
CSE439/510 Week 5: Building and Visualizing Quantum Circuits
 
We begin with a famous but easy impossibility result, which actually becomes an example of how 
interpreting quantum circuits can be tricky unless you apply the principle of linearity strictly.
 
 
The No-Cloning Theorem
 
It's good enough to prove this in the case of copying one qubit in a two-qubit circuit.
 
Theorem: There is no  unitary operation  such that for any single-qubit quantum state 4 × 4 U

, .𝜙 =  ae  +  be0 1 U 𝜙 ⊗  e  =  𝜙 ⊗ 𝜙( 0)
 
Proof: Suppose  existed.  Then  and .  So by linearity,U U e ⊗ e  =  e ⊗ e( 0 0) 0 0 U e ⊗ e  =  e ⊗ e( 1 0) 1 1
 
U 𝜙 ⊗  e  =  U ae  +  be ⊗ e  =  U a e ⊗ e  +  b e ⊗ e( 0) (( 0 1) 0) ( ( 0 0) ( 1 0))
 

.=  aU e ⊗ e  +  bU e ⊗ e   =   a e ⊗ e  +  b e ⊗ e  =  ae  +  be( 0 0) ( 1 0) ( 0 0) ( 1 1) 00 11
 
But  is supposed to equal , which U 𝜙 ⊗  e( 0) 𝜙 ⊗ 𝜙
 

.=  ae  +  be ⊗ ae  +  be   =   a e  +  abe  +  abe  +  b e( 0 1) ( 0 1) 2
00 01 10

2
11

 
The only way these quantities can be equal is if .  That boils down to saying that the only single-ab = 0
qubit states that can be copied are the two standard basis states.  (Note that this is a much stronger 
conclusion than the theorem stated.)  ☒
 
And indeed there is a  unitary matrix that can do this, namely .  This leads to the next topic.4 × 4 CNOT
 
 
The Copy Uncompute Trick
 
Suppose we know in advance that at a certain point in a quantum circuit  on a particular input  (that C x
is to say, ), some set of  qubit lines will be in a standard basis state .  Then we can insert  ex r ey CNOT

gates between each of those lines and one of  fresh qubit lines to make a copy of :r ey
 
 

 

 



 
If we then follow up with the inverse  of , then we also restore the input lines  to what they U* U x ⋯ x1 n
were:
 

 
Note: this works only when it really is true that the selected lines have separated basis state values at 
that juncture.  An example where it fails is with  and , the circuit H 1 CNOT 1 2 H 1 which n = 1 r = 1
creates the operation we called .  E
 
 
 
[Show H CNOT H example in Quirk.]
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The Deferred Measurement Principle (section 6.6)
 
 
In a picture:

In a picture:
 
 

 

 

U U
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Feasible Diagonal Matrices (section 5.4)
 

We can continue the progression , , by Z = 1 0
0 -1

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

, ,CCZ =

1        
 1       
  1      
   1     
    1    
     1   
      1  
       -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([ ])

 
and so forth.  These are examples of a different kind of conversion of a Boolean function  besides the f
reversible form called  or  above.  This is the matrix  defined for all indices  byF Cf Gf u, v
 

.G u, v  =  f[ ]
0 if u ≠ v
-1 if u = v ∧ f u = 1( )
1 if u = v ∧ f u = 0( )

 
The above are for the -ary AND function.  The  stands for "Grover Oracle", though here I G  AND n G
would rather emphasize that it is a concretely feasible operation.
 
