as well as  and , but it is good to remember that these three (and further ones CZ CS CT

with roots of  at bottom right) are symmetric.  𝜔
 
 
Two other 2-qubit gates and their matrix and circuit representations are:

 
 
Continuing the idea of the progression , , ,... to finer angles leads into the general CZ CS CT

construction of -sized circuits of basic gates for the -qubit Quantum Fourier Transform (QFT). O n2 n
The usual recursive way to build it via  unary and binary gates uses controlled rotations by O n2

exponentially tiny angles.  This is already evident from the four-qubit illustration in the textbook (where 
the two gates on the left are :

Here  with  not  as with the -gate.  So  has a phase angle T  =  𝜋/8
1 0
0 𝜔' 𝜔' =  ei𝜋/8 𝜔 =  ei𝜋/4 T 𝜔'

one-sixteenth of a circle.  For  the next bank uses , then , and soon the angles would n =  5 1 / 32 1 / 64
be physically impossible so the gates could never be engineered.  
 
 
For  we raise  with its tiny phase to exponentially many different powers.  How can this QFTN 𝜔N
possibly be feasible?  Leonid Levin among others raised this objection.  Here are several answers:

 

 

CS =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

CT =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝜔S

T



• Basic gates can fabricate quantum states having finer phases.  This is already hinted by the 
diagram in the case of .  Try composing  and .  The Solovay-HTH HTHT H* HTHT HTHT H* *

Kitaev theorem enables approximating operators with exponentially fine angles by polynomially 
many gates of phases that are multiples of .𝜔

• The Toffoli and Hadamard gates by themselves, which have phases only  and , can +1 -1
simulate the real parts and imaginary parts of quantum computations separately via binary code, 
in a way that allows re-creating all measurement probabilities.  (This is undertaken in exercises 
7.8--7.14 with a preview in the solved exercise 3.8.) 

• The CNOT and Hadamard gates do not suffice for this, even when the so-called "phase gate" 

 is added.  The Pauli  gates and also  can be built from these, but S =  T  =  2 1 0
0 i

X,Y,Z CZ

quantum circuits of these gates can be simulated in deterministic ("classical") polynomial time.  
However,  suffices to build the Toffoli gate, per the diagram below (which is also a CS

presentation option).  So Hadamard +  is a universal set using only quarter phases.  CS
• The signature application of the QFT, which is Shor's algorithm showing that factoring belongs to 

, may only require coarsed-grained approximations to .  Indeed, the above theorem BQP QFTN
about Hadamard and Toffoli gates implies that they can efficiently represent the acceptance 
outcomes of any quantum circuit---though not its complex amplitudes.  This extends to the 
replacement of Toffoli by Controlled-  owing to the equation we have seen:S

For these reasons,   is considered feasible even though  is exponential.  Not every QFTN N =  2n

 unitary matrix  is feasible---the Solovay-Kitaev theorem relies on  having a small exact N ×  N U U
formulation to begin with.  But if we fix a finite universal gate set (such as , , H+ T+CNOT H+ Tof

or  above) and use only matrices that are compositions and tensor products of these gates, H+CS
then we can use the simple gate-counting metric as the main complexity measure.

 

 



 
 
Outputs and Measurements
 
There are various conventions about what it means for a family  of quantum circuits to compute a C[ n]
function  on , where  is an ensemble of functions  on  and each  computes .  I f 0, 1{ }* f fn 0, 1{ }n Cn fn

like supposing that  is coded in  where  depends only on  and giving  -many output f x( ) 0, 1{ }r r n Cn r
qubits separate from the  input qubits, plus some number  of ancilla qubits.  (It is traditional, IMHO n m
weirdly, to consider that the primordial input is always  and that for any other , NOT gates are 0n x
prepended onto the circuit for those lines  where .) i x  =  1i
 
For languages, this means that the yes/no verdict comes on qubit .  Many references say to n + 1
measure line  instead.  (Using a swap gate between lines  and  can show these conventions to 1 1 n + 1
be equivalent, but I prefer reserving lines  to  for potential use of the "copy-uncompute" trick, which is 1 n
covered in section 6.3.)   Even for languages, however, one evidently cannot get the most power if you 
need always to rig the circuit so that on any input , the output line always has a x ∈  0, 1{ }n
(standard-)basis value, i.e., is  with certainty or is  with certainty.  Instead, one must measure it, 0 1

whereupon the value  is given with some probability ,  with probability .  0 p 1 1 -  p
 
The math of measurements (at least of the kind of pure states we get in completely-specified circuits) is 
simple.  At the end we have a quantum state  of  qubits, counting the output and any ancilla 𝛹 n + r + m
lines.  It "is" a vector  where .  Numbering  in canonical v , v , … v  ∈  C( 1 2 Q) Q Q =  2n+r+m 0, 1{ }n+r+m

order as , an all-qubits measurement gives any  with probability .  If we focus on just z , … , z1 S zj |v |j 2

the  output lines, then any  occurs with probabilityr y ∈  0, 1{ }r

. |v |∑
 

j: z  agrees with y on the r output linesj

j
2

 
When  and  the sum is over all binary strings   that have a  in the corresponding r =  1 y =  0 zj 0
places.  To simplify the notartion, let  denote the probability of measuring  on the output qubit line.  px 1
The notion of uniformity is similar to that for ordinary Boolean circuits: it means that  can be written Cn

down in  (classical) time.  We can finally define:nO 1( )

 
Definition: A language  belongs to  if there is a uniform family  of polynomial-sized quantum L BQP C[ n]
circuits such that for all  and inputs ,n x ∈ 0, 1{ }n
 

x ∈  L ⟹  p  ≥  3 / 4;x
x ∉  L ⟹  p  ≤  1 / 4.x

 
[Do HTH and (HTHT)* examples of getting higher probabilities, and maybe contrast with graph states in 
the multi-qubit case.]

