
CSE439 Week 4: More Quantum Circuits

Graph-State Circuits

Now gates are especially neat because they look like edges in a graph , specifically CZ G = V, E()
an undirected graph because the gates are symmetric. Let's first see some examples of graphs. The
cycle graphs have vertices (also called nodes) and edges connecting them in a ring, for . Ck k k k ≥ 3
The four-cycle graph has the following picture and adjacency matrix:

Note: This differs from the text only in the labels 3 and 4. This makes it maybe easier to see that not
only is not unitary, it isn't even invertible: rows 2 and 3, and rows 1 and 4, are identical. But:A

• is a real symmetric matrix, so it is Hermitian.A
• is a matrix of nonnegative entries each of whose rows and columns sums to , which makes A' 1

it doubly stochastic. This is an analogue of "unitary" for classical probability.
• In fact, for any regular graph, meaning that all vertices have the same degree , dividing the d

adjacency matrix by always gives a doubly-stochastic matrix.d
• We can in fact make a unitary matrix by flipping the sign of the two s at lower right and A'' 1

dividing by rather than by . This is, however, more of a coincidence than a general feature. 2 2
 The text shows that in the case of the regular prism graph (,), there is no sensible n = 6 d = 3
way to make it into a unitary matrix.

• The general way to encode graphs into quantum circuits via the gate yield much bigger CZ
underlying matrices---and some surprises. Here we go:

When put on four qubits, the first gate gives the matrix , which we know how to build: replace CZ⊗ I⊗ I

1 2

3 4

A =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

A' = A1
2

A'' =
1

2

0 1 1 0
1 0 0 1
1 0 0 -1
0 1 -1 0

x1

x2

x3

x4

every entry of the matrix by the identity matrix, to get the matrixCZ 4 × 4 16 × 16

: CZ⊗ I⊗ I = = diag

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

1
1
1
1
1
1
1
1
1
1
1
1
-1
-1
-1
-1

At far left I've put the labels of the underlying coordinates by the sixteen basis strings of length 4. The
point is that the entries go in all the places where the first two bits of the string are as shown in -1 1
pink. This is because the first gate is on the first two bits. Next, for the gate on qubits 1 and 3, we CZ
follow the same rule but for the coordinates where the first and third bit are :1

.: diag

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1
1
1
1
1
1
1
1
1
1
-1
-1
1
1
-1
-1

 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

Here is the product of all four gate matrices that we get. I've "properly" put the matrix for the first gate
on the right now, but actually this doesn't matter---they are all diagonal matrices so they commute with
each other. To multiply them, we can just multiply the entries in each of the sixteen rows. The blue s 1
show cases where an even number of entries multiplied to give :-1 +1

: diag ⋅ diag diag ⋅ diag = diag .

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1
1
1
-1
1
1
1
-1
1
1
1
-1
1
1
1
-1

1
1
1
1
1
-1
1
-1
1
1
1
1
1
-1
1
-1

1
1
1
1
1
1
1
1
1
1
-1
-1
1
1
-1
-1

1
1
1
1
1
1
1
1
1
1
1
1
-1
-1
-1
-1

1
1
1
-1
1
-1
1
1
1
1
-1
1
-1
1
1
1

A word to the wise: The matrix for the fourth gate, which comes leftmost just above, is the tensor
product . The matrices for the middle two gates, however, are technically not tensor I⊗ I ×CZ()
products, because one identity comes "between the two arms" of the gate. They are "morally" CZ

tensor products, though. The assigned exercise 4.11 makes a different case of this point. The rule
about places with two particular s, however, applies in all cases. And the surviving entries in the 1 -1
product at right mark four of the strings that gave exactly two s, the four corresponding to the edge set 1

 of the graph.E = 1, 2 , 1, 3 , 2, 4 , 3, 4{() () () ()}

If we apply our diagonal matrix to the all- unit vector, here1

, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, = []1
4 ++++

then we get the column vector of the diagonal entries at right (again, divided by to normalize it). Does 4
that column vector faithfully preserve all information about the given graph? A question to ponder...

A graph-state circuit conventionally includes an all-qubits Hadamard transform before and after it:

General Quantum Circuits and Computations

If there are qubits, then the underlying matrices we get are with . It is much harder to n N × N N = 2n

handle -sized stuff than -sized stuff. Happily, we can always break the basic gates down to 2n n
constant size---3 at most with the Toffoli gate in practice---and there are theorems that guarantee

x1

x2

x3

x4 H

H

H

H

H

H

H

H

x1

x2

x3

x4

H

H

H

H

H

H

H

H

constant size gates working in general. One important case of using single-qubit gates is the n
Hadamard transform (times), which can be abbreviated :H⊗H⊗ ⋯ ⊗H n H⊗n

 , H = ⊗2 1
2

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

H = ⊗3 1

2 2

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

We always have the all-1 vector of length divided by H = = = ⊗n 0n + ⊗n +n N = 2n

. Often this is the first step of a quantum circuit, for example: = = 2N 2n n/2

Putting the same Hadamard transform also at the end creates what is called a graph state circuit; we
will analyze them later.