Theorem (6.2): If  is computable by a Boolean circuit with  gates, thgen  can be computed by a f s Gf
quantum circuit of  gates.O s( )
 
When  is polynomial in , this makes a big contrast to  being a -sized diagonal matrix.   s =  s n( ) n Gf 2n

 
 
An Interesting Unitary Operation
 
Let  stand for the all-1s matrix of  qubits.   itself is .  As an example with , Jn n Jn 2  ×  2n n n = 2
 

J  =  2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 

 



 
This is Hermitian but not unitary---far from it.  Actually, it equals the outerproduct  but ++ ++
multiplied by .  If we write in boldface , then  where .  With this 4 J  =  n +n +n J = Jn

1
N n N = 2n

normalization, we have (ordinary matrix multiplication, not tensoring)
 

J  =    ⋅  =     =   ⋅ 1 ⋅  =  J .2
n +n +n +n +n +n +n +n +n +n +n

n

 
(Math Jargon: this means  is idempotent.)  Now defineJn
 

,R  =  2J  -  In n n
 
where  is the  identity matrix, same as the  identity matrix tensored with itself  times.   In N × N 2 × 2 n
For  we get:n = 2
 

.R  =   -  =  2

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
2

-1 1 1 1
1 -1 1 1
1 1 -1 1
1 1 1 -1

 
Now we can verify that the matrix on the right is unitary.  It resembles the matrix we earlier called  but E

that had the  entries going southwest to northeast instead.  Now let's apply to a generic vector -1
u =  a , a , a , a :[ 1 2 3 4]T
 

R  u =  2J  u -  Iu =  1, 1, 1, 1  -  u2 2

a + a + a + a
2

1 2 3 4 [ ]T

 
Is this unitary?  Note:  R  =   2J  -  I  2J  -  I  =  4J  -  2J  -  2J  +  I  =  I .2

n ( n n)( n n) 2
n n n n n

 
So  is a square root of the identity operator, and this is enough to make it unitary.  Thus if we apply Rn

 a second time (and generally with ), we get  back again.  Thus this is a reflection of  around R2 Rn u u
the all-1s vector (that is, around ).  We will use a version fo this in Grover's algorithm later.+n

 
 
 
The Phase Flip Trick (section 6.5)
 
 

 

 



 

 

 



 
 
Reckoning and Visualizing Circuits and Measurements (chapter 7)
 
There are basically three ways to "reckon" a quantum circuit computation on  total qubits, :q Q = 2q

 
1. Multiply the  matrices together---using sparse-matrix techniques as far as possible.  If Q × Q

 and you try this on a problem in the difference then the sparse-matrix techniques BQP ≠  P
must blow up at some (early) point.  The downside is that the exponential blowup is paid early; 
the upside is that once you pay it, the matrix multiplications don't get any worse, no matter how 
more complex the gates become.  This is often called a "Schrödinger-style" simulation.

2. Any product of -many  matrices can be written as a single big sum of -fold products.  s Q × Q s
For instance, if  are four such matrices and  is a length-  vector, thenA, B, C, D u Q

.ABCDu i  =  A i, j ⋅ B j, k ⋅ C k, l ⋅ D l, m ⋅ u m[ ] ∑
Q-1

j,k,l,m=0
[ ] [ ] [ ] [ ] [ ]

Every (nonzero) product of this form can be called a (legal) path through the system.  [As hinted 
before, in a quantum circuit,  will be at left---on an input , it will be the basis vector u x

 under the convention that s are used to initialize the output and ancilla lines-e  =  x0r+m x0r+m 0
--and  will be the first matrix from gate(s) in the circuit as you read left-to-right.  Thus the D
output will come out of , which is why it is best to visualize the path as coming in from the top A
of the column vector , going out at some row  (where  is nonzero---for a standard basis u m um
vector, there is only one such ), then coming in at column  of , choosing some row  to exit m m D l

 

 



(where the entry  is nonzero), then coming in at column  of , and so on until exiting at D l, m[ ] l C
the designated row  of .  This is the discrete form of Richard Feynman's sum-over-paths i A
formalism which he originally used to represent integrals over quantum fields (often with respect 
to infinite-dimensional Hilbert spaces).  The upside is that each individual path has size  O s( )
which is linear not exponential in the circuit size.  The downside is that the number of nonzero 
terms in the sum can be far worse than  and doubles each time a Hadamard gate (or other Q
nondeterministic gate) is added to the circuit.  