 

 



 
Computing Functions
 
Let us view the 4-qubit Hadamard transform as a big matrix:
 

 
We have argued that the Hadamard transform is feasible: it is just a column of  Hadamard gates, one n
on each qubit line.  There is, however, one consequence that can be questioned.  We observed that a 
network of Toffoli gates suffices to simulate any Boolean circuit  (of NAND gates etc.) that computes a C
function .  The Toffoli network  actually computes the reversible formf : 0, 1 0, 1{ }n → { }r Cf
 

 .F x , … , x , a , … , a  =  x , … , x , a ⊕ f x , … , a ⊕ f x( 1 n 1 r) ( 1 n 1 ( )1 r ( )r)
 
The matrix  of  is a giant permutation martrix in the  underlying coordinates.  Yet if the Uf Cf 2n+r

Boolean circuit  has  gates, then we reckon that  costs  to build and operate.  Now build the C s Cf O s( )
following circuit, which is illustrated with  and :n = 5 r = 4

 

 

H 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v  =  -1[ ] ( )u•v



 
What this circuit piece computes is the functional superposition of , defined asf
 

.     =    𝛷f
1

2n
∑

 

x∈ 0,1{ }n
x f x( )

 
The juxtaposition of two kets really is a tensor product.  This sum has exponentially many terms.  It 
seems to preserve an exponential amount of information: the entire truth table of the Boolean function 

 over all arguments .   However:f x( ) x ∈ 0, 1{ }n
 

•  is not an arbitrary or "random" function: it is computed by a small circuit of  NAND gates.f s
• We cannot actually extract an exponential amount of information from .  If we measure it 𝛷f

using the standard basis, we get our argument  back again plus  bits of some sampled x r
function value.  Measuring it in a different basis does not increase the information yield (this is 
part of Holevo's Theorem).  

 
Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the 
creation of , instead of just  for the Hadamard transform plus  for the circuit.𝛷f O n( ) O s( )
 
Let's ask this where the circuit is just a bunch of  gates.  On five qubits,CNOT
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computes the functional superposition
 

. 
1

32
∑

 

x∈ 0,1{ }5

x x

 
This is not the same as , because that is the equal superposition over all basis ⊗+++++ +++++
states for -bit binary strings, including all the cases of  where the binary strings  and  of length 10 xy x y

 are different.  An analogy is that for any set  of two or more elements, the Cartesian product of  5 A A
with itself includes ordered pairs  with  but , whereas the functional superposition is x, y( ) x, y ∈ A x ≠ y
like the diagonal of the Cartesian product, namely .  The functional superposition is x, x : x ∈ A{( ) }
entangled, just as we first saw in the case .n = 1
 
If we replace the five  gates by a subcircuit that prepares a general 5-qubit stateH
 

, =  a + a + ⋯ + a + a𝜙 0 00000 1 00001 30 11110 31 11111
 
then the five  gates produceCNOT
 

.D  =  a + a + ⋯ + a + a𝜙 0 0000000000 1 0000100001 30 1111011110 31 1111111111
 
This is not the same as , whose terms have coefficients  for all  and .  IMHO the ⊗𝜙 𝜙 a ai j i j
notation  or  can be unclear about what is meant, though I've freely used  etc. as 𝜙 𝜙 𝜙𝜙 ++
above.  When  is a basis element in the basis used for notation, then there is no difference: both x

 and  have the single term  with coefficient .  ⊗x x D x xx 1 = 12
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Feasible Diagonal Matrices (section 5.4)
 

We can continue the progression , , by Z = 1 0
0 -1

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

, ,CCZ =

1        
 1       
  1      
   1     
    1    
     1   
      1  
       -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([ ])

 
and so forth.  These are examples of a different kind of conversion of a Boolean function  besides the f
reversible form called  or  above.  This is the matrix  defined for all indices  byF Cf Gf u, v
 

.G u, v  =  f[ ]
0 if u ≠ v
-1 if u = v ∧ f u = 1( )
1 if u = v ∧ f u = 0( )

 
The above are for the -ary AND function.  The  stands for "Grover Oracle", though here I G  AND n G
would rather emphasize that it is a concretely feasible operation.  This ultimately leads to a theorem 
whose statement doesn't appear until chapter 6:
 
Theorem (6.2): If  is computable by a Boolean circuit with  gates, thgen  can be computed by a f s Gf
quantum circuit of  gates.O s( )
 
When  is polynomial in , this makes a big contrast to  being a -sized diagonal matrix.   s =  s n( ) n Gf 2n

 
 

 

 