We will call an matrix that arises from a single small gate---or a tensor product of small gates---a N × N
succinct matrix. Thus a quantum computation of length is formally a composition of succinct s s
matrices applied to some input vector. The text draws allusion to a classical computation on a binary
string of length , such as , say. The quantum circuit starts with input the basis state x n x = 10100010

. We could actually start with but then prepare the state by making the = x 10100010 08 x
first column of the circuit be the tensor product

,X⊗ I⊗X⊗ I⊗ I⊗ I⊗X⊗ I

which has a NOT gate where has a . This is why we often suppose ("without loss of generality") that x 1
the circuit starts with the all-zero basis vector.

The and gates are the heads of an important family of basic gates having to do with rotations of Z CZ

0

0

0

0

H

H

H

H

phase, which is a curious but definitely physical property. When a complex number is rewritten x + iy
in polar form as , the angle is the phase. The magnitude is , so when we have a unit rei𝜃 𝜃 r r = 1
complex number. Note that itself is the same as since means phase. Then i ei𝜋/2 𝜋

2 90∘

 and if we put then . In Cartesian coordinates, . Here is i = e = - 12 i𝜋 𝜔 = ei𝜋/4 𝜔 = i2 𝜔 = 1 + i
2

some more geometry:

The vector is a funky unit vector. To see that it is a unit vector, note that u = a, b[]T

.||u|| = ⟨u, u⟩ = u ⋅ u = a a + b b = +2 * * * 1 +
2

𝜔⏨ 1 + 𝜔
2

1 -
2

𝜔⏨ 1 - 𝜔
2

In polar form, the complex conjugate of is always , so . In Cartesian ei𝜃 e = e-i𝜃 i 2𝜋-𝜃() = e = 𝜔𝜔⏨ i7𝜋/4 7

coordinates,

 and = 1 + =
1 + 𝜔

2
1
2

1+i
2

+1+i
2
2

2
 = 1 - =

1 - 𝜔
2

1
2

1+i
2

-1-i
2
2

2

So

 and . = 1 + =
1 +

2
𝜔⏨ 1

2
1-i

2
+1-i

2
2

2
 = 1 - =

1 -
2

𝜔⏨ 1
2

1-i
2

-1+i
2
2

2

Then

= + 1 + i + 1 - i = + 1 + 1 = 2 + 1 + 2 + 1 =1+
2
𝜔⏨ 1+𝜔

2
1
8 2 2 1

8 2
2 1

8 2 2+
4

2

and

.= - 1 - i - 1 + i = - 1 + 1 = 2 + 1 - 2 + 1 =1-
2
𝜔⏨ 1-𝜔

2
1
8 2 2 1

8 2
2 1

8 2 2-
4

2

These squared values add to as promised, so is a unit vector. How do we get it? Here is 1 u = a, b[]T
the start of an infinite family of gates:

, , , .Z = 1 0
0 -1

S = 1 0
0 i

T = 1 0
0 𝜔

T = 𝜋/8
1 0
0 ei𝜋/8

The controlled versions to go with are , , etc. They, too, are symmetric---indeed, all of these CZ CS CT

gates are controlled phase shifts conditioned on the basis-state of all of the (one or two) qubits 1
involved. (Here I must note global inconsistency and confusion in notation, especially about rotations,
which we will try to resolve when we cover the Bloch Sphere next week.)

Now we have all the background we need to read quantum circuits. Lecture will go on to illustrate
them, both out of section 4.5 and (the same examples) on QC web applets.

The Quantum Fourier Transform

Super-tiny angles are in the definition of the QFT itself. For any , it takes where n 𝜔 = en

2𝜋i/N

. With , the matrix together with its quantum coordinates is:N = 2n n = 3

Two other 2-qubit gates and their matrix and circuit representations are:

The gate is symmetric: note that its results on and on are the same. So are the and CZ 01 10 CS

 000 001 010 011 100 101 110 111
000 1 1 1 1 1 1 1 1
001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i
011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1
101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1
5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j = 𝜔[] ij

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 gates, which have and in place of the . For a general matrix , is CT i 𝜔 = e = i𝜋/4 i -1 r × r A CA

the matrix given in block form as . The circuit convention is to put a black dot on the 2r × 2r I 0
0 A

control qubit line and a vertical line extending to in a box the target line(s). Most applets make you A
do that with as well as and , but it is good to remember that these three (and further ones CZ CS CT

with roots of at bottom right) are symmetric. 𝜔

Two other 2-qubit gates and their matrix and circuit representations are:

Continuing the idea of the progression , , ,... to finer angles leads into the general CZ CS CT

construction of -sized circuits of basic gates for the -qubit Quantum Fourier Transform (QFT). O n2 n
The usual recursive way to build it via unary and binary gates uses controlled rotations by O n2

exponentially tiny angles. This is already evident from the four-qubit illustration in the textbook (where
the two gates on the left are :

Here with not as with the -gate. So has a phase angle T = 𝜋/8
1 0
0 𝜔' 𝜔' = ei𝜋/8 𝜔 = ei𝜋/4 T 𝜔'

one-sixteenth of a circle. For the next bank uses , then , and soon the angles would n = 5 1 / 32 1 / 64
be physically impossible so the gates could never be engineered.

For we raise with its tiny phase to exponentially many different powers. How can this QFTN 𝜔N
possibly be feasible? Leonid Levin among others raised this objection. Here are several answers:

CS =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

CT =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝜔S

T

• Basic gates can fabricate quantum states having finer phases. This is already hinted by the
diagram in the case of . Try composing and . The Solovay-HTH HTHT H* HTHT HTHT H* *

Kitaev theorem enables approximating operators with exponentially fine angles by polynomially
many gates of phases that are multiples of .𝜔

• The Toffoli and Hadamard gates by themselves, which have phases only and , can +1 -1
simulate the real parts and imaginary parts of quantum computations separately via binary code,
in a way that allows re-creating all measurement probabilities. (This is undertaken in exercises
7.8--7.14 with a preview in the solved exercise 3.8.)

• The CNOT and Hadamard gates do not suffice for this, even when the so-called "phase gate"

 is added. The Pauli gates and also can be built from these, but S = T = 2 1 0
0 i

X,Y,Z CZ

quantum circuits of these gates can be simulated in deterministic ("classical") polynomial time.
However, suffices to build the Toffoli gate, per the diagram below (which is also a CS

presentation option). So Hadamard + is a universal set using only quarter phases. CS
• The signature application of the QFT, which is Shor's algorithm showing that factoring belongs to

, may only require coarsed-grained approximations to . Indeed, the above theorem BQP QFTN
about Hadamard and Toffoli gates implies that they can efficiently represent the acceptance
outcomes of any quantum circuit---though not its complex amplitudes. This extends to the
replacement of Toffoli by Controlled- owing to the equation we have seen:S

For these reasons, is considered feasible even though is exponential. Not every QFTN N = 2n

 unitary matrix is feasible---the Solovay-Kitaev theorem relies on having a small exact N × N U U
formulation to begin with. But if we fix a finite universal gate set (such as , , H+ T+CNOT H+ Tof

or above) and use only matrices that are compositions and tensor products of these gates, H+CS
then we can use the simple gate-counting metric as the main complexity measure.

Outputs and Measurements

There are various conventions about what it means for a family of quantum circuits to compute a C[n]
function on , where is an ensemble of functions on and each computes . I f 0, 1{ }* f fn 0, 1{ }n Cn fn

like supposing that is coded in where depends only on and giving -many output f x() 0, 1{ }r r n Cn r
qubits separate from the input qubits, plus some number of ancilla qubits. (It is traditional, IMHO n m
weirdly, to consider that the primordial input is always and that for any other , NOT gates are 0n x
prepended onto the circuit for those lines where .) i x = 1i

For languages, this means that the yes/no verdict comes on qubit . Many references say to n + 1
measure line instead. (Using a swap gate between lines and can show these conventions to 1 1 n + 1
be equivalent, but I prefer reserving lines to for potential use of the "copy-uncompute" trick, which is 1 n
covered in section 6.3.) Even for languages, however, one evidently cannot get the most power if you
need always to rig the circuit so that on any input , the output line always has a x ∈ 0, 1{ }n
(standard-)basis value, i.e., is with certainty or is with certainty. Instead, one must measure it, 0 1

whereupon the value is given with some probability , with probability . 0 p 1 1 - p

The math of measurements (at least of the kind of pure states we get in completely-specified circuits) is
simple. At the end we have a quantum state of qubits, counting the output and any ancilla 𝛹 n + r + m
lines. It "is" a vector where . Numbering in canonical v , v , … v ∈ C(1 2 Q) Q Q = 2n+r+m 0, 1{ }n+r+m

order as , an all-qubits measurement gives any with probability . If we focus on just z , … , z1 S zj |v |j 2

the output lines, then any occurs with probabilityr y ∈ 0, 1{ }r

. |v |∑

j: z agrees with y on the r output linesj

j
2

When and the sum is over all binary strings that have a in the corresponding r = 1 y = 0 zj 0
places. To simplify the notartion, let denote the probability of measuring on the output qubit line. px 1
The notion of uniformity is similar to that for ordinary Boolean circuits: it means that can be written Cn

down in (classical) time. We can finally define:nO 1()

Definition: A language belongs to if there is a uniform family of polynomial-sized quantum L BQP C[n]
circuits such that for all and inputs ,n x ∈ 0, 1{ }n

x ∈ L ⟹ p ≥ 3 / 4;x
x ∉ L ⟹ p ≤ 1 / 4.x

[Do HTH and (HTHT)* examples of getting higher probabilities, and maybe contrast with graph states in
the multi-qubit case.]