3. Find a way to formulate the matrix product so that the answer comes out of symbolic linear 
algebra---if possible!

 
For the textbook, I devised a way to combine the downsides of 1 and 2 by making an exponential-sized 
"maze diagram" up-front but evaluating it Feynman-style.  Well, the book only uses it for  1 ≤  Q ≤  3
and I found that the brilliant Dorit Aharonov had the same idea.  All the basic gate matrices have the 

property that all nonzero entries have the same magnitude---and when normalizing factors like  are 1
2

collected and set aside, the Hadamard, CNOT, Toffoli, and Pauli gates (ignoring the global  factor in ) i Y

give just entries  or , which become the only possible values of any path.  That makes it easier to +1 -1
sum the results of paths in a way that highlights the properties of amplification and interference in the 
"wave" view of what's going on.  The index values become "locations" in the wavefront m, l, k, j, i, …
as it flows for time , and since it is discrete, the text pictures packs of...well...spectral lab mice running s
through the maze.  
 
One nice thing is that you can read the mazes left-to-right, same as the circuits.  Here is the 

 entangling circuit example: [Note: The mice are sometimes left in final positions, H +  CNOT
sometimes in a startup or midway position, for what I demonstrated in lecture.]

 
No interference or amplification is involved here---the point is that if you enter at , then  and 00 00

 are the only places you can come out---and they have equal weight.  To see interference, you can 11
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string the "maze gadgets" for two Hadamard gates together:
 

 
In linear-algebra terms, all that happened at lower right was  giving .  But the wave 1 ⋅ 1 +  - 1 ⋅ 1 0
interference being described that way is a real physical phenomenon.  Even more, according to 
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse" 
(which can be a photon after going through a beam-splitter).  One of those universes has "Anti-Phil", 
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they 
fight to mutual annihilation.
 
 
Can we build any interesting things with just a few qubits?  Yes, in fact.  Even the simplest graph state 
circuit---for a graph of just one node with a self-loop---is instructive to visualize.
 

 
We have seen the equation . How is this reflected when we visualize the quantum HZH = X

properties?  There is only one  change from the "maze" for two -gates canceling, which was:H
 

The change is to insert a stage that again has a  on the  basis value but no "crossover":-1 1
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This time, when "Phil" starts running from  at left, the "mice" cancel at  and amplify at 0 z = 0

.  And on input  they output the basis state .  The result is Boolean NOT, i.e., .z = 1 x = 1 0 X
 
[Footnote: A basic outcome  for the circuit  on input  has amplitude , not  as z C x z UC x x UC z
I've once been guilty of writing.  Perhaps the diagrams should write the bra-form,  and  and so 0 1
on, for  at right to emphasize this.  But we've identified the ket-form with the notion of "outcome"; this z
is the form that would be given as input to a further piece of the circuit.  This dilemma is another reason 
why Lipton and I first tried for a "handedness-free" approach.]
 
Phenomena of interest (tracing the "mice" is analogous to propagating a waveform):

1. Superposition
2. Amplification
3. Phase changes
4. Interference.

 
For graph state circuits of  nodes we need  qubits.  The Hadamard transform of two qubits is 2 2
diagrammed as at left and right.  It does not matter what order the two  gates go in.H
 

 
Note that the mouse running from  encounters no phase change, nor mice ending at  00 00
regardless of origin.  This simply expresses that the Hadamard transform (and the QFT too) have every 

entry  (divided by the normalizing constant ) in the row and column for .  We will focus +1 R = 2n 00
on the amplitude of getting  as output given  as input.  If  is the graph,  the graph-state 00 00 G CG
circuit, and  the unitary operator it computes, then the amplitude we want is .  UG 00 UG 00
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The simplest two-node  has a single edge connecting the two nodes.  This introduces a single  G CZ
gate between the qubits standing for the nodes.

 
If we take the two Hadamard gates away from line 1, then we have , which is H 2 CZ 1 2 H 2
equivalent to .  But with them, we get equal superpositions once again.  Most in particular, the CNOT

amplitude of  (= ) is nonzero.  [The lecture also noted how  is 00 UG 11 11 UG 00 1, 1, 1, -11
2[ ]T

a fixed point of  and found some other fixed points of parts of the circuit, including one that was H⊗2

equal up to multiplication by the unit scalar .]-1
 
Now let's try a graph that adds a loop at each node.  We can call it the "Q-Tip" graph:
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The  phase shifts for the  gates go on the basis states that have a  on line 1 or 2, respectively.  -1 Z 1
Now the amplitude value  is negative.  Its sign does not affect the probability and the state 00 UG 00
still gives an equal superposition.
 
It does not matter whether we put the  gates "before" or "after" the .  The diagonal matrices all Z CZ
commute, and this is clear from how the paths go straight across without branching.  We could simply 
make the whole graph into one diagonal gate with phase shifts that multiply the  factors along each -1
row.  A related thing to note is that if we repeat an edge or loop, then the two cancel completely.  It's as 
if we have a graph with edges defined by even-odd parity rather than number.
 
Now let's try a three-node graph, the triangle:
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For computing the amplitude  it is not necessary to follow the "mice" through the 000 UG 000
Hadamard parts of the "maze".  The mice entering the graph part from  are all positive, and x = 000
the mice going to  will not change color once they leave the graph.  So we need only track z = 000
the middle portion and count how many mice are  and how many are .  For the triangle graph, the + -
answer is: four of each.  They cancel.  So .   =  0000 UG 000
 
This leads us to more insight and a strategy for determining this amplitude for a general -node graph n

:  G = V, E( )
 

• Every basis state  with  corresponds to a 2-coloring  of the vertices.  Say a x x ∈ 0, 1{ }n 𝜒x
node  is black (B) if , white (W) if .  (The Greek letter  (chi) looks like an  and u x = 1u x = 0u 𝜒 X
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indeed  is its capital form, but the Greek letter that sounds like English X is  (xi) with capital . 𝛸 𝜉 𝛯
 The  gives the ch in chromatic.  Well, we can say that the binary string  "is" the coloring .)𝜒 x 𝜒

• For any edge , the edge contributes a -1 in its  gate if both  and  are colored B.  u, v ∈ E( ) CZ u v
Call it a B-B edge.

• Therefore, a coloring gives a  net contribution if it gives  an odd number of B-B edges.-1 G
• The amplitude value  is positive if fewer than  (i.e., half) the colorings create 0n UG 0n 2n-1

an odd number of B-B edges, zero if exactly half do, negative if more.
 
Whether one amplitude is positive or negative does not matter so much in quantum up to equivalence 
under scalar multiplication.  (My lecture demo'ed some examples.)  But patterns of signs between 
different amplitudes  of possible outcomes  may have further significance.  az z z
 
Whether the amplitude is zero, however, is absolute.  I call a graph  "net-zero" if .  G = 00n UG 0n

Above we first observed that the single-node loop graph is net-zero.  The smallest simple undirected 
graph (meaning no loops or multiple edges) that is net-zero is the triangle.  Here are all such graphs up 
to five vertices:

I do not see any simple way to tell "visually" whether a graph is net-zero.  My recent PhD graduate 

Chaowen Guan and I improved the known running time to decide this algorithmically from to O n3

whatever the time to multiply two  matrices is (currently )).  The algorithm works by n × n <  O n( 2.37286

converting the graph-state circuit into a quadratic equation of a kind that converts into a linear equation 
in  variables, whose solutions can be counted in yea-much time.  But a simple, more-direct O n( )
criterion for a graph to be net-zero could give a practically much better algorithm.  Guan and I wrote 
about this on the GLL blog at
 

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/
 
Some generalizations of graph-state circuits can be handled with equal efficiency.  We can simulate 

 gates since is equivalent to .  The extra  gates take things outside CNOT CNOT i j H j CZ i j H j H
the realm of graph-state circuits as strictly defined, but keeps them within the class of so-called 
stabilizer circuits, or equivalently, Clifford circuits, to which the same  runtime <  O n2.37286

applies (for getting any one amplitude, that is).  The gates allowed in these circuits are , , , H CNOT S