Computing Functions

Let us view the 4-qubit Hadamard transform as a big matrix:

We have argued that the Hadamard transform is feasible: it is just a column of Hadamard gates, one n
on each qubit line. There is, however, one consequence that can be questioned. We observed that a
network of Toffoli gates suffices to simulate any Boolean circuit (of NAND gates etc.) that computes a C
function . The Toffoli network actually computes the reversible formf : 0, 1 0, 1{ }n → { }r Cf

 .F x , … , x , a , … , a = x , … , x , a ⊕ f x , … , a ⊕ f x(1 n 1 r) (1 n 1 ()1 r ()r)

The matrix of is a giant permutation martrix in the underlying coordinates. Yet if the Uf Cf 2n+r

Boolean circuit has gates, then we reckon that costs to build and operate. Now build the C s Cf O s()
following circuit, which is illustrated with and :n = 5 r = 4

H 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v = -1[] ()u•v

What this circuit piece computes is the functional superposition of , defined asf

. = 𝛷f
1

2n
∑

x∈ 0,1{ }n
x f x()

The juxtaposition of two kets really is a tensor product. This sum has exponentially many terms. It
seems to preserve an exponential amount of information: the entire truth table of the Boolean function

 over all arguments . However:f x() x ∈ 0, 1{ }n

• is not an arbitrary or "random" function: it is computed by a small circuit of NAND gates.f s
• We cannot actually extract an exponential amount of information from . If we measure it 𝛷f

using the standard basis, we get our argument back again plus bits of some sampled x r
function value. Measuring it in a different basis does not increase the information yield (this is
part of Holevo's Theorem).

Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the
creation of , instead of just for the Hadamard transform plus for the circuit.𝛷f O n() O s()

Let's ask this where the circuit is just a bunch of gates. On five qubits,CNOT

0

0

0

0

0

0

0

0

0

H

H

H

H

H
Cf

computes the functional superposition

.
1

32
∑

x∈ 0,1{ }5

x x

This is not the same as , because that is the equal superposition over all basis ⊗+++++ +++++
states for -bit binary strings, including all the cases of where the binary strings and of length 10 xy x y

 are different. An analogy is that for any set of two or more elements, the Cartesian product of 5 A A
with itself includes ordered pairs with but , whereas the functional superposition is x, y() x, y ∈ A x ≠ y
like the diagonal of the Cartesian product, namely . The functional superposition is x, x : x ∈ A{() }
entangled, just as we first saw in the case .n = 1

If we replace the five gates by a subcircuit that prepares a general 5-qubit stateH

, = a + a + ⋯ + a + a𝜙 0 00000 1 00001 30 11110 31 11111

then the five gates produceCNOT

.D = a + a + ⋯ + a + a𝜙 0 0000000000 1 0000100001 30 1111011110 31 1111111111

This is not the same as , whose terms have coefficients for all and . IMHO the ⊗𝜙 𝜙 a ai j i j
notation or can be unclear about what is meant, though I've freely used etc. as 𝜙 𝜙 𝜙𝜙 ++
above. When is a basis element in the basis used for notation, then there is no difference: both x

 and have the single term with coefficient . ⊗x x D x xx 1 = 12

0

0

0

0

0

0

0

0

0

H

H

H

H

H

0

Feasible Diagonal Matrices (section 5.4)

We can continue the progression , , by Z = 1 0
0 -1

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

, ,CCZ =

1
 1
 1
 1
 1
 1
 1
 -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([])

and so forth. These are examples of a different kind of conversion of a Boolean function besides the f
reversible form called or above. This is the matrix defined for all indices byF Cf Gf u, v

.G u, v = f[]
0 if u ≠ v
-1 if u = v ∧ f u = 1()
1 if u = v ∧ f u = 0()

The above are for the -ary AND function. The stands for "Grover Oracle", though here I G AND n G
would rather emphasize that it is a concretely feasible operation. This ultimately leads to a theorem
whose statement doesn't appear until chapter 6:

Theorem (6.2): If is computable by a Boolean circuit with gates, thgen can be computed by a f s Gf
quantum circuit of gates.O s()

When is polynomial in , this makes a big contrast to being a -sized diagonal matrix. s = s n() n Gf 2n