, , , , but notably not , , or .  Or  for that matter.   But there are other tweaks that X Y Z CZ Tof T CS CCZ
seem to be easy to bring within our framework, yet yield hard problems.  Consider:
 

 

 

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/


 
The only change was in the middle column, removing the  from the row for .  The middle -1 011
column now "fires" only when all 3 bits are , i.e., for the component of  in any state.  This is the 1 111
action of the double-controlled -gate,  (which is really a triple control of a  phase shift).  It is Z CCZ 180∘

easy to diagram in a quantum circuit:

In graph-theoretic terms, this has replaced the edge  by the hyper-edge , thus creating a 2, 3( ) 1, 2, 3( )
hypergraph.  The effect of changing only the color of the mouse in row 4 (for ) may seem small, 011
but it has a wild effect on the state vector.  Now  has  positive paths from  instead z = 000 5 x = 000
of 4, so its amplitude is .  Six other components have amplitude , and they collectively have  =5-3

8
1
4

1
4

7
16

of the probability.  The other one, for , has  positive paths to  negative, and so amplitude 100 7 1
 which squares to .  Note that the previous amplitude was  which squares to just , =7-1

8
3
4

9
16 =6-2

8
1
2

1
4
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so flipping just one path of eight made a  difference to the probability, more than one might expect.  5
16

The  gate could likewise be in any order---the gates commute so there is no element of time CCZ

sequencing until the final bank of  gates.  The middle part is "instantaneous."H
 
This little illustration of wildness sits over a more general point.  The equation resulting from having the 

 gate changes from quadratic to cubic.  Counting solutions to this kind of cubic equation is -CCZ NP

hard.  In fact, sandwiching the  gate between two  gates (on any one qubit line) gives the Toffoli CCZ H

gate (with target on that line).  So  goes outside the Clifford ambit and gives a universal gate set.  CCZ
 
 
What About Measurement?
 
Let's say we measure qubit 1 (big-endian).  There is a 1/4 chance of getting the result 0 and 3/4 chance 
of getting 1.  If we measured all the qubits, we would see a 9/16 chance of getting , 1/16 each for 100

, , and .  But when we measure just one qubit, the rest of the state stays superposed. Which 101 110 111
part is "the rest of the state" depends on the outcome of the measurement.  In this case:
 

• If the outcome is , the new state on qubits 2 and 3 is . Equal weight superposition 0 1, 1, 1, 11
2[ ]T

with positive signs 
• If the outcome is , then preserving the relative amplitudes the gives .  (Or 1 3, -1, -1, -1[ ]T

, which has the same ratios of amplitudes .) To renormalize this, divide by the -3, 1, 1, 1[ ]T
square root of , which is twice the square root of .  The state also equals 12 3

.1.5, 0.5, 0.5, 0.51
3
[ ]T

 
Heres's a challenge : Can we get this state using just the graph-state gates on two qubits?  We will 
also allow you  and Pauli  and  and even the phase gate , but not  or  . And not  CNOT X Y S T CS CCZ
or Toffoli since only two qubits without ancillae.  If not, can we prove not?  
 
There is a more exact rule for computing the new state, predicated on the result of the measurement.  
Since we have adopted the principle of deferred measurement, we can defer it to chapter 14 in 
November .  But we can see the results in Quirk by applying its postselection operators. Note that they 
are outerproducts.  
 
In any event, this shows special effects one can do with non-Clifford gates like  . CCZ
 
 
NB:   NOT   which would be Cartesian product.a, b  ⊗  c, d  =  ac, ad, bc, bd[ ] [ ] [ ] a, b, c, d[ ]
 
On HW2, problem 1, x = 1, i, 1, i  =  1, 1 ⊗ 1, i .[ ] [ ] [ ]
 

 

 



 
 
Another Graph State Circuit Example:
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